
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

16

A New Approach to Keyphrase Extraction Using Neural
Networks

Kamal Sarkar, Mita Nasipuri and Suranjan Ghose

Computer Science and Engineering Department, Jadavpur University,
Kolkata-700 032, India

Abstract

Keyphrases provide a simple way of describing a document,
giving the reader some clues about its contents. Keyphrases can
be useful in a various applications such as retrieval engines,
browsing interfaces, thesaurus construction, text mining etc..
There are also other tasks for which keyphrases are useful, as we
discuss in this paper. This paper describes a neural network based
approach to keyphrase extraction from scientific articles. Our
results show that the proposed method performs better than some
state-of-the art keyphrase extraction approaches.

Keywords: Keyphrase Extraction, Neural Networks, Text
Mining

1. Introduction

The pervasion of huge amount of information through the
World Wide Web (WWW) has created a growing need for
the development of techniques for discovering, accessing,
and sharing knowledge. The keyphrases help readers
rapidly understand, organize, access, and share
information of a document. Keyphrases are the phrases
consisting of one or more significant words. keyphrases
can be incorporated in the search results as subject
metadata to facilitate information search on the web [1]. A
list of keyphrases associated with a document may serve as
indicative summary or document metadata, which helps
readers in searching relevant information.

Keyphrases are meant to serve various goals. For example,
(1) when they are printed on the first page of a journal
document, the goal is summarization. They enable the
reader to quickly determine whether the given article
worth in-depth reading. (2) When they are added to the
cumulative index for a journal, the goal is indexing. They
enable the reader to quickly find a article relevant to a
specific need. (3) When a search engine form contains a
field labeled keywords, the goal is to enable the reader to
make the search more precise. A search for documents that
match a given query term in the keyword field will yield a
smaller, higher quality list of hits than a search for the
same term in the full text of the documents.

When the searching is done on the limited display area
devices such as mobile, PDA etc. , the concise summary in

the form of keyphrases , provides a new way for
displaying search results in the smaller display area[2] [
3].

Although the research articles published in the journals
generally come with several author assigned keyphrases,
many documents such as the news articles, review articles
etc. may not have author assigned keyphrases at all or the
number of author-assigned keyphrases available with the
documents is also too limited to represent the topical
content of the articles. Many documents also do not come
with author assigned keyphrases. So, an automatic
keyphrase extraction process is highly desirable.

Manual selection of keyphrases from a document by a
human is not a random act. Keyphrase extraction is a task
related to the human cognition. Hence, automatic
keyphrase extraction is not a trivial task and it needs to
automated due to its usability in managing information
overload on the web.

Some previous works on automatic keyphrase extraction
used the machine learning techniques such as Naïve
Bayes, Decision tree, genetic algorithm [15] [16] etc.

Wang et.al (2006) has proposed in [14] a neural network
based approach to keyphrase extraction, where keyphrase
extraction has been viewed as a crisp binary classification
task. They train a neural network to classify whether a
phrase is keyphrase or not. This model is not suitable when
the number of phrases classified by the classifier as
positive is less than the desired number of keyphrases, K.

To overcome this problem, we think that keyphrase
extraction is a ranking problem rather than a classification
problem. One good solution to this problem is to train a
neural network to rank the candidate phrases. Designing
such a neural network requires the keyphrases in the
training data to be ranked manually. Sometimes, this is not
feasible.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

17

In this paper, we present a keyphrase extraction method
that uses a multilayer perceptron neural network which is
trained to output the probability estimate of a class:
positive (keyphrase) or negative (not a keyphrase).
Candidate phrases which are classified as positive are
ranked first based on their class probabilities. If the
number of desired keyphrases is greater than the number
of phrases classified as positive by the classifier, the
candidate phrases classified as negative by the classifier
are considered and they are sorted in increasing order of
the their class probabilities, that is, the candidate phrase
classified as negative with minimum probability estimate
is added first to the list of previously selected Keyphrases.
This process continues until the number of extracted
keyphrases exceed the number K, where K = the desired
number of the keyphrases.

Our work also differs from the work proposed by Wang
et.al (2006) [14] in the number and the types of features
used. While they use the traditional TF*IDF and position
features to identify the keyphrases, we use extra three
features such as phrase length, word length in a phrase,
links of a phrase to other phrases. We also use the position
of a phrase in a document as a continuous feature rather
than a binary feature.

The paper is organized as follows. In section 2 we present
the related work. Some background knowledge about
artificial neural network has been discussed in section 3. In
section 4, the proposed keyphrase extraction method has
been discussed. We present the evaluation and the
experimental results in section 5.

