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Abstract 
The stability and convergence of the neural networks are the 
fundamental characteristics in the Hopfield type networks. Since 
time delay is ubiquitous in most physical and biological systems, 
more attention is being made for the delayed neural networks. 
The inclusion of time delay into a neural model is natural due to 
the finite transmission time of the interactions. The stability 
analysis of the neural networks depends on the Lyapunov 
function and hence it must be constructed for the given system. 
In this paper we have made an attempt to establish the 
logarithmic stability of the impulsive delayed neural networks by 
constructing suitable Lyapunov function. 
Keywords: Hopfield type Neural Network; Time varying delays; 
Logarithmic Stability; Lyapunov function 
 
1. Introduction 
In recent year’s dynamic characteristics of the neural 
networks has become a focal subject of intensive research 
studies. Time delay is ubiquitous in most physical and 
biological systems. In the case of information propagation 
through a neural network, time delay has been 
demonstrated to have a substantial influence on the 
temporal characteristics of the oscillatory behavior of the 
neural circuits. Jiang [14] proved that time delay can 
induce multistability, desynchronization, amplitude death 
and change of pattern in certain dynamical systems. Time 
delay estimation has diverse application such as in the 
radar, sonar, seismology, communication system and 
biomedicine. Shaltaf [23] used constant time delay neural 
networks to study classification, approximation of 
nonlinear relation, interpolation and system identification. 
The main objective of stability analysis is to find the 
global exponential stability. It has been established that 
the sufficient conditions are obtained for the existence and 
global exponential stability of a unique periodic solution 
of a class of neural networks with variable and unbounded 
delays and impulses by using Mawhin’s continuous 
theorem of coincidence degree theory and by constructing 

Lyapunov function by Yongkun Li [32]. Global 
exponential stability and periodic solution of Cohen-
Grossberg neural networks with continuously distributed 
delays have been vividly analysed by Li, Y.K [16]. In 
most situations the delays are variable and unbounded. 
These types of delay terms suitable for practical neural 
networks are called unbounded delays. The similar results 
are also reflected in the studies of [9], [4], [7], [34], [33]. 
The neural networks can be classified by two categories 
that are either continuous or discrete but the neural 
network having not purely continuous or discrete is said to 
be impulsive neural networks. The characteristic of 
impulsive neural network is studied by [11], [10], [3], 
[20], [19]. 
    In the present paper we have made an attempt to study 
the logarithmic stability of neural networks of periodic 
solution of a class of neural networks with impulses. The 
delays used in the neural networks are variable and 
unbounded. The sufficient conditions are obtained by 
global logarithmic stability of unique periodic solution of 
a class of neural networks with variable and by Mawhin’s 
theorem of coincidence degree theory. With reference to 
this, we determine the unbounded delays, impulses and 
Lyapunov functions. 
   Though a lot of works on the stability analysis of 
delayed neural networks have been made, but the recent 
survey undertaken by Xu and Lam [24] on sufficient 
stability of time delay has a great significance in this 
direction. The delay dependent stability criteria for the 
linear retarded and neural system with multiple delays 
have been studied by Park [8] by employing Lyapunov 
functional approach. More work on the stability analysis 
on delayed neural system can be found in [13], [31], [30], 
[15]. Yousefi and Lohmann [2] have studied the instability 
of neural networks in similarity transformation based 
model reduction method extend the modification of 
different reductions methods. 
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    In a recent work Tan and Tan [25] have discussed the 
exponential stability of neural network where they have 
considered the variable coefficients and several time 
varying delays for establishing the uniqueness of the 
stability of neural networks using periodic activation 
function with delays. In the high order recurrent neural 
network Qiu [21] have studied the global stability with 
time varying delay using bounded activation function. 
    The organization of the paper is as follows; following 
the introduction we have used some notations, definitions 
and results in 2nd section. In section 3 the existence of 
periodic solution are discussed. In section 4 the global 
exponential stability of periodic solution are presented 
while in section 5 global logarithmic stability of periodic 
solution are depicted. Finally in section 6 present the 
conclusion. 
 
