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Abstract 
The AMTHA (Automatic Mapping Task on Heterogeneous 
Architectures) algorithm for task-to-processors assignment and 
the MPAHA (Model of Parallel Algorithms on Heterogeneous 
Architectures) model are presented. 
The use of AMTHA is analyzed for multicore processor-based 
architectures, considering the communication model among 
processes in use. 
The results obtained in the tests carried out are presented, 
comparing the real execution times on multicores of a set of 
synthetic applications with the predictions obtained with 
AMTHA. 
Finally current lines of research are presented, focusing on 
clusters of multicores and hybrid programming paradigms. 
Keywords: Parallel Algorithm Models, Task-to-Processor 
Mapping, Performance Prediction, Multicore Architectures. 

1. Introduction 

A cluster is a parallel processing system formed by a set of 
PCs interconnected over some kind of network and that 
cooperate as if they were an “only and integrated” 
resource, regardless of the physical distribution of its 
components. When two or more clusters are connected 
over a LAN or WAN network, we are in the presence of a 
multicluster [1]. 
 
The hardware and operating system of the participating 
machines may be different; each machine may even be a 
“multiprocessor”, as is the case in multicore architectures 
that are so relevant nowadays. Multicore processors 
include several processing elements within an integrated 
circuit. This type of architectures are considered as a 
solution to the limitation of one core machines to increase 
computing power due to the increase in temperature 
[1][2][3]. 
 

 

Fig. 1. Diagram of a multicore structure.  

Figure 1 shows the typical design of a current multicore 
architecture, composed by two processors that share the 
main memory. Each of these processors in turn is formed 
by four cores that share one L3 cache memory (this 
memory may not be present in some models). There is also 
an L2 cache memory that is shared by pairs of cores. 
Finally, each core has its own L1 cache memory. 
 
As it can be seen from Fig. 1, the communication between 
the various cores is done through the different memories 
of the architecture. Thus, the communication time between 
two cores is given by the time required to access the 
corresponding memory. In the case of Fig. 1, there are 
three levels of shared memory with their corresponding 
communication times.  
 
It is possible to build clusters (also multiclusters) using 
multicores; Fig. 2 shows a diagram of this type of 
architecture, where each Pi may have K processing cores 
and L memory levels (in the example of Fig. 1, K=4 and 
L=3).   
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Fig. 2. Diagram of a multicore cluster.  

The advent of this type of distributed architectures that can 
be accessed by any user has promoted the growth of 
parallel processing as a technique to increase architecture 
exploitation. Application programmers should implement 
this technique by describing its component tasks and the 
interaction between them. Once the application has been 
developed, the programmer or user of the application on a 
parallel architecture will have to decide how to do it. That 
is, they should select how many of the processors/cores in 
the architecture will be used and how the application tasks 
will be assigned to them, in order to achieve the best 
possible throughput of the architecture with the lowest 
response time. This problem of solving the distribution of 
tasks between processors is called scheduling. [4] 
 
The problem of the automated scheduling of tasks to 
processing elements (processors in conventional machines 
and cores in multicore computers) is highly complex [5]. 
This complexity can be briefly represented considering the 
two main elements relating the parallel application to the 
supporting architecture: each node’s processing capacity 
and the cost in time of communicating two processing 
elements [6]. 
 
The goal of modeling processing architectures is to obtain 
an “abstract” or simplified version of the physical 
machine, capturing crucial characteristics and disregarding 
minor details of the implementation [7].  
 
A model does not necessarily represent a given real 
computer, but allows studying classes of problems over 
classes of architectures represented by their essential 
components. In this way, a real application can be studied 
over the architecture model, allowing us to get a 
significant description of the algorithm, draw a detailed 
analysis of its execution, and even predict the performance 
[8]. 
 

In the case of parallel systems, the most currently used 
architectures – due to their cost/performance relation - are 
clusters and multiclusters of multicores; for this reason, it 
is really important to develop models fitting the 
characteristics of these platforms. Essential elements to be 
considered are the potential heterogeneity of 
processors/cores, the communication resources (shared 
memory, buses, networks), and the different cache levels, 
which add complexity to the modeling [9] [10]. 
 