2. Related Work

A number of previous works has suggested that document
keyphrases can be useful in a various applications such as
retrieval engines [1], [4], browsing interfaces [5],
thesaurus construction [6], and document classification
and clustering [7].

Some supervised and unsupervised keyphrase extraction
methods have already been reported by the researchers. An
algorithm to choose noun phrases from a document as
keyphrases has been proposed in [8]. Phrase length, its
frequency and the frequency of its head noun are the
features used in this work. Noun phrases are extracted
from a text using a base noun phrase skimmer and an off-
the-shelf online dictionary.

Chien [9] developed a PAT-tree-based keyphrases
extraction system for Chinese and other oriental
languages.

HaCohen-Kerner et al [10][11] proposed a model for
keyphrase extraction based on supervised machine
learning and combinations of the baseline methods. They
applied J48, an improved variant of C4.5 decision tree for
feature combination.

Hulth et al [12] proposed a keyphrase extraction algorithm
in which a hierarchically organized thesaurus and the
frequency analysis were integrated. The inductive logic
programming has been used to combine evidences from
frequency analysis and thesaurus.

A graph based model for keyphrase extraction has been
presented in [13]. A document is represented as a graph in
which the nodes represent terms, and the edges represent
the co-occurrence of terms. Whether a term is a keyword is
determined by measuring its contribution to the graph.

A Neural Network based approach to keyphrase extraction
has been presented in [14] that exploits traditional term
frequency, inverted document frequency and position
(binary) features. The neural network has been trained to
classify a candidate phrase as keyphrase or not.

Turney [15] treats the problem of keyphrase extraction as
supervised learning task. In this task, nine features are
used to score a candidate phrase; some of the features are
positional information of the phrase in the document and
whether or not the phrase is a proper noun. Keyphrases are
extracted from candidate phrases based on examination of
their features. Turney’s program is called Extractor. One
form of this extractor is called GenEx, which is designed
based on a set of parameterized heuristic rules that are
fine-tuned using a genetic algorithm. Turney Compares
GenEX to a standard machine learning technique called
Bagging which uses a bag of decision trees for keyphrase
extraction and shows that GenEX performs better than the
bagging procedure.

A keyphrase extraction program called Kea, developed by
Frank et al. [16][17], uses the Bayesian learning technique
for keyphrase extraction task. A model is learned from the
training documents with exemplar keyphrases and
corresponds to a specific corpus containing the training
documents. Each model consists of a Naive Bayes
classifier and two supporting files containing phrase
frequencies and stopped words. The learned model is used
to identify the keyphrases from a document. In both Kea
and Extractor, the candidate keyphrases are identified by
splitting up the input text according to phrase boundaries
(numbers, punctuation marks, dashes, and brackets etc.).
Finally a phrase is defined as a sequence of one, two, or
three words that appear consecutively in a text. The
phrases beginning or ending with a stopped word are not
taken under consideration. Kea and Extractor both used

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

18

supervised machine learning based approaches. Two
important features such as distance of the phrase's first
appearance into the document and TF*IDF (used in
information retrieval setting), are considered during the
development of Kea. Here TF corresponds to the
frequency of a phrase into a document and IDF is
estimated by counting the number of documents in the
training corpus that contain a phrase P. Frank et al.
[16][17], has shown that the performance of Kea is
comparable to GenEx proposed by Turney.

An n-gram based technique for filtering keyphrases has
been presented in [18]. In this approach, authors compute
n-grams such as unigram, bigram etc for extracting the
candidate keyphrases which are finally ranked based on
the features such as term frequency, position of a phrase in
a document and a sentence.

3. Background

In this section, we briefly describe some basics of artificial
neural network and how to estimate class probability in an
artificial neural network. The estimation of class
probabilities is important for our work because we use the
estimated class probabilities as the confidence scores
which are used in re-ranking the phrases belonging to a
class: positive or negative.

