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Abstract
This paper presents a gradient based motion estimation algorithm
based on shape-motion prediction, which takes advantage of the
correlation between neighboring Binary Alpha Blocks (BABs),
to match with the Mpeg-4 shape coding case and speed up the
estimation process. The PSNR and computation time achieved by
the proposed algorithm seem to be better than those obtained by
most popular motion estimation techniques.
Keywords: Motion Estimation algorithm, BAB, Shape Coding,
MPEG4.

1. Introduction

Motion estimation and compensation is a key component
for high quality video compression, which is characterized
by its high computation complexity and memory
requirements. However, Motion estimation is considered
as the most time-consuming stage in MPEG processing [1]
(up to 90% of the total execution time [2]). Therefore, to
achieve performances desired for real time applications,
it's imperative to think about hardware architecture and
use a motion estimation algorithm which reduces
computation complexity.
The best performances, in term of PSNR, are achieved by
exhaustive search (ES) ME algorithms, since they
examine all possible motion vectors, however, their
implementation increase the computation time and slow
down the compression process [3]. Fast search algorithm,
such as 2-D log search scheme [4], the Three step search
(TSS) [5], the Four Step Search (FSS) [6] and Diamond
Search (DS)[7] have been proposed, all of them try to
achieve the same PSNR as the ES by considering only the
most probable motion vectors.
In fact, many researchers have focused on ME algorithms
especially based on texture coding. However, one of the
most important concepts introduced by the Mpeg-4 visual

standard is the use of video object (VO) as an entity the
user can access and manipulate. The instance of a VO at a
particular point of time is called video object plane (VOP)
[8]. To support coding of arbitrary-shaped objects, each
position in the picture is associated to a Binary Alpha
Blocks (BAB); and thus macro-blocks of the image are
classed as: opaque (fully ‘inside’ the VOP), transparent
(not part of the VOP) or on the boundary of the VOP.
Therefore, in MPEG-4 video coding, ME of shape is also
imperative for real-time VOP-based encoding.
Several papers have proposed software implementation
methods for shape coders [ 9 ], [ 10 ] where shape
information is used to reduce search point per macro-
block and only valid predecessors are evaluated [10] for
boundary macro-blocks.
Since hardware implementation is usually better to
achieve the complexity suitable for real-time applications,
we propose in this document a gradient based algorithm
where ME for shape coding is combined with ME for
texture, which we will use for a hardware implementation
of an MPEG4 encoder IP to accelerate convergence
process. The algorithm uses shape ME for boundaries
macro-blocks and textures ME for opaque macro-blocks.
To check its performances, we have implemented and
tested the proposed algorithm with many test video
sequences. Results show that the algorithm presents a
good PSNR result with a net decreasing in the number of
iterations and computation time. The next section presents
background information about video coding and motion
estimation, the main idea of the proposed algorithm is
described in the section 3 and the evaluation of obtained
results is presented in section 4.

2. Motion Estimation in Video Coding
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For video compression case, the goal is to remove the
redundancy in images and reduce the amount of bits
required to represent the video sequence. In addition to the
discrete cosine transform (DCT) and the quantization
block used to remove spatial redundancy, a typical MPEG
encoder utilizes a motion estimation (ME) and
compensation system to remove temporal redundancy
between successive frames of the treated video.
In block-based video coding standards such as Mpeg-4, the
first video encoding stage performs motion estimation and
compensation for each frame of the video sequence. In this
step, we compare the content of the current and previous
images and encode only displaced difference blocks, with
motion vectors, instead of encoding all original blocks.
Conventional algorithms generally use Matching-based or
Gradient-based techniques to compute motion vectors.
Matching-based techniques: in these approaches, true
motion vectors can be determined based on the differences
of pixel intensities. The best matching is obtained for
smallest differences between pixel intensities of the current
and reference frames.
Gradient-Based techniques: in these approaches, based
on the “intensity conservation over time assumption", the
spatiotemporal derivatives of pixel intensities is measured
to determine true motion vectors. The total derivative of
the image intensity function (I) should be zero every time
and for each position in the image:
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In the search process, the problem is to find the motion

vector MV for the current block B(y,x) at time instance ,
so that the error SAD (sum of absolute differences)

between the block B and the matching block C at time

instance  is minimized.