2. Preliminaries 
The normal neural networks with variable and unbounded 
time delays and impulses can be defined by integro-
differential equation 
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Though  does not exist but ( )ki tx′ ( ) ( )−′≡′ kiki txtx   
The initial condition in (2.1) is of the form xi(s) = φi (s), 
 s≤ 0, φi is bounded and continuous on (− ∞, 0]. 
Let us assume that: 
(A)The delays ),....2,1,(0 njiij =≤≤ ττ are bounded  

Function with periodic ω   and  niai ,..2,1,0 =>
(B) kij are the piecewise continuous function where i,j=1,2,..n 
(C) fj ∈ C (R, R), j = 1,2, …..n is Lipschitzian constant and  

0>jL , |fj (x) − fj (y)| ≤ Lj |x − y| for all x, y ∈ R 

(D)Mj > 0 such that |fj(x)| ≤ Mj for j=1, 2,…n, x∈R where  
Mj is a positive constant. 
(E)There exist a positive integer m such that  
tk+m = tk + w 
γi (k + m) = γik < 1 for k = 1, 2,…..n and i = 1, 2, …..n 

(F) , i = 1, 2, ……n are periodic of (∏ ≤≤
−

tt ik
kσ

γ1 ) ω  

Let the impulsive system 
x′(t)=x(t)f(t,x(x–τ1(t)),……x(t−τπ (t))), nktt k ,...2,1, =≠  

and ( ) ( )( )−
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k
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where x ∈ Rn, f : R × Rn → Rn is continuous. 
and  f(t + w, x (t – τ1(t)), ……x (x – τn(t)))= f(t, x (t – τ1)(t)), 
……..x (t – τn(t))) 
Ik : Rn → Rn , k = 1, 2, …….are continuous 

iτ ∈([t0, ∞),[0, ∞)) are Lebesgue measurable periodic  

function of period ω  and t – iτ (t)→ ∞ as t → ∞,i = 1,2,…n.  
and there exist a positive integer q such that   
tk+q = tk + ω  
Ik+q(x) = Ik(x) with tk ∈ R 
tk+1 > tk, limk→∞  tk = ∞ 
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For tk ≠ 0 (k = 1, 2,…..) 
[0,ω ] ∩ {tk} = {t1, t2, ……, tq} 

Here tk is said to be a point of jumping. 
For any σ ≥ t0 
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Let  is the set of functions φ : [rσPC σ, σ] → R then these are real

valued absolute continuous in [t

 

k, tk+1] ∩ (rσ, σ). 
So tk placed in (rσ, σ) may be discontinuous. So for any σ ≥ 0 and f∈
PC

 
 σ a function x ∈ ([rσ, ∞), R) denoted by x (t, σ, φ) is the solution of

(2.2) on (σ, ∞) and it satisfying the initial condition 
x(t) = φ(t), φ(0) > 0, t∈[rσ, σ]                                                  (2.3) 
Hence x(t) is absolutely continuous on each interval  
(tk, tk+1)  (r⊂ σ, σ) and for any tk∈ [σ, ∞],   

k = 1, 2,….  and x)( +
ktx ( )−

kt  exist and x ( )−
kt  = x(tk) and  

x(t)satisfies (2.2) in (σ, ∞) and impulsive point tk situated in 
 (σ,∞) is discontinuous. 
 
Definition 2.1.  

 
The periodic solution x*(t) of equation (2.1) is said to be 
globally exponentially stable if there exist constants α > 0 
and β>0 such that 
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with initial condition yi(t) = φi(t), t ≤0. 
Theorem 2.1. 
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satisfy the system (2.1) 
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3. Existence of Periodic Solutions 
Now we will study the existence of periodic solution by 
Mawhin’s continuation theorem. 
Let X, Y are real Banach spaces. 
L: Dom L ⊂ X → Y is a linear mapping. 
N: X → Y is a continuous mapping. 
The mapping L is said to be Fredholm mapping of index 
zero. 
DimKer L = condimImL < ∞ and Im L is closed in Y and 
there exist continuous projector P : X → X and Q:Y→Y 
such that Im P = Ker L, Ker  = Im(I-Q) 
So L |Dom L ker P∩ : (I − P) X → ImL is invertible. 
Hence we denote the inverse of mapping by KP. If Ω is an 
open bounded subset of X then the mapping N is said to 
be L-compact on Ω if QN ( Ω ) is bounded and KP(I − Q) 

