
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

Automatic Mapping Tasks to Cores - Evaluating AMTHA
Algorithm in Multicore Architectures

Laura De Giusti1, Franco Chichizola1, Marcelo Naiouf1, Armando De Giusti1, Emilio Luque2

1 Instituto de Investigación en Informática (III-LIDI) – School of Computer Sciences – Universidad Nacional de La Plata
La Plata, Buenos Aires, Argentina

2 Computer Architecture and Operating System Departtment (CAOS) - Universidad Autónoma de Barcelona
 Barcelona, España

Abstract
The AMTHA (Automatic Mapping Task on Heterogeneous
Architectures) algorithm for task-to-processors assignment and
the MPAHA (Model of Parallel Algorithms on Heterogeneous
Architectures) model are presented.
The use of AMTHA is analyzed for multicore processor-based
architectures, considering the communication model among
processes in use.
The results obtained in the tests carried out are presented,
comparing the real execution times on multicores of a set of
synthetic applications with the predictions obtained with
AMTHA.
Finally current lines of research are presented, focusing on
clusters of multicores and hybrid programming paradigms.
Keywords: Parallel Algorithm Models, Task-to-Processor
Mapping, Performance Prediction, Multicore Architectures.

1. Introduction

A cluster is a parallel processing system formed by a set of
PCs interconnected over some kind of network and that
cooperate as if they were an “only and integrated”
resource, regardless of the physical distribution of its
components. When two or more clusters are connected
over a LAN or WAN network, we are in the presence of a
multicluster [1].

The hardware and operating system of the participating
machines may be different; each machine may even be a
“multiprocessor”, as is the case in multicore architectures
that are so relevant nowadays. Multicore processors
include several processing elements within an integrated
circuit. This type of architectures are considered as a
solution to the limitation of one core machines to increase
computing power due to the increase in temperature
[1][2][3].

Fig. 1. Diagram of a multicore structure.

Figure 1 shows the typical design of a current multicore
architecture, composed by two processors that share the
main memory. Each of these processors in turn is formed
by four cores that share one L3 cache memory (this
memory may not be present in some models). There is also
an L2 cache memory that is shared by pairs of cores.
Finally, each core has its own L1 cache memory.

As it can be seen from Fig. 1, the communication between
the various cores is done through the different memories
of the architecture. Thus, the communication time between
two cores is given by the time required to access the
corresponding memory. In the case of Fig. 1, there are
three levels of shared memory with their corresponding
communication times.

It is possible to build clusters (also multiclusters) using
multicores; Fig. 2 shows a diagram of this type of
architecture, where each Pi may have K processing cores
and L memory levels (in the example of Fig. 1, K=4 and
L=3).

Sh
ar
ed

 M
ai
n
 M

em
o
ry

L2

L2

Pi

L3

Pj

L2

L2

L3

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

2

NET

 P0 P1

 P5 P4

 P7

 P6

 P2

 P3

Fig. 2. Diagram of a multicore cluster.

The advent of this type of distributed architectures that can
be accessed by any user has promoted the growth of
parallel processing as a technique to increase architecture
exploitation. Application programmers should implement
this technique by describing its component tasks and the
interaction between them. Once the application has been
developed, the programmer or user of the application on a
parallel architecture will have to decide how to do it. That
is, they should select how many of the processors/cores in
the architecture will be used and how the application tasks
will be assigned to them, in order to achieve the best
possible throughput of the architecture with the lowest
response time. This problem of solving the distribution of
tasks between processors is called scheduling. [4]

The problem of the automated scheduling of tasks to
processing elements (processors in conventional machines
and cores in multicore computers) is highly complex [5].
This complexity can be briefly represented considering the
two main elements relating the parallel application to the
supporting architecture: each node’s processing capacity
and the cost in time of communicating two processing
elements [6].

The goal of modeling processing architectures is to obtain
an “abstract” or simplified version of the physical
machine, capturing crucial characteristics and disregarding
minor details of the implementation [7].

A model does not necessarily represent a given real
computer, but allows studying classes of problems over
classes of architectures represented by their essential
components. In this way, a real application can be studied
over the architecture model, allowing us to get a
significant description of the algorithm, draw a detailed
analysis of its execution, and even predict the performance
[8].