3. Proposed Algorithm

For commonly used motion estimation algorithms, there is
no limit on the number of steps that the search algorithm
can take. Therefore we thought about exploiting the
optical-flow principle and use a recursive motion
estimation which is a less complex method to compute
dense displacement fields [10]. The proposed algorithm
can be divided into two main steps as shown in Fig. 2: the
first step is a Block recursive search, where four candidate
vectors (three spatial and one temporal) are evaluated for
the actual block by recursive block matching. The second
step is a Pixel recursive search, where the chosen vector is
adjusted by a gradient based method to find the best
approximation.

Fig. 1: Procedure in the proposed motion estimation algorithm

3.1 Block Recursive Search (BRS)

Each video frame is scanned from the top left to the
bottom right at sparse block grid to evaluate candidate
vectors depending on the macro-block type (opaque,
transparent or boundary).

h_max = Nbpixel / Block_size
v_max = Nbline / Block_size
for v = 1 : v_max

for h = 1 : h_max
X=(h,v)%% current position

  %%%%%%%%%% Block-Recursive Search%%%%%%%%%%
Type = Block_Type[h,v]%% to define the type of the current

macro-block depends on its BAB %%
if type == Transparent %% no motion vector is computed

        MV(h,v)= (0,0);
else

%% temporal candidate %%
        T(h,v)=MV(X); %% motion vector computed for the

previous image %%

%% computation of neighboring blocks coordinates %%
        A(h,v)= MV(h-1,v); %%motion vector computed for the

block A %%
        B(h,v)= MV(h,v-1); %%motion vector computed for the

block B%%
C(h,v)= MV(h+1,v-1);%%motion vector computed for the

block C%%

     if type == Boundary
%% distortion will be measured based on alpha masks of the

current image(BAB) and the previous one (BAB_P) %%
SAD_A = SAD[BAB_P(X), BAB(X+A)];

        SAD_B = SAD[BAB_P(X), BAB(X+B)];
        SAD_C = SAD[BAB_P(X), BAB(X+C)];
        SAD_X = SAD[BAB_P(X), BAB(X+T)];

%% computation of the minimum distortion
[position,sad_min] = Min[SAD_A,SAD_A,SAD_A,SAD_X]

else %%   type == Opaque
%% distortion will be measured based on video data of the

current image(VID_C) and the previous one (VID_P) %%
SAD_A = SAD[VID_P(X), VID_C(X+A)];

         SAD_B = SAD[VID_P(X), VID_C(X+B)];
         SAD_C = SAD[VID_P(X), VID_C(X+C)];

SAD_X = SAD[VID_P(X), VID_C(X+T)];
%%computation of the minimum distortion

 [position,sad_min] = Min[SAD_A,SAD_A,SAD_A,SAD_X]
end

end
        switch position
            case 1,
                MV(X)=A(h,v);
            case 2,
                MV(X)=B(h,v);
            case 3,
                MV(X)=C(h,v);
            case 4,
                MV(X)=T(h,v);
        end

%%%%%%%%%% Pel-Recursive Search%%%%%%%%%%
%% update of the computed vector based
%% on the spatio-temporal gradient
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
MV(X)=DPD(MV(X));

  end
end
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Fig. 3: Neighboring blocks for motion vector selection.