At present, there are different graph-based models to 
characterize the behavior of parallel applications in 
distributed architectures [11]. Among these models, we 
can mention TIG (Task Interaction Graph), TPG (Task 
Precedence Graph), TTIG (Task Temporal Interaction 
Graph) [12], TTIGHA (Task Temporal Interaction Graph 
on Heterogeneous Architectures) [13] and MPAHA 
(Model on Parallel Algorithms on Heterogeneous 
Architectures) [14]. 
 
Once the graph modeling the application has been defined, 
the scheduling problem is solved by an algorithm that 
establishes an automatic mechanism to carry out the 
assignment of tasks to processing elements, searching for 
the optimization of some running parameter (usually, 
time) [15][16][17]. Among the known 
mapping/scheduling algorithms, we consider AMTHA 
(Automatic Mapping Task on Heterogeneous 
Architectures), a mapping algorithm to carry out the 
assignment of tasks, making up the application to the 
processors of the architecture [14]. This algorithm 
considers the heterogeneous characteristics of the 
architecture taken into account in MPAHA (Model on 
Parallel Algorithms on Heterogeneous Architectures) 
model [14].  
 
The AMTHA algorithm was developed to carry out the 
scheduling of applications executed over cluster and 
multicluster architectures using conventional machines 
with good comparative results [14]. 

2. Contribution 

This paper focuses in the analysis of MPAHA model and 
AMTHA algorithm on multicore cluster architectures. The 
operation of the AMTHA mapping algorithm is tested 
over two different architectures with 8 and 64 cores. 
 
In Section 3, the scheduling algorithm AMTHA and the 
MPAHA model are described. Section 4 deals with the 
possible use of AMTHA and MPAHA for multicore 
clusters. In Section 5, the experimental work carried out 
with a multicore machine is presented, and the results 
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obtained are detailed in Section 6. Finally, Section 7 
presents the conclusions and the future lines of work. 

3. AMTHA mapping algorithm 

AMTHA is a static mapping algorithm that is applied to 
the graph generated by the MPAHA model. It allows 
determining the assignment of tasks to the processors of 
the architecture to be used, minimizing the execution time 
of the application. This algorithm must also provide the 
order in which subtasks (forming the task) assigned to 
each processor should be executed (task scheduling) [14]. 
 
The MPAHA model is based on the construction of a 
directed graph G (V,E), where:  

 V is the set of nodes representing each of the tasks Ti of 
the parallel program. Each node represents a task Ti of 
the parallel program, including its subtasks (Stj) and the 
order in which they should be executed to perform the 
task. If there is a heterogeneous architecture, the 
computation times for each processor should be taken 
into account (Vi (s,p) = execution time of subtask s in 
processor type p). 
 

 E is the set of edges representing each of the 
communications between the nodes of the graph. An 
edge A between two tasks Ti and Tj contains the 
communication volume (in bytes), the source subtask 
( Ti) and a target subtask ( Tj).  
 

It should be noted that, given the heterogeneity of the 
interconnecting network, instead of representing the time 
required for the communication, the corresponding 
communication volume between two subtasks is 
represented.  
 
AMTHA considers an architecture with a limited number 
of heterogeneous processors. As regards the 
interconnecting network, the algorithm also considers that 
bandwidth and transmission speed can be heterogeneous. 
 
The AMTHA algorithm uses the values of graph G 
generated by the MPAHA model; these values are the time 
required to compute a subtask in each type of processor, 
the communication volume with adjacent processors, and 
the task to which each subtask belongs.  
 
The AMTHA algorithm assigns one task at a time until all 
tasks have been assigned. Figure 3 shows the pseudo-code 
with the main steps of the algorithm. 
 
When the execution of the AMTHA algorithm ends, all 
the tasks have been assigned to one of the processors and 
the order in which the subtasks forming the tasks assigned 

to these processors will be executed has also been 
determined. 
 