In the case of parallel systems, the most currently used
architectures – due to their cost/performance relation - are
clusters and multiclusters of multicores; for this reason, it
is really important to develop models fitting the
characteristics of these platforms. Essential elements to be
considered are the potential heterogeneity of
processors/cores, the communication resources (shared
memory, buses, networks), and the different cache levels,
which add complexity to the modeling [9] [10].

At present, there are different graph-based models to
characterize the behavior of parallel applications in
distributed architectures [11]. Among these models, we
can mention TIG (Task Interaction Graph), TPG (Task
Precedence Graph), TTIG (Task Temporal Interaction
Graph) [12], TTIGHA (Task Temporal Interaction Graph
on Heterogeneous Architectures) [13] and MPAHA
(Model on Parallel Algorithms on Heterogeneous
Architectures) [14].

Once the graph modeling the application has been defined,
the scheduling problem is solved by an algorithm that
establishes an automatic mechanism to carry out the
assignment of tasks to processing elements, searching for
the optimization of some running parameter (usually,
time) [15][16][17]. Among the known
mapping/scheduling algorithms, we consider AMTHA
(Automatic Mapping Task on Heterogeneous
Architectures), a mapping algorithm to carry out the
assignment of tasks, making up the application to the
processors of the architecture [14]. This algorithm
considers the heterogeneous characteristics of the
architecture taken into account in MPAHA (Model on
Parallel Algorithms on Heterogeneous Architectures)
model [14].

The AMTHA algorithm was developed to carry out the
scheduling of applications executed over cluster and
multicluster architectures using conventional machines
with good comparative results [14].

2. Contribution

This paper focuses in the analysis of MPAHA model and
AMTHA algorithm on multicore cluster architectures. The
operation of the AMTHA mapping algorithm is tested
over two different architectures with 8 and 64 cores.

In Section 3, the scheduling algorithm AMTHA and the
MPAHA model are described. Section 4 deals with the
possible use of AMTHA and MPAHA for multicore
clusters. In Section 5, the experimental work carried out
with a multicore machine is presented, and the results

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

3

obtained are detailed in Section 6. Finally, Section 7
presents the conclusions and the future lines of work.

3. AMTHA mapping algorithm

AMTHA is a static mapping algorithm that is applied to
the graph generated by the MPAHA model. It allows
determining the assignment of tasks to the processors of
the architecture to be used, minimizing the execution time
of the application. This algorithm must also provide the
order in which subtasks (forming the task) assigned to
each processor should be executed (task scheduling) [14].

The MPAHA model is based on the construction of a
directed graph G (V,E), where:

 V is the set of nodes representing each of the tasks Ti of
the parallel program. Each node represents a task Ti of
the parallel program, including its subtasks (Stj) and the
order in which they should be executed to perform the
task. If there is a heterogeneous architecture, the
computation times for each processor should be taken
into account (Vi (s,p) = execution time of subtask s in
processor type p).

 E is the set of edges representing each of the
communications between the nodes of the graph. An
edge A between two tasks Ti and Tj contains the
communication volume (in bytes), the source subtask
( Ti) and a target subtask ( Tj).

It should be noted that, given the heterogeneity of the
interconnecting network, instead of representing the time
required for the communication, the corresponding
communication volume between two subtasks is
represented.

AMTHA considers an architecture with a limited number
of heterogeneous processors. As regards the
interconnecting network, the algorithm also considers that
bandwidth and transmission speed can be heterogeneous.

The AMTHA algorithm uses the values of graph G
generated by the MPAHA model; these values are the time
required to compute a subtask in each type of processor,
the communication volume with adjacent processors, and
the task to which each subtask belongs.

The AMTHA algorithm assigns one task at a time until all
tasks have been assigned. Figure 3 shows the pseudo-code
with the main steps of the algorithm.

When the execution of the AMTHA algorithm ends, all
the tasks have been assigned to one of the processors and
the order in which the subtasks forming the tasks assigned

to these processors will be executed has also been
determined.

Fig. 3. Pseudo-code with the basic steps of the AMTHA algorithm.

The following paragraphs describe each of the three steps
followed during the execution of the AMTHA algorithm.

3.1. Calculating the rank of a task

Given a graph G, the rank of a task Rk(T) is defined as the
sum of the average times of the subtasks forming it and
that are ready for execution (all predecessors have already
been assigned to a processor and are already there). Eq.
(1) expresses this definition:

)()()(iavgTLi StWTRk   (1)

L(T) is the set of subtasks that are ready for task T.
Wavg(St) is the average time of subtask St. The average
time is calculated as shown in Eq. (2).