As shown in Fig. 3, the motion vector is selected between
the three motion vectors of the neighboring blocks (A, B
and C) and the temporal motion vector of the current block
(X). For each vector we compute the motion compensation
error by computing the SAD of the current block B(y,x)
and the predicted one C. The best selection corresponds
to the motion vector which minimizes the SAD.
Since transparent macro-blocks are not part of the video
objects, no vectors are evaluated for these macro-blocks.
For boundary macro-blocks, since they mainly contain
shape information, a shape ME is processed. The three
spatial vectors are evaluated by referring to shape and
motion vectors are evaluated by computing the
compensation error based on the BABs around the
processed macro-block [9]. The temporal candidate vector
is evaluated by referring to texture.
For opaque macro-blocks, a texture ME is processed;
motion information is calculated by referring to texture
around the processed macro-block. The four candidate
vectors are evaluated by computing the compensation error
based on texture information.

3.2 Pixel Recursive Search (PRS)

This stage is used to refine ME process; the principle is to
update the value of the selected vector in respect to a
gradient based technique.

The displacement vector d


at the current position is
obtained as follow [11]:
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where  is the so-called convergence factor.

The displaced pixel difference (DPD) is computed
iteratively till its minimum value is reached, based on the
selected vector “di” which corresponds to the minimum
value obtained from the BRS.
By replacing the gradient function in the equation (2) by its
approximation, the displacement vector equation will be:
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Where f(x) is the pixel's gray level, at the location given by

the x position and  is a threshold value  which decreases
the sensitivity of pixel recursion to noise; it is usually set to
a value of two or three[10].
The Corresponding equation for uy is obtained by
exchanging the index.

In Mpeg-4 visual standard the default block size for
motion compensation is 16×16, to improve compression
efficiency the standard support four motion vectors per
macro-block. Therefore in recursive search we will work
with 8×8 blocks.
The PRS compare the DPD in the current position, pointed
by the selected vector in the BRS, with the PDP in the
others positions which are obtained by shifting the
predicted block with an update vector MV in the eight
directions (Fig.4).

Predicted block

Current block
m = (0,0)  (1, 0)

 (1,1) (0,1)

 (-1,0)

 (-1,-1)  (0,-1)  (1,-1)

(-1,1)

Fig. 4: candidates in the pixel recursive search

The final motion vector will be computed for the position
with the smallest DPD.
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4. Experimental Results

To check its performances, the proposed algorithm is
evaluated with four MPEG-4 test video sequences of QCIF
format (176x144); Caltrain, Weather, foreman and
Carphone. The Caltrain video sequence contains several
moving objects on textured background; Weather and
Carphone are low-motion video clips, while Foreman
contains some quick motion scenes.
All tested video scenes are used to generate the frame-by-
frame motion vectors, with two frames distance between
current frame and reference frame.
Fig. 5 shows a reference frame from “caltrain” sequence
and the corresponding reconstructed image with motion
compensation. Motion estimation is carried out by using
the proposed Algorithm with a 16×16 block size and half-
sample accuracy producing the set of vectors shown on the
same figure.

Fig. 5 :  Example of a "Caltrain" frame with its corresponding predicted
image, motion vectors and error image

The comparison between the reference and the
reconstructed images as well as the residual image (Fig. 5-
d) can inform about the proposed algorithm efficiency and
performances. We see that there is no significant visual
difference between the reference and the reconstructed
images, and that the difference image doesn't contain a
significant energy, that means the estimation performed by
the algorithm is good.
The same video sequence is used to compare the
performance of the proposed algorithm with the
performance of motion estimation techniques, presented
above, whose are widely accepted by the video
compressing community and have been used in the

implementation of various standards. Motion-compensated
images, created from motion vectors, are compared to the
reference frame by computing the Peak-Signal-to-Noise-
Ratio (PSNR).
In the ES case, since we compare the current block with all
blocks in the search window, it corresponds to the highest
PSNR values. Fast algorithms attempt to achieve the same
PSNR as in the ES wit h minimum computations.
Figures Fig.6 and Fig.7 show respectively PSNR (in dB)
results and computation time obtained for “caltrain”
sequence. Experimental results demonstrate that the
proposed algorithm (P.A) have a comparable PSNR as the
ES algorithm and achieves consistent improvement in
PSNR over the TSS algorithm which has been widely
accepted as one of the best ME for low bit rate real time
video applications [12,13].