N: Ω  → X is compact. 
Since Im Q is isomorphic to Ker L, there exists an 
isomorphism J: ImQ → Ker L. In order to prove the 
existence we required the following lemma. 
Lemma 3.1. 
Let Ω ⊂ X be an open bounded set and let N: X → Y be a 
continuous operator and it is L-compact on Ω .  
(i)for each λ∈ (0, 1), x ∈ ∂ Ω ∩ DomL, Lx ≠λNx 
(ii)for each x∂Ω ∩ Ker L, QN x ≠ 0 and   
deg (JQN, Ω ∩ KerL, 0) ≠ 0 
So, Lx = Nx has at least one solution in Ω ∩ DomL 
Theorem 3.1. 
Let (A), (B), (C), (D), (E), (F) hold then the system (2.1) 
has at least one ω  periodic solution. 
Proof: Now our aim is to prove the non-impulsive delay 
differential system (2.4) has a ω  periodic solution. By 
continuation theorem of coincidence degree theory. 
X = Z = {x (t) ∈ C (R, Rn): x (t + w) = x (t), t ∈ R,            
x = (x1, x2, …..xn)T} 
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mapping of index zero. So P and Q are continuous 
projectors satisfying 
Im P = Ker L and Im L = Ker Q = Im (I-Q) 
Hence Kp : ImL Ker P domL of L→ P has the form  

KP(Z) = ( ) ( )∫ ∫∫−
t tt

dsdtxZdssZ
0 00

1
ω

  

Thus, 

( ) ( ) XydttGdttGQN
T

w w

ny ∈⎟
⎠
⎞

⎜
⎝
⎛= ∫ ∫ ,1,......,1

0 01 ωω
 

 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 1, No. 2, January 2010 
ISSN (Online): 1694-0784 
ISSN (Print): 1694-0814 

36

and  ( )

( )

( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=−

∫

∫

∫

t

n

t

j

t

yP

dssG

dssG

dxsG

NQIK

0

0

0 1

.

.

.

.

( )

( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−

∫ ∫

∫ ∫

∫ ∫

w t

n

w t

j

w t

dsdtsG
w

dsdtsG
w

dtdssG
w

0 0

0 0

0 0 1

1
.
.

1
.
.

1 ( )

( )

( ) ⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

⎟
⎠
⎞

⎜
⎝
⎛ −

−

∫

∫

∫

w

n

w

j

w

dssG

dssG

dssG

0

0

0 1

2
11

.

.
2
11

.

.
2
11

ω

ω

ω

 

Hence QN and Kp(I − Q)N are continuous and by 
Arzela Ascoli theorem QN ( Ω ), Kp(I − Q) N ( Ω ) are 
relatively compact for any open bounded set Ω ⊂ X. 
Therefore N is L-compact on Ω  for any open bounded 
set Ω ⊂ X. 
So for a open bounded subset Ω for the application of the 
continuation theorem corresponding to the operator 
equation Lx=λNx , λ∈ (0, 1), we have 

      ( ) ( ) ( )
⎩
⎨
⎧

−+−=′ ∏
<≤

−

tt
ikiii

k

txatx
0

11 λλ

∑ ∏
= <≤

−
n

j tt
jjkjij

k

txfa
1 0

))()1(([ γ  

                                    

   ( ) ( )( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+ ∏

−<≤ ttt
ijjjkjij

ijk

ttxfb
τ

τγ
0

1

               

                               (3.1) 

( ) ( ) ( ) ( )∫ ∏∏∞−
<≤

−

<≤ ⎭
⎬
⎫

−+⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+

t

tt
iik

st
jjkjijij

kk

Idssxfstkc
0

1

0

11 γγ

Where x ∈ X and i = 1, 2, …..n 

suppose that x (t) = (x1(t), t2(t),…….xn(t))T ∈ X is a 
solution of the equation (3.1) for λ∈(0, 1) 
Integrating (3.1) over the interval [0, ω ], we have 
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So              
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Where                                           
a = max {|aij|, i, j = 1, 2,….n} 
b= max {|bij|, i, j = 1, 2, …..n} 
c= max {|cij|, I, j = 1, 2, …..n} 
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From equation (3.1) we have  