P

pprocessoroftypeV
StW

Pp St
iavg

i

#

)(
)(


 

 (2)

P is the set of processors present in the architecture and #P
is the number of processors forming this set.

3.2. Selecting the task to execute

After obtaining the rank of each application task, the task
that maximizes it is selected. If there are two or more tasks
that have the same maximum value, the algorithm breaks
this tie by selecting the one that minimizes the total
execution time average for the task. Eq. (3) shows this
calculation:

)()(iavgTi StWTTavg   (3)

3.3. Selecting the processor

Selecting the processor involves choosing the computer
within the architecture that minimizes the execution time
when the selected task is assigned to that processor.

In order to understand how the time corresponding to
processor p is calculated, the fact that each processor
keeps a list of subtasks LUp that were already assigned to

 Calculate rank for each task.
 Whereas (not all tasks have been assigned)

1. Select the next task t to assign.
2. Chose the processor p to which task t should be assigned.
3. Assign task t (selected in step 1) to processor p (selected in step 2).
4. Update the rank of the tasks involved in step 3.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

4

it and that can be executed (all its predecessors are already
placed), and another list that contains those subtasks that
were assigned to p but whose execution is still pending
LNUp (some of their predecessors have not been placed
yet) must be taken into account.

Therefore, to calculate which processor p will be selected,
two possible situations are considered:

1. All subtasks of task t can be placed in p (that is, all
its predecessors have been placed).

2. Some of the subtasks of t cannot be placed in p (this
happens when some predecessor of this subtask has
not been placed).

In the first case, the time Tp corresponding to processor p
is given by the moment in which p finishes the execution
of the last subtask of t. However, in the second case, the
time Tp corresponding to processor p is given by the time
when the last subtask of LUp will finish plus the addition
of all execution times in p for each of the subtasks on
LNUp. This takes into account the synchronization and idle
waiting times.

3.4. Assigning the task to the selected processor

When assigning a task t to a processor/core p, there is an
attempt to place each subtask Stk belonging to t to the
processor at a moment in time when all the adjacent
subtasks have already finished (including the predecessor
subtask within t, if there is one) and its communications
have been completed. The assignment can be a free
interval between two subtasks that have already been
placed in p, or an interval after them. If subtask Stk cannot
be placed, it is added to the LNUp list. Each time a subtask
Stk is added to the LU list of one of the processors, an
attempt is made to place all the predecessors belonging to
already assigned tasks.

3.5. Updating the rank value of the pending tasks.

The first action within this step consists in assigning -1 as
rank value to the task t that was assigned to processor p.
The reason for this is to prevent task t from being re-
selected for assignment.

Also, the following situation is considered in this step: for
each subtask Stk placed in step 3.4, the need to update the
rank of the tasks to which successor subtasks Stsucc of Stk
belong is analyzed; that is, if all predecessors of Stsucc are
already placed, then the rank of the task to which Stsucc
belongs is updated by increasing it by Wavg(Stsucc).

4. MPAHA and AMTHA in multicore
clusters

4.1. MPAHA model

The MPAHA model described in Section 2 does not
require any modification to be used with multicore
processors or multicore clusters. The directed graph G
(V,E) representing the tasks Ti and the communication
among them do not change, if the parallel program is the
same; regardless of the physical architecture. This is
coherent with the previous definition of “model”.

4.2. AMTHA algorithm

When the AMTHA algorithm is run over a multicore
cluster architecture, the following issues should be
considered:

 The tasks that are part of the applications to execute
will now be placed in some of the cores in the
architecture; these cores may belong to any of the
physical processors Pi of Fig. 2.

 The heterogeneity of the architecture as regards

communications is not only given by the existence of
different interconnecting networks within the
architecture, but also by the different memory levels
(main or cache) shared by the cores within each
multicore machine. That is, two cores of the global
architecture may communicate through different levels
of shared memory, or by means of messages sent
through an interconnecting network, as can be seen in
Fig 1.

 When the algorithm assigns a task, it must consider the

communication costs with its predecessor tasks. To this
aim, data related to the communication types that occur
through the interconnecting network used when
working with conventional clusters are required, as well
as additional information regarding average access
times for each of the memory levels in the multicores,
together with information about core distribution in the
machine.