Artificial Neural networks (ANN) are predictive models
loosely motivated by the biological neural systems. In
generic sense, the terms “Neural Network” (NN) and
“Artificial Neural Network” (ANN) usually refer to a
Multilayer Perceptron (MLP) Network, which is the most
widely used types of neural networks. A multiplayer
perceptron (MLP) is capable of expressing a rich variety of
nonlinear decision surfaces. An example of such a network
is shown in Figure 1. A multilayer perceptron neural
network has usually three layers: one input layer, one
hidden layer and one output layer. A vector of predictor
variable values (x1...xi) is presented to the input layer. In
the keyphrase extraction task, this input vector is the
feature vector, which is a vector of values of features
characterizing the candidate phrases. Before presenting a
vector to the input layer, it is normalized. The input layer
distributes the values to each of the neurons in the hidden
layer. In addition to the predictor variables, there is a
constant input of 1.0, called the bias that is fed to each of
the hidden layers. The bias is multiplied by a weight and
added to the sum going into the neuron. The value from
each input neuron is multiplied by a weight (wij) and
arrives at a neuron in the hidden layer, and the resulting
weighted values are added together producing a combined
value at a hidden node. The weighted sum is then fed into
a transfer function (usually a sigmoid function), which
outputs a value. The outputs from the hidden layer are

distributed to the output layer. Arriving at a node (a
neuron) in the output layer, the value from each hidden
layer neuron is again multiplied by a weight (wjk), and the
resulting weighted values are added together producing a
combined value at an output node. The weighted sum is
fed into a transfer function (usually a sigmoid function),
which outputs a value Ok. The Ok values are the outputs of
the network.

One hidden layer is sufficient for nearly all problems. In
some special situations such as modeling data which
contains a saw tooth wave like discontinuities, two hidden
layers may be required. There is no theoretical reason for
using more than two hidden layers.

Input layer hidden layer output layer

x1

 x2
 . . .
 . . .

xi
 wij Hj wjk Ok

Fig.1. A multilayer feed-forward neural network: A training sample, X =
(x1, x2, . . .xi), is fed to the input layer. Weighted connections exist
between each layer, where wij denotes the weight from a unit j in one
layer to a unit i in the previous layer.

The backpropagation algorithm performs learning on a
multilayer feed-forward neural network. The
backpropagation training algorithm was the first practical
method for training multiplayer perceptron (MLP) neural
networks. The backpropagation (BP) algorithm
implements a gradient descent search through the space of
possible network weights, iteratively reducing the error
between the training example target values and network
outputs. BP allows supervised mapping of input vectors
and corresponding target vectors. The backpropagation
training algorithm follows the following cycle to refine the
weight values:

(1) randomly choose a tentative set of weights (initial
weight configuration) and run a set of predictor variable
values through the network, (2) compute the difference
between the predicted target value and the training
example target value, (3) average the error information
over the entire set of training instances, (4) propagate the
error backward through the network and compute the
gradient (vector of derivatives) of the change in error with
respect to changes in weight values, (5) make adjustments
to the weights to reduce the error. Each cycle is called an
epoch.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

19

One of the most important issues in designing a perceptron
network is the number of neurons to be used in the hidden
layer(s). If an inadequate number of neurons are used, the
network will be unable to model complex data, and the
resulting network will fit poorly to the training data. If too
many neurons are used, the training time may be
excessively long, and the network may over fit the data.
When overfitting occurs, the network will begin to model
random noise in the data. As a result, the model fits the
training data extremely well, but it performs poorly to
new, unseen data. Cross validation can be used to test for
this. The number of neurons in the hidden layers may be
optimized by building models using varying numbers of
neurons and measuring the quality using cross validation
method.

3.1 Computing Class probability

Given the training data, the standard statistical technique
such as Parzen Windows [22] can used to estimate the
probability density in the output space. After calculating
the output vector O for an unknown input, one can
compute the estimated probability that it belongs to each
class using the following formula:

'

(|)
(|) , class c

(' |)
co

c

p c O
P c O for

p c O



p(c|O) is the density of points of the category C at location
O in the scatter plot of category 1 Vs. Category 0 in a two
class problems [23].

We use the estimated class probabilities as the confidence
scores to order phrases belonging to a class: positive or
negative.

4. Proposed Keyphrase Extraction Method

The proposed keyphrase extraction method consists of
three primary components: document preprocessing,
candidate phrase identification and keyphrase extraction
using a neural network.

4.1 Document Preprocessing

The preprocessing task includes formatting each document.
If a source document is in pdf format, it is converted to a
text format before submission to the keyphrase extractor.

4.2 Candidate Phrase Identification

The candidate phrase identification is an important step in
key phrase extraction task. We treat all the noun phrases in
a document as the candidate phrases [1]. The following
sub-section discusses how to identify noun phrases.

Noun Phrase Identification

To identify the noun phrases, documents should be tagged.
The articles are passed to a POS tagger called
MontyTagger [25] to extract the lexical information about
the terms. Figure 2 shows a sample output of the Monty
tagger for the following text segment:

“European nations will either be the sites of religious
conflict and violence that sets Muslim minorities against
secular states and Muslim communities against Christian
neighbors, or it could become the birthplace of a
liberalized and modernized Islam that could in turn
transform the religion worldwide.”