( ) ( )[ ] ( )
⎩
⎨
⎧

−=′ ∏
<≤

−

tt
ikii

k

tatx
0

11exp γλλ  

∑ ∏
= <≤

−
n

j tt
jjkjij

k

txfa
1 0

))()1(([ γ                  

 

( ) ( )( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+ ∏

−<≤ tTtt
ijjjkjij

ijk

ttxfb
0

1 τγ

( ) ( ) ( )∫ ∏∞−
<≤ ⎥

⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+

t

st
jjkiijij dssxfstkc

k0

1 γ

                 

( ) ( ) nitai
tt

ik
k

,.....2,1,exp1
0

1 =
⎭
⎬
⎫

−+ ∏
<≤

− λγ

( ) ( )[ ] dttatx
t

ii∫ ′
0

exp λ  

                 

( ) ( ) ( )∫ ∏ ∑ ∏
⎪⎩

⎪
⎨
⎧

⎢
⎢
⎣

⎡
−−≤

<≤ = <≤

−w

tt

n

j tt
jjkiijik

k k

txfa
0

0 1 0

1 11 γγ  

( ) ( )( )
( ) ⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+ ∏

−<≤ tTtt
ijjjkiij

ijk

ttxfb
0

1 τγ  

                   

( ) ( ) ( )∫ ∏∞−
<≤ ⎥

⎥
⎦

⎤
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−+

t

st
jjkiijij dssxfstkc

k0

1 γ  

( ) ( ) nidttaI i
tt

iik
k

,.....2,1,exp1
0

1 =
⎭
⎬
⎫

−+ ∏
<≤

− λγ  

              

                                

                  (3.5) 

 

( )[ ] ( )∫
∞

=+++≤
0

exp* ii BdttaIMcbaNN λ

( )
⎭
⎬
⎫

⎩
⎨
⎧

=−= ∏
<≤

−

tt
ik

k

niN
0

1 .,.........2,1,1max* γ

From (3, 4) and  (3, 5) we have  
xi(t) exp (λait)≤ xi(ti) exp (λaiti) + 

( ) ( )[ ]∫ ′w

ii dttatx
0

exp λ                                                                      

≤ Aiexp (ω ai) + Bi = Di, i = 1, 2,……n 
Since exp (λait) 1 for λ∈ (0, 1), t∈ [0, w] and x≥ i (t) ≤ Di, 
i = 1, 2, ……….n, then from equation (3.3) and (3.5) we 
get 
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where A is independent of λ and Ω = {x ∈X : || x(t) || < t} 
So Ω satisfies the condition of Lemma 3.1. 
When x ∈∂ Ω ∩ Ker L, X = (X1, X2,……Xn)T is a constant 
vector in Rn with || x || = A. Then  
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Let J : ImQ → Ker L, r → r 
If A is greater than xT JQN x < 0 
so for x ∈ ∂ Ω ∩ Ker L, Q N x ≠ 0 
Let φ (γ : x) = − γx + (1 − γ) JQN x 
then for x ∈ ∂ Ω ∩ Ker L, xT φ (γ , x) < 0 
So deg{JQN, Ω∩Ker L, 0} = deg{−x, Ω ∩ Ker L, 0} ≠ 0 
for each x ∈ ∂ Ω ∩ Ker L, QN x ≠ 0 and  
deg (JQN, Ω ∩ Ker L, 0) ≠ 0 
Hence equation (2.4) has at least one ω -periodic solution 
and system (2.1) has at least one ω  periodic solution. 

Before going to study the stability condition of 
neural networks with time delay we have stating some of 
the important results due to Mawhin [12] on coincidence 
degree for perturbations of Fredholm mapping. 
Proposition 3.1. 
Let X, Z be a vector space, dom L a vector subspace of X 
and L=dom L ⊂ X → Z  
a linear mapping. Its kernel L−1(0) will be denoted by Ker 
L and its range L (Dom L) by Im L. 
Let P:X→ X,Q:Z→Z be algebraic projectors such that the 
following sequence is exact : 
X → dom L → Z → Z 
which mean that ImP=KerL and ImL=KerQ 
If we define LP:domL∩KerP→ ImL 
as the restriction L|domL∩KerP of L to domL ∩ Ker P, 
then it is clear that LP is an algebraic isomorphism we 
shall define KP : ImL → domL by  1−= PP LK
Clearly, KP is one-to-one and PKP = 0 
Therefore, on Im L, 
LKP=L(I − P)KP=LP(I−P)KP=LPKP=1 and, on dom L, 
KPL=KPL(I−P)=KPLP(I−P)=1−P 
 