5. Experimental work

In order to analyze the applicability of the AMTHA
algorithm over multicore architectures, a set of synthetic
applications with various characteristics was generated (as
indicated in Section 5.1). For each of these, task
assignment to the different cores in the architecture using
the AMTHA algorithm was determined, and the execution
time of using such distribution was estimated (Test).

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

5

Based on the distribution done with AMTHA, the
application was executed over the architecture described
in Section 5.2 in order to obtain the real execution time
(Texec).

Both times (Test and Texec) were compared to determine
how well the AMTHA algorithm estimates the execution
time.

5.1. Choosing the set of applications to evaluate the
AMTHA algorithm

A set of applications was selected, in which each of them
varied in terms of typical parameters: task size (5-50
seconds), number of subtasks making up a task (3-6),
communication volume among subtasks (1000-10000),
and communication probability between two different
subtasks (5-35 %).

Initially we worked with 15-25 tasks (with 8 cores) and
now we increased the number of tasks to 120-200, using
64 cores.

In all the applications, the total computing time exceeds
that of communications (coarse grained application).

5.2. Choosing the architecture for the tests

Initial architecture was a Dell Poweredge 1950 with 2
quad core, 2.33 GHz Intel Xeon e5410 processors; 4 Gb of
RAM (shared between both processors); 6 MB L2 cache
for each pair of processor cores.

Actually we are working with HP BL260c G5 with 64
cores in 8 blades with 2 INTEL E5405 processors with a
quad core configuration and 2 Gb of local RAM.

6. Results

To analyze the results of the tests carried out, the
difference between the execution times over the real
architecture (Texec) and the estimated execution times
obtained when assigning tasks with the AMTHA
algorithm (Test) is calculated.

The relative percentage (%Difrel) of difference in Texec is:

 100*%
exec

estexec
rel T

TT
Dif


 (4)

As the volume of communications (or the size of the
transmitted packages) between tasks increases, so does the
error as a function of the available cache in each core.

In the tests carried out with 8 cores this value was never
above 4% and with 64 cores it increases up to 6% (always
in applications with a much greater processing load than
communication load).

7. Conclusions and research lines

Adaptability of MPAHA model and AMTHA algorithm
to multicore cluster architectures was analyzed, with good
results.

The operation of the AMTHA mapping algorithm was
tested over two different multicore cluster architectures
showing that it’s capable of successfully estimating the
execution time of the applications over the multicore
architecture (error < 6%) [18].

As regards related future research lines:

 Scalability with long messages (exceeding the capacity
of the shared memories).

 Changing the range of parameters for the applications
(in particular increasing the number of subtasks)

 Extending tests to 128 cores (adding other 8 blades to
the BL260).

An open research line is considering hybrid programming
models (integrating message passing and shared memory).

References
[1] T. W. Burger, “Intel Multi-Core Processors: Quick

Reference Guide”, http://cachewww.intel.com/cd/00/
00/23/19/231912_231912.pdf

[2] M. C. Michael, “Programming models for scalable
multicore programming”, http://www.hpcwire.com/
features/17902939.html, 2007.

[3] L. Chai, Q. Gao, D. K. Panda, “Understanding the Impact of
Multi-Core Architecture in Cluster Computing: A Case
Study with Intel Dual-Core System”, IEEE International
Symposium on Cluster Computing and the Grid 2007
(CCGRID 2007), 2007, pp. 471-478.

[4] O. Sinnen, “Task scheduling for parallel systems”, Wiley-
Interscience, 2007.

[5] A. Grama, A. Gupta, G. Karypis, V. Kumar, “An
Introduction to Parallel Computing. Design and Analysis of
Algorithms. 2nd Edition”, Pearson Addison Wesley, 2003.

[6] A. Kalinov, S. Klimov, “Optimal Mapping of a Parallel
Application Processes onto Heterogeneous Platform”, 19th

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 1, March 2010
www.IJCSI.org

6

IEEE International Parallel and Distributed Processing
Symposium (IPDPS’05), IEEE CS Press, 2005, pp 123.

[7] C. Leopold, “Parallel and Distributed Computing. A survey
of Models, Paradigms, and Approaches”, Wiley, 2001.