Fig.2 A sample output of the tagger

In figure 2, NN,NNS,NNP,JJ,DT,VB,IN,PRP,WDT,MD
etc. are lexical tags assigned by the tagger.

Fig. 3 DFA for noun phrase identification

European/JJ nations/NNS will/MD either/DT be/VB
the/DT sites/NNS of/IN religious/JJ conflict/NN
and/CC violence/NN that/IN sets/NNS Muslim/NNP
minorities/NNS against/IN secular/JJ states/NNS
and/CC Muslim/NNP communities/NNS against/IN
Christian/NNP neighbors/NNS,/, or/CC it/PRP
could/MD become/VB the/DT birthplace/NN of/IN
a/DT liberalized/VBN and/CC modernized/VBN
Islam/NNP that/WDT could/MD in/IN turn/NN
transform/VB the/DT religion/NN worldwide/JJ ./.

Start

Adjective

Article

Noun

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

20

The meanings of the tags are as follows:

NN and NNS for nouns (singular and plural respectively),
NNP for proper nouns, JJ for adjectives, DT for
determiner, VB for a verb, IN for a preposition, PRP for a
pronoun. This is not the complete tag set.

The above mentioned tags are some examples of tags in
the Penn Treebank tag set used by the MontyTagger.

The noun phrases are identified from the tagged sentences
using the DFA (deterministic finite automata) shown in
figure 3. In this DFA, the states for adjective, noun
represent all variations of adjectives and nouns.

The figure 4 shows the noun phrases identified by our noun
phrase identification component when the tagged sentences
shown in figure 2 become its input. As shown in the figure
4, the 10th phrase is “Islam”, but manual inspection of the
source text may suggest that it should be “Modernized
Islam”. This discrepancy occurs since the tagger assigns a
tag “VBN” to the word “Modernized” and “VBN”
indicates participle form of a verb which is not accepted by
our DFA in figure 3 as the part of a noun phrase. To avoid
this problem “VBN” might be considered as a state in the
DFA, but it might lead to recognizing some verb phrases
mistakenly as the noun phrases.

Document
number

Sentence
Number

Noun
phrase
Number

Noun Phrases

100 4 1 European nations

100 4 2 sites

100 4 3 religious conflict

100 4 4 violence

100 4 5 sets muslim minorities

100 4 6 secular states

100 4 7 muslim communities

100 4 8 christian neighbors

100 4 9 birthplace

100 4 10 Islam

100 4 11 turn

100 4 12 religion

Fig.4 Output of noun phrase extractor for a sample input

4.3 Features, Weighting and Normalization

After identifying the document phrases, a document is
reduced to a collection of noun phrases. Since, in our

work, we focus on the keyphrase extraction task from
scientific articles which are generally very long in size (6
to more than 20 pages), the collection of noun phrases
identified in an article may be huge in number. Among
theses huge collection, a small number of phrases (5 to 15
phrases) may be selected as the keyphrases. Whether a
candidate phrase is a keyphrase or not can be decided by a
classifier based on a set of features characterizing a phrase.

Discovering good features for a classification task is very
much an art. The different features characterizing
candidate noun phrases, feature weighting and
normalization methods are discussed below.

Phrase frequency, phrase links to other phrases and
Inverse Document Frequency

If a noun phrase is occurring more frequently in a
document, the phrase is assumed to more important in the
document. Number of times a phrase occurs independently
in a document with its entirety has been considered as the
phrase frequency (PF). A noun phrase may appear in a text
either independently or as a part of other noun phrases.
These two types of appearances of noun phrases should be
distinguished. If a noun phrase P1 appears in full as a part
of another noun phrase P2 (that is, P1 is contained in P2),
it is considered that P1 has a link to P2. Number of times a
noun phrase (NP) has links to other phrases is counted and
considered as the phrase link count (PLC). Two features,
phrase frequency (PF) and phrase link count (PLC) are
combined to have a single feature value using the
following measure:

(1 / 2) * *freqF PF PF PLC 

In the above formula, frequency of a noun phrase (PF) is
squared only to give it more importance than the phrase
link count (PLC). The value 1/2 has been used to moderate
the value. We explain below about this formula with an
example:

Assume a phrase P1 whose PF value is 10, PLC value is
20 and PF+PLC = 30. For another phrase P2 whose PF
value is 20, PLC value is 10 and PF+PLC =30. So, for
these two cases, simple addition of PF and PLC do not
make any difference in assigning weights to the noun
phrases although the independent occurrence of noun
phrase P2 is more than that of the noun phrase P1. But the
independent existence of a phrase should get higher
importance while deciding whether a phrase is keyphrase
worthy or not. In a more general case, consider that a
single word noun phrase NP1 occurs only once in
independent existence and occurs (n+1) times as a part of
other noun phrases and NP2 is another phrase, which

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

21

occurs n times independently and occurs only once as a
part of other phrases. In this situation, simple addition of
PF and PLC will favor the first phrase, but our formula
will give higher score to the second phrase because it
occurs more independently than the first one.