Preposition. 3.2. 
Let Coker L= LZ Im be the quotient space of Z under the 
equivalence relation z ~ z′ ⇔ z − z′ ∈ ImL 
Thus, Coker L={z + ImL : z ∈ Z} and we shall denote by 
Π : Z → Coker L, z → z + ImL the canonical surjection. 
Proposition. 3.3. 
If there exist a one-to-one linear mapping A:CokerL→ 
Ker L then the equation Lx = y, y ∈ Z is equivalent to 

equation (I − P) x = (∧Π+ KP, Q) y where KP,Q : Z → X is 
defined by KP, Q = KP(I − Q). 
More on this work refer Mawhin [12]. 
 
4. Global exponential stability of the periodic 
solution 
Suppose x*(t) = (x*1(t), x*2(t),………..x*n(t))T is a 
Periodic of system (2.1). In this section some Lyapunov 
functions are defined to study the exponentially stability 
of this periodic solution. 
Theorem 4.1. 
Let A – F hold and 
(i)There exist n positive constant ξ > 0, i = 1, 2,…..n such 
that  

( ) niLcbaa
n
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jijijijjii ,....2,1,0

1
=<+++− ∑
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ξξ                             

                                            (4.1) 
(ii)The impulses operator Ii(xi(t)), i = 1, 2,….n satisfy 
Ii(xi(tk)) = −γik (xi(tk) ( )txi

* ), 0 < yik<1,i= 1, 2,…..n, k∈ Z+ 

Proof : We know that system (2.1) has an ω  periodic 

solution x*(t) = ( ) ( ) ( )( )T
n txtxtx **

2
*
1 ,........,    

Let x(t)=(x1(t),x2(t),……xn(t))T is arbitrary solution of 
(2.1).If a is α constant satisfying δ ≥ α > 0  such that for 
i=1, 2,…..n then 
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                                                                           (4.2) 
Let y(t) = x(t) – x*(t) then the equation (2.1) becomes 
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also ∆yi(tk) = − γikyi(tk), i = 1, 2,……n 
and |yi(tk + 0)| = |1 − γik|| yi(tk) |≤| yi(t )| k

where gj(yj(t)) = fj(xj(t)) – ( )( ) njtxf jj ,.........2,1,* =  

By assumption (C), we know that 0 ≤ |gi(yi)| ≤ Li |yi|,  
i=1, 2,…..n 
The initial condition of (4.3) is ψ (s) = φ(s) – x* (t) 
Let the Lyapunov function V = (V1, V2, ……Vn)T defined 
by Vi = eαt |yi(t)|, i=1,2,….n then from equation (4.3), we 
get 
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For t > 0 and t ≠ tk .  
Defining there curve ρ={w(l):wi=ξil,l > 0, i = 1, 2,……n} 
and the set Ω(w) = {u : 0 ≤ u ≤ w, w ∈ ρ} 
Si(w)={u∈Ω(w):ui = wi, 0 ≤ u ≤ w} then l > l, Ω (w (l)) 
So the equation (4.3) is exponentially stable. 
If there exist a constant β > 0 and α > 0, such that  
|| y(t) || ≤ βe−αt || ψ || for all t ≥ 0 and  

{ }ini
ξξ

≤≤
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1max max , { }ini
ξξ

≤≤
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1min min  

( )
min
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1
ξ

ψδ+
=l   where σ > 0 is a constant. 

Then {|V| : |V| = eαs |ψ(s)|, − ∞ ≤ s ≤ 0} ⊂ Ω (w0(l0))  
and |Vi (s)| = eαs |ψi(s)| < ξi l0, −∞ ≤ s ≤ 0, i = 1, 2,……n  
so |Vi(t)| < ξil0 for t ∈ [0, −∞], i = 1, 2, …….n  
and if it is not true then there exist some i and t1 (t1 > 0) 
such that |Vi (t1)| = ξil0  
D+ |Vi (t1)| ≥ 0 and |Vj (t)| ≤ ξil0 for − ∞ < t ≤ t1, 
j = 1, 2,…..n so from equation (4.4) we get 
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gives a contradiction 
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for t ≥ 0  

where β = (1 + δ) ξmax ξmin
Hence the periodic solution of system (4.3) is globally 
exponentially stable. 
 