[8] H. Attiya, J. Welch, “Distributed Computing:
Fundamentals, Simulations, and Advanced Topics. 2nd
Edition”, Wiley-IEEE, 2004.

[9] H. Topcuoglu, S. Hariri, M. Wu, “Performance-Effective
and Low-Complexity Task Scheduling for Heterogeneous
Computing”, IEEE Transactions on Parallel and Distributed
Systems, Vol. 13, 2002, pp. 260-274.

[10] Goldman, “Scalable Algorithms for Complete Exchange on
Multi-Cluster Networks”, CCGRID'02, IEEE/ACM, 2002 ,
pp. 286 – 287.

[11] C. Roig, A. Ripoll, M. A. Senar, F. Guirado, E. Luque,
“Modelling Message-Passing Programas for Static
Mapping”, Euromicro Workshop on Parallel and Distributed
Processing (PDP’00), IEEE CS Press, 1999, pp. 229-236.

[12] C. Roig, A. Ripoll, M. Senar, F. Guirado, E. Luque,
“Exploiting knowledge of temporal behavior in parallel
programs for improving distributed mapping”. EuroPar
2000, LNCS, Vol. 1900, 2000, pp. 262-71.

[13] L. De Giusti, F. Chichizola, M. Naiouf, A. De Giusti,
“Mapping Tasks to Processors in Heterogeneous
Multiprocessor Architectures: The MATEHa Algorithm”,
International Conference of the Chilean Computer Science
Society (SCCC 2008), IEEE CS Press, 2008, pp. 85-91.

[14] L. De Giusti, “Mapping sobre Arquitecturas Heterogéneas”,
Ph.D. thesis, Universidad Nacional de La Plata, La Plata,
Argentina, 2008.

[15] J. Cuenca, D. Gimenez, J. Martinez, “Heuristics for Work
Distribution of a Homogeneous Parallel Dynamic
Programming Scheme on Heterogeneous Systems”, 3rd
International Workshop on Algorithms, Models and Tools
for Parallel Computing on Heterogeneous Networks
(HeteroPar’04), IEEE CS Press, 2004, pp. 354-361.

[16] J. C. Cunha, P. Kacsuk, S. Winter, “Parallel Program
development for cluster computing: methodology, tools and

integrated environments”. Nova Science Pub., New York,
2001.

[17] S. Siddha, V. Pallipadi, A. Mallick, “Process Scheduling
Challenges in the Era of Multicore Processors”, Intel
Technology Journal, Vol. 11, No. 4, 2007.

[18] L. De Giusti, F. Chichizola, M. Naiouf, A. De Giusti, E.
Luque, “Use of AMTHA in clusters multicores”. Technical
Report, III-LIDI, 2009.

Laura De Giusti received her PhD degree from the Universidad
Nacional de La Plata (UNLP) in 2008. She is currently a
researcher and assistant professor in the Instituto de Investigación
en Informática LIDI (III-LIDI) of the Computer Science School in
UNLP. Her main research interests include parallel systems,
models and mapping algorithms.

Franco Chichizola is a PhD student and researcher assistant in
the Instituto de Investigación en Informática LIDI (III-LIDI) of the
Computer Science School in UNLP. His main research interests
include parallel algorithms and performance analysis.

Marcelo Naiouf received his PhD degree from the Universidad
Nacional de La Plata (UNLP) in 2004. He is currently a researcher
and chair professor in the Instituto de Investigación en Informática
LIDI (III-LIDI) of the Computer Science School in UNLP. His main
research interests include parallel and distributed systems,
algorithms, performance analysis and load planification.

Armando De Giusti has university degrees in Electronic
Engineering and Computer Science. from the Universidad
Nacional de La Plata (UNLP) in 1973. He is currently the head of
the Instituto de Investigación en Informática LIDI (III-LIDI) of the
Computer Science School in UNLP and CONICET Main
Researcher. His research interests include concurrency,
distributed and parallel processing, grid computing, real time
systems, and computer technology applied to education.

Emilio Luque received his PhD degree from the Universidad
Complutense de Madrid (UCM) in 1973. He is currently University
Full Professor in Universidad Autónoma de Barcelona (UAB), and
he is the head of the Computer Architecture and Operating
Systems (CAOS) of the UAB. His main research interests include
parallel computer architecture, communications, load planification,
heterogeneous distributed systems, VoD, and parallel simulation.