Inverse document frequency (IDF) is a useful measure to
determine the commonness of a term in a corpus. IDF
value is computed using the formula: log(N/df), where N=
total number of documents in a corpus and df (document
frequency) means the number of documents in which a
term occurs. A term with a lower df value means the term
is less frequent in the corpus and hence idf value becomes
higher. So, if idf value of a term is higher, the term is
relatively rare in the corpus. In this way, idf value is a
measure for determining the rarity of a term in a corpus.
Traditionally, TF (term frequency) value of a term is
multiplied by IDF to compute the importance of a term,
where TF indicates frequency of a term in a document.
TF*IDF measure favors a relatively rare term which is
more frequent in a document. We combine Ffreq and IDF in
the following way to have a variant of Edmundsonian
thematic feature [24]:

*thematic freqF F IDF

The value of this feature is normalized by dividing the
value by the maximum Fthematic score in a collection of
Fthematic scores obtained by the phrases corresponding to a
document.

Phrase Position

If a phrase occurs in the title or abstract of a document, it
should be given more score. So, we consider the position of
the first occurrence of a phrase in a document as a feature.
Unlike the previous approaches [14] [16] that assume the
position of a phrase as a binary feature, in our work, the
score of a phrase that occurs first in the sentence i is
computed using the following formula:

1
p o sF

i
 , if i <= n

 , where n is the position of the last sentence in the abstract
of a document. For i > n, Fpos is set to 0.

Phrase Length and Word Length

These two features can be considered as the structural
features of a phrase. Phrase length becomes an important
feature in keyphrase extraction task because the length of
keyphrases usually varies from 1 word to 3 words. We find

that keyphrase consisting of 4 or more words are relatively
rare in our corpus.

Length of the words in a phrase can be considered as a
feature. According to Zipf’s Law [21], shorter words
occur more frequently than the larger ones. For example,
articles occur more frequently in a text. So, the word
length can be an indication for the rarity of a word. We
consider the length of the longest word in a phrase as a
feature.

If the length of a phrase is PL and the length of the longest
word in the phrase is WL, these two feature values are
combined to have a single feature value using the
following formula:

* lo g (1) * lo g (1)P L W LF P L W L  

The value of this feature is normalized by dividing the
value by the maximum value of the feature in the
collection of phrases corresponding to a document.

4.4 Keyphrase Extraction Using Multilayer Perceptron

Neural Network

Training a Multilayer Perceptron (MLP) Neural Network
for keyphrase extraction requires document noun phrases
to be represented as the feature vectors. For this purpose,
we write a computer program for automatically extracting
values for the features characterizing the noun phrases in
the documents. Author assigned keyphrases are removed
from each original document and stored in the different
files with a document identification number. For each
noun phrase NP in each document d in our dataset, we
extract the values of the features of the NP from d using
the measures discussed in subsection 4.3. If the noun
phrase NP is found in the list of author assigned
keyphrases associated with the document d, we label the
noun phrase as a “Positive” example and if it is not found
we label the phrase as a “negative” example. Thus the
feature vector for each noun phrase looks like {<a1 a2 a3
….. an>, <label>} which becomes a training instance
(example) for a Multilayer Perceptron Neural Network,
where a1, a2 . . .an, indicate feature values for a noun
phrase. A training set consisting of a set of instances of the
above form is built up by running a computer program on
a set of documents selected from our corpus.

After preparation of the training dataset, a Multilayer
Perceptron Neural Network is trained on the training set to
classify the noun phrases as one of two categories:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

22

“Positive” or “Negative”. Positive category indicates that a
noun phrase is a keyphrase and the negative category
indicates that it is not a keyphrase.

Fig.5 Noun Phrase Ranking Based on Classifier’s Decisions

For our experiment, we use Weka
(www.cs.waikato.ac.nz/ml/weka) machine learning tools.
We use Weka’s Simple CLI utility, which provides a
simple command-line interface that allows direct execution
of WEKA commands.

The training data is stored in a .ARFF format which is an
important requirement for WEKA.