5.Global Logarithmic stability of the periodic 
solution 
Theorem 5.1.If the theorem (4.1) holds then the system 
(4.3) is logarithmically stable. 
Proof:By assumption (C), we know that 0 ≤ |gi(yi)|≤Li |yi|, 
i = 1, 2,….n. 
The initial condition of (4.3) is ψ(s) = φ(s) – x*(t) 
Let the Lyapunov function V=(V1,V2……Vn)T defined by  
Vi = Logαt |yi(t)|, I = 1, 2,…..n then from equation (4.3), 
we get 
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for t > 0 and t ≠ tk. 
Defining the curve ρ={w(l):wi=ξ il,l>0,i = 1, 2,……….n}  
and the set Ω(w) = {u : 0 ≤ u ≤ w, w∈ρ} 
Si(w)={u∈ Ω(w):ui=wi,0≤u≤w}then

( )( ) ( )( )lwlwll ~,~
Ω⊂Ω> . 

So the equation (4.3) is Logarithmically stable. 
If there exist a constant β>0 and α>0, such that  
|| y(t) || ≤ βe−αt || ψ || for all t ≥ 0  
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=
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( )
min

0
||||1

ξ
ψδ+

=l  

Where δ >0 is a constant. 
then {| V |:|V| = logαs | ψ (s) |, −∞≤ s ≤0} ⊂Ω (w0(l0)) 
then |Vi(s)|= logαs | ψι (s)| < ξilo, −∞ ≤ s ≤0,i= 1,2,……..n 
so| Vi (t)| < ξilo for  t∉[0, −∞], ,i= 1,2,……..n 
and if it is not true then there exist some i and t1 (t1 >0) 
such that | Vi(t1) | = ξil0  
D+|Vi(t1)|≥ 0 and |Vi(t)|ξilo for −∞< t ≤  t1, j =1,2,….n  
From equation (4.4) we get 
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n

j
jiii beaKatVD |||

1
1

αταξ )  

+ | cij | pij(α)ξi]lo <0                                                 (5.3) 
for  t > 0 and t≠ tK gives a contradiction 
So |Vi(t) | < ξilo for t ≥ 0,t ≠tk 

and  Vi(tk+0)=lagαt |yi(tk+0) | eαt | yi(tk) | =Vi(tk) for κ∉Z+ 

and  |yi (t)|<ξil0Log(−αt)≤ (1+δ)||Ψ ||
min

max

ξ
ξ

 Log (−αt), 

i=1, 2,…….n for t≥ 0 where β = (1 +δ) ξmax ξmin
Hence the periodic solution of system (4.3) is globally 
exponentially stable. 
The following example explain the existence and stability 
of neural network. 
Example. 1. 
Let us consider the Hopfield neural Network with time 
delay 

( )
dt

tdvi = −2.5 log 3ty(t) + 2g(y1(t))+2.4g(y1(t)−1) 

+.5g (y2 (t)) +1.5g(y2(t)−1)+3  g(y(s))ds +3 (∫
∞−

−
t

t 1)

where g(y(t))= log(3y(t) + 1), I = 3 for i = 1 
Using the above theorem through direct calculation we 
have 

dt
dvi ≤ (3 + 2.5)+{1.5+ 2.4 log (3y (t) +1)}+|Pij(3)|l0≤ ξ l0 

for |Pij(3)|=| (log 3t +1)dt|=3 for y(t) = 3 ∫
∞

0

log

for the finite value of t 

dt
dvi ≤ 6.5+2.4  log (3t+1)+3l0

which shows the network global logarithmic stable. 
 
6. Conclusion  
In this paper we have generalized the work of Youngkun 
Li[32] to study the existence and global exponential 
stability of Periodic solution of class of neural networks 

and also studied the logarithmic stability of neural 
networks. The sufficient condition generates the existence, 
unique periodic solution and global logarithmic stability of 
an equilibrium point by using Mawhin’s continuation 
theorem. 
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