Fig. 6: PSNR Results for “Caltrain” Sequence

Fig. 7: Computation time for Caltrain sequence

A Reference "Caltrain" image (a) Motion-compensated image (b)

Motion field (c) Error image (d)
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Although PSNR results obtained for DS and FSS are
relatively the same as the P.A, they present a higher
computational time
To compare the performance of tested algorithms by
considering both estimation quality and computation time,
we use an indicator as a “figure of merit”  which takes into
account, for each test sequence, the average value of the
obtained PSNR (in linear scale) , the number of macro
blocks used in the comparison and the search window. The
indicator is defined as:

2(2 1)PSNR S
I

C


 (6)

Where C is the average number of compared blocks and S
is the size of the search window. (2S+1)2 represent the
total number of blocks in the search area S. The optimum
value of the Indicator will match to a maximum of both
PSNR and the ratio of the total number of the blocks in the
area search to the number of the compared blocks. Good
performance of the algorithm corresponds to high values of
the indicator.

Table 1 shows the average of search points per macro-
block for tested sequences obtained for a search window
size of 7x7. While the ES test around 205 search points per
macro-block, the other tested ME algorithms accomplish a
good performances with a higher speed-up ratio. For all
tested algorithms, even if the number of comparison
required per macro-block is clearly reduced by reference to
ES, an average of 15 search points for DS, the proposed
algorithm presents the best computation time and drop
down the number of comparison required per macro-block
to an average of 6.5 search points.

Table 1: Average of search points per macro-block for tested ME
algorithms

Sequence Caltrain Foreman Weather Carphone

ES 204.2828 204.2828 204.2828 204.2828

TSS 24.3838 23.2916 23.1343 22.5824

4SS 20.4460 18.4625 15.7979 17.5911

DS 15.6392 16.1977 12.2388 15.2116

PA 6.5125 6.4867 6.4780 6.4286

Table 2 shows average values of PSNR obtained for each
video sequence. Results demonstrate that the proposed
algorithm (P.A) have nearly same results as the ES
algorithm for the four sequences and achieves consistent
improvement in PSNR over the TSS algorithm.

Table 2: Average values of PSNR (dB) obtained for tested ME
algorithms

Sequence Caltrain Foreman Weather Carphone

ES 30,54 38,52 40,68 38,55

TSS 27,53 38,02 40,28 37,93

4SS 29,06 38,11 40,37 38,06

DS 29,56 38,35 40,63 38,43

PA 29,66 38,43 40,65 38,48

Although PSNR results obtained for DS and FSS are
relatively the same as the P.A for video scenes with low
motions (Weather, Carphone), its PSNR performances are
better than them for video scenes which present a quick or
complex motions (Foreman, Caltrain) even it checks less
search points.

Fig. 8: Performance indicator (Figure of merit)

Fig. 8 presents the indicator values obtained for each test
sequence. The figure shows that the proposed algorithm
achieves the best compromise between computation time
and PSNR results for all tested scenes.
Furthermore, while the processing time may depend on
frames and video sequences for most of the algorithms,
results show that the P.A keeps the same computation time
for all frames and video sequences. Which mean that the
ME processing will not depend on the treated video data.

4. Conclusions

In this work we have proposed a new efficient algorithm
for motion estimation based on the spatio-temporal
gradient which uses block and pixel recursive search. The
algorithm is based on the shape motion estimation and
takes advantage of the texture-shape correlation.
Simulations show that the proposed algorithm reduces the
number of comparisons and computation time required for
motion estimation process with negligible quality
degradation. When compared to commonly used
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algorithms, the proposed algorithm gives the best PSNR
results, very close to those obtained by the ES algorithm,
with a number of compared blocks neatly reduced,
regardless the kind of treated video. Also, for real time
applications, one can take advantage of the invariable
computations of the algorithm to control and reduce
processing delay.
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