The multilayer perceptron is included under the panel
Classifier/ functions of WEKA workbench. The description
of how to use MLP in keyphrase extraction has been
discussed in the section 3. For our work, the classifier MLP
of the WEKA suite has been trained with the following
values of its parameters:

Number of layers: 3 (one input layer, one hidden layer and
one output layer).
Number of hidden nodes: (number of attributes + number
of classes)/2

Learning rate: 0.3
Momentum: 0.2
Training iteration: 500
Validation threshold: 20

WEKA uses backpropagation algorithm for training the
multilayer perceptron neural network.

The trained neural network is applied on a test document
whose noun phrases are also represented in the form of
feature vectors using the similar method applied on the
training documents. During testing, we use –p option (soft
threshold option). With this option, we can generate a
probability estimate for the class of each vector. This is
required when the number of noun phrases classified as
positive by the classifier is less than the desired number of
the keyphrases. It is possible to save the output in a file
using indirection sign (>) and a file name. We save the
output produced by the classifier for each test document in
a separate file. Then we rank the phrases using the
algorithm shown in figure 5 for keyphrase extraction.

After ranking the noun phrases, K- top ranked noun
phrases are selected as keyphrases for each input test
document.

5. Evaluation and Experimental Results

There are two usual practices for evaluating the
effectiveness of a keyphrase extraction system. One
method is to use human judgment, asking human experts
to give scores to the keyphrases generated by a system.
Another method, less costly, is to measure how well the
system-generated keyphrases match the author-assigned
keyphrases. It is a common practice to use the second
approach in evaluating a keyphrase extraction system
[7][8] [11][19]. We also prefer the second approach to
evaluate our keyphrase extraction system by computing its
precision and recall using the author-provided keyphrases
for the documents in our corpus. For our experiments,
precision is defined as the proportion of the extracted
keyphrases that match the keyphrases assigned by a
document’s author(s). Recall is defined as the proportion
of the keyphrases assigned by a document’s author(s) that
are extracted by the keyphrase extraction system.

5.1 Experimental Dataset

The data collection used for our experiments consists of
150 full journal articles whose size ranges from 6 pages to
30 pages. Full journal articles are downloaded from the
websites of the journals in three domains: Economics,
Legal (Law) and Medical.

Articles on Economics are collected from the various
issues of the journals such as Journal of Economics
(Springer), Journal of Public Economics (Elsevier),
Economics Letters, Journal of Policy Modeling. All these
articles are available in PDF format.

Input:

A file containing the noun phrases of a test document
with their classifications (positive or negative) and the
probability estimates of the classes to which the phrases
belong.

Begin:

i. Select the noun phrases, which have been classified as
positive by the classifier and reorder these selected noun
phrases in decreasing order of their probability estimates of
being in class 1 (positive). Save the selected phrases in to an
output file and delete them from the input file.

ii. For the rest of the noun phrases in the input file,
which are classified by the classifier as “Negative”, we
order the phrases in increasing order of their probability
estimates of being in the class 0 (negative). In effect, the
phrase for which the probability estimate of being in class 0
is minimum comes at the top. Append the ordered phrases to
the output file.

iii. Save the output file

end

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

23

Articles on Law and legal cases have been downloaded
from the various issues of the law journals such as
Computer Law and Security Review (Elsevier),
International Review of Law and Economics (Elsevier),
European Journal of Law and Economics (Springer),
Computer Law and Security Report (Elsevier), AGORA
International Journal of Juridical Sciences(Open access).

Medical articles are downloaded from the various issues of
the medical journals such as Indian Journal of Medicine,
Indian Journal of Pediatrics, Journal of Psychology and
Counseling, African journal of Traditional,
Complementary and Alternative Medicines, Indian Journal
of Surgery, Journal of General Internal Medicine, journal
of General Internal Medicine, The American Journal of
Medicine, International Journal of Cardiology, Journal of
Anxiety Disorders. Number of articles under each category
used in our experiments is shown in the table 1.

Table 1: Source documents used in our experiments

Source Document Type Number of Documents
Economics

Law
Medical

60
40
50

For the system evaluation, the set of journal articles are
divided into multiple folds where each fold consists of one
training set of 100 documents and a test set of 50
documents. The training set and the test set are
independent from each other. The set of author assigned
keyphrases available with the articles are manually
removed before candidate terms are extracted. For all
experiments discussed in this paper, the same splits of our
dataset in to a training set and a test set are used. Some
useful statistics about our corpus are given below.

Total number of noun phrases in our corpus is 144978.
The average number of author-provided keyphrases for all
the documents in our corpus is 4.90.