 
Fig. 3. Pseudo-code with the basic steps of the AMTHA algorithm.  

The following paragraphs describe each of the three steps 
followed during the execution of the AMTHA algorithm. 

3.1. Calculating the rank of a task  

Given a graph G, the rank of a task Rk(T) is defined as the 
sum of the average times of the subtasks forming it and 
that are ready for execution (all predecessors have already 
been assigned to a processor and are already there). Eq. 
(1) expresses this definition: 
 

)()( )( iavgTLi StWTRk                    (1) 
 

L(T) is the set of subtasks that are ready for task T. 
Wavg(St) is the average time of subtask St. The average 
time is calculated as shown in Eq. (2). 
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P is the set of processors present in the architecture and #P 
is the number of processors forming this set. 

3.2. Selecting the task to execute 

After obtaining the rank of each application task, the task 
that maximizes it is selected. If there are two or more tasks 
that have the same maximum value, the algorithm breaks 
this tie by selecting the one that minimizes the total 
execution time average for the task. Eq. (3) shows this 
calculation: 
 

)()( iavgTi StWTTavg                     (3) 

3.3. Selecting the processor  

Selecting the processor involves choosing the computer 
within the architecture that minimizes the execution time 
when the selected task is assigned to that processor. 
 
In order to understand how the time corresponding to 
processor p is calculated, the fact that each processor 
keeps a list of subtasks LUp that were already assigned to 

 Calculate rank for each task. 
 Whereas (not all tasks have been assigned) 

1. Select the next task t to assign.  
2. Chose the processor p to which task t should be assigned. 
3. Assign task t (selected in step 1) to processor p (selected in step 2). 
4. Update the rank of the tasks involved in step 3. 
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it and that can be executed (all its predecessors are already 
placed), and another list that contains those subtasks that 
were assigned to p but whose execution is still pending 
LNUp (some of their predecessors have not been placed 
yet) must be taken into account. 
 
Therefore, to calculate which processor p will be selected, 
two possible situations are considered: 

1. All subtasks of task t can be placed in p (that is, all 
its predecessors have been placed).  
 

2. Some of the subtasks of t cannot be placed in p (this 
happens when some predecessor of this subtask has 
not been placed). 

 
In the first case, the time Tp corresponding to processor p 
is given by the moment in which p finishes the execution 
of the last subtask of t. However, in the second case, the 
time Tp corresponding to processor p is given by the time 
when the last subtask of LUp will finish plus the addition 
of all execution times in p for each of the subtasks on 
LNUp. This takes into account the synchronization and idle 
waiting times.  

3.4. Assigning the task to the selected processor 

When assigning a task t to a processor/core p, there is an 
attempt to place each subtask Stk belonging to t to the 
processor at a moment in time when all the adjacent 
subtasks have already finished (including the predecessor 
subtask within t, if there is one) and its communications 
have been completed. The assignment can be a free 
interval between two subtasks that have already been 
placed in p, or an interval after them. If subtask Stk cannot 
be placed, it is added to the LNUp list. Each time a subtask 
Stk is added to the LU list of one of the processors, an 
attempt is made to place all the predecessors belonging to 
already assigned tasks. 

3.5. Updating the rank value of the pending tasks.  

The first action within this step consists in assigning -1 as 
rank value to the task t that was assigned to processor p. 
The reason for this is to prevent task t from being re-
selected for assignment.  
 
Also, the following situation is considered in this step: for 
each subtask Stk placed in step 3.4, the need to update the 
rank of the tasks to which successor subtasks Stsucc of Stk 
belong is analyzed; that is, if all predecessors of Stsucc are 
already placed, then the rank of the task to which Stsucc 
belongs is updated by increasing it by Wavg(Stsucc).  

4. MPAHA and AMTHA in multicore 
clusters 

4.1. MPAHA model 

The MPAHA model described in Section 2 does not 
require any modification to be used with multicore 
processors or multicore clusters. The directed graph G 
(V,E) representing the tasks Ti  and the communication 
among them do not change, if the parallel program is the 
same; regardless of the physical architecture. This is 
coherent with the previous definition of “model”. 