The average number of keyphrases that appears in all the
source documents in our corpus is 4.34. Here it is
interesting to note that all the author assigned keyphrases
for a document may not occur in the document itself.

The average number of keyphrases that appear in the list
of candidate phrases extracted from all the documents in
our corpus is 3.50. These statistics interestingly show that
some keyphrase worthy phrases may be missed at the stage
of the candidate phrase extraction. The main problems
related to designing a robust candidate phrase extraction
algorithm are: (1) an irregular structure of a keyphrase,
that is, it may contain only a single word or a multiword

noun phrase or multiple multiword noun phrases
connected by prepositions (an example of a keyphrase
containing multiple multiword noun phrases is: “The
National Council for Combating Discrimination”), (2) the
ill-formatted input texts which are generated by a pdf-to-
text converter from the scientific articles usually available
in pdf format.

5.2 Experiments

We conducted two experiments to judge the effectiveness
of the proposed keyphrase extraction method.

Experiment 1

In this experiment, we develop a neural network based
keyphrase system as we discuss in this paper. All the
features discussed in the subsection 4.3 are incorporated in
this system.

Experiment 2

This is to compare the proposed system to an existing
system. Kea [17] is now a publicly available keyphrase
extraction system. Kea uses a limited number of features
such as positional information and TF*IDF feature for
keyphrase extraction. The keyphrase extraction system,
Kea uses the Naïve Bayesian learning algorithm for
keyphrase extraction.

We download the version 5.0 of Kea1 and install it on our
machine. A separate model is built for each fold which
contains 100 training documents and 50 test documents.
Kea builds a model from each training dataset using Naïve
Bayes and uses this pre-built model to extract keyphrases
from the test documents.

5.3 Results

To measure the overall performance of the proposed
neural network based keyphrase extraction system and the
publicly available keyphrase extraction system, Kea, our
experimental dataset consisting of 150 documents are
divided into 3 folds for 3-fold cross validation where each
fold contains two independent sets: a training set of 100
documents and a test set of 50 documents. A separate
model is built for each fold to collect 3 test results, which
are averaged to obtain the final results for a system. The
number of keyphrases to be extracted (value for K) is set
to 5, 10 and 15 for each of keyphrase extraction systems
discussed in this paper.

1 http://www.nzdl.org/Kea/

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

24

Table 2 shows the author assigned keyphrases for the
journal article number 12 in our corpus. Table 3 and table
4 show respectively the top 5 keyphrases extracted by the
MLP based system and Kea when the journal article
number 12 in our corpus is presented as a test document to
these systems.

Table 2: Author assigned keyphrases for the journal article number

12 in our test corpus

Dno AuthorKey

12 adult immunization

12 barriers

12 consumer

12 provider survey

Table 3: Top 5 keyphrases extracted by the proposed MLP based

keyphrases extractor

Dno NP

12 immunization

12 adult immunization

12 healthcare providers

12 consumers

12 barriers

Table 4: Top 5 keyphrases extracted by Kea

Dno NP

12 adult

12 immunization

12 vaccine

12 healthcare

12 barriers

Table 2 and table 3 show that out of 5 keyphrases extracted
by the MLP based approach, 3 keyphrases match with the
author assigned keyphrases. The overall performance of the
proposed MLP based Keyphrases extractor has been shown
in the table 5. Table 2 and table 4 show that out of 5
keyphrases extracted by Kea, only one matches with the
author assigned keyphrases. The overall performance of
Kea has been compared with the proposed MLP based
keyphrase extraction system in table 5.

Table 5: Comparisons of the performances of the proposed
MLP based keyphrase Extraction System and Kea

Number of
keyphrases

Average Precision

Average Recall

 MLP Kea MLP

Kea

5 0.34 0.28 0.35 0.29
10 0.22 0.19 0.46 0.40
15 0.17 0.15 0.51 0.48

Table 5 shows the comparisons of the performances of the
proposed MLP based keyphrase extraction system and Kea.

From table 5, we can clearly conclude that the proposed
keyphrase extraction system outperforms Kea for all three
cases shown in three different rows of the table.

To interpret the results shown in the table 5, we like to
analyze the upper bounds of precision and recall of a
keyphrase extraction system on our dataset. Our analysis
on upper bounds of precision and recall of a keyphrase
extraction system on our dataset can be presented in two
ways: (1) some author-provided keyphrases might not
occur in the document they were assigned to. According to
our corpus, about 88% of author-provided keyphrases
appear somewhere in the source documents of our corpus.
After extracting candidate phrases using our candidate
phrase extraction algorithm, we find that only 72% of
author provided keyphrases appear somewhere in the list
of candidate phrases extracted from all the source
documents. So, keeping our candidate phrase extraction
algorithm fixed if a system is designed with the best
possible features or a system is allowed to extract all the
phrases in each document as the keyphrases, the highest
possible average recall for a system can be 0.72. In our
experiments, the average number of author-provided
keyphrases for all the documents is only 4.90, so the
precision would not be high even when the number of
extracted keyphrases is large. For example, when the
number of keyphrases to be extracted for each document is
set to 10, the highest possible average precision is around
0.3528 (4.90 * 0.72/10 = 0.3528), (2) assume that the
candidate phrase extraction procedure is perfect, that is, it
is capable of representing all the source documents in to a
collection of candidate phrases in such way that all author
provided keyphrases appearing in the source documents
also appear in the list of candidate phrases. If it is the case,
88% of the author provided keyphrases appear somewhere
in the list of candidate phrases because, on an average,
88% of the author provided keyphrases appear somewhere
in the source documents of our corpus. In this case, if a
system is allowed to extract all the phrases in each
document as the keyphrases, the highest possible average
recall for a system can be 0.88 and when the number of
keyphrases to be extracted for each document is set to 10,
the highest possible average precision is around
0.4312(4.90 * 0.88/10 =0.4312).

6. Conclusions

This paper presents a novel keyphrase extraction approach
using neural networks. For predicting whether a phrase is a
keyphrase or not, we use the estimated class probabilities
as the confidence scores which are used in re-ranking the
phrases belonging to a class: positive or negative. To

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

25

identify the keyphrases, we use five features such as
TF*IDF, position of a phrase’s first appearance, phrase
length, word length in a phrase and the links of a phrase to
other phrases. The proposed system performs better than a
publicly available keyphrase extraction system called Kea.
As a future work, we have planned to improve the
proposed system by (1) improving the candidate phrase
extraction module of the system and (2) incorporating new
features such as structural features, lexical features.

References

[1] Y. B. Wu, Q. Li, Document keyphrases as subject

metadata: incorporating document key concepts in search
results, Journal of Information Retrieval, 2008, Volume 11,
Number 3, 229-249

[2] O. Buyukkokten, H. Garcia-Molina, and A. Paepcke.
Seeking the Whole in Parts: Text Summarization for Web
Browsing on Handheld Devices. In Proceedings of the
World Wide Web Conference, 2001, Hong Kong.

[3] O. Buyukkokten, O. Kaljuvee, H. Garcia-Molina, A.
Paepcke, and T. Winograd. Efficient Web Browsing on
Handheld Devices Using Page and Form Summarization.
ACM Transactions on Information Systems (TOIS), 2002,
20(1):82–115

[4] S. Jones, M. Staveley, Phrasier: A system for interactive
document retrieval using Keyphrases, In: proceedings of
SIGIR, 1999, Berkeley, CA

[5] C. Gutwin, G. Paynter, I. Witten, C. Nevill-Manning, E.
Frank, Improving browsing in digital libraries with
keyphrase indexes, Journal of Decision Support Systems,
2003, 27(1-2), 81-104

[6] B. Kosovac, D. J. Vanier, T. M. Froese, Use of keyphrase
extraction software for creation of an AEC/FM thesaurus,
Journal of Information Technology in Construction, 2000,
25-36

[7] S.Jonse, M. Mahoui, Hierarchical document clustering using
automatically extracted keyphrase, In proceedings of the
third international Asian conference on digital libraries,
2000, Seoul, Korea. pp. 113-20

[8] K. Barker, N. Cornacchia, Using Noun Phrase Heads to
Extract Document Keyphrases. In H. Hamilton, Q. Yang
(eds.): Canadian AI 2000. Lecture Notes in Artificial
Intelligence, 2000, Vol. 1822, Springer-Verlag, Berlin
Heidelberg, 40 – 52.

[9] L. F Chien, PAT-tree-based Adaptive Keyphrase Extraction
for Intelligent Chinese Information Retrieval, Information
Processing and Management, 1999, 35, 501 – 521.

[10] Y. HaCohen-Kerner, Automatic Extraction of Keywords
from Abstracts, In V. Palade, R. J. Howlett, L. C. Jain
(eds.): KES 2003. Lecture Notes in Artificial Intelligence,
2003, Vol. 2773,Springer-Verlag, Berlin Heidelberg, 843 –
849.

[11] Y. HaCohen-Kerner, Z. Gross, A. Masa, Automatic
Extraction and Learning of Keyphrases from Scientific
Articles, In A. Gelbukh (ed.): CICLing 