4.2. AMTHA algorithm 

When the AMTHA algorithm is run over a multicore 
cluster architecture, the following issues should be 
considered: 
 

 The tasks that are part of the applications to execute 
will now be placed in some of the cores in the 
architecture; these cores may belong to any of the 
physical processors Pi of Fig. 2. 

 
 The heterogeneity of the architecture as regards 

communications is not only given by the existence of 
different interconnecting networks within the 
architecture, but also by the different memory levels 
(main or cache) shared by the cores within each 
multicore machine. That is, two cores of the global 
architecture may communicate through different levels 
of shared memory, or by means of messages sent 
through an interconnecting network, as can be seen in 
Fig 1.  

 
 When the algorithm assigns a task, it must consider the 

communication costs with its predecessor tasks. To this 
aim, data related to the communication types that occur 
through the interconnecting network used when 
working with conventional clusters are required, as well 
as additional information regarding average access 
times for each of the memory levels in the multicores, 
together with information about core distribution in the 
machine. 

5. Experimental work 

In order to analyze the applicability of the AMTHA 
algorithm over multicore architectures, a set of synthetic 
applications with various characteristics was generated (as 
indicated in Section 5.1). For each of these, task 
assignment to the different cores in the architecture using 
the AMTHA algorithm was determined, and the execution 
time of using such distribution was estimated (Test).  
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Based on the distribution done with AMTHA, the 
application was executed over the architecture described 
in Section 5.2 in order to obtain the real execution time 
(Texec).  
 
Both times (Test and Texec) were compared to determine 
how well the AMTHA algorithm estimates the execution 
time.  

5.1. Choosing the set of applications to evaluate the 
AMTHA algorithm 

A set of applications was selected, in which each of them 
varied in terms of typical parameters: task size (5-50 
seconds), number of subtasks making up a task (3-6), 
communication volume among subtasks (1000-10000), 
and communication probability between two different 
subtasks (5-35 %). 
  
Initially we worked with 15-25 tasks (with 8 cores) and 
now we increased the number of tasks to 120-200, using 
64 cores. 
 
In all the applications, the total computing time exceeds 
that of communications (coarse grained application).  

5.2. Choosing the architecture for the tests 

Initial architecture was a Dell Poweredge 1950 with 2 
quad core, 2.33 GHz Intel Xeon e5410 processors; 4 Gb of 
RAM (shared between both processors); 6 MB L2 cache 
for each pair of processor cores. 
 
Actually we are working with HP BL260c G5 with 64 
cores in 8 blades with 2 INTEL E5405 processors with a 
quad core configuration and 2 Gb of local RAM. 

6. Results 

To analyze the results of the tests carried out, the 
difference between the execution times over the real 
architecture (Texec) and the estimated execution times 
obtained when assigning tasks with the AMTHA 
algorithm (Test) is calculated.  
 
The relative percentage (%Difrel) of difference in Texec is: 
 

 100*%
exec

estexec
rel T

TT
Dif


                  (4) 

 

As the volume of communications (or the size of the 
transmitted packages) between tasks increases, so does the 
error as a function of the available cache in each core.  
 
In the tests carried out with 8 cores this value was never 
above 4% and with 64 cores it increases up to 6% (always 
in applications with a much greater processing load than 
communication load). 

7. Conclusions and research lines 

Adaptability of  MPAHA model and AMTHA algorithm 
to multicore cluster architectures was analyzed, with good 
results. 
 
The operation of the AMTHA mapping algorithm was 
tested over two different  multicore cluster architectures 
showing that it’s capable of successfully estimating the 
execution time of the applications over the multicore 
architecture (error < 6%) [18]. 
 
As regards related future research lines: 
 

 Scalability with long messages (exceeding the capacity 
of the shared memories). 
 

 Changing the range of  parameters for the applications 
(in particular increasing the number of subtasks) 

 

 Extending tests to 128 cores (adding other 8 blades to 
the BL260). 

 
An open research line is considering hybrid programming 
models (integrating message passing and shared memory).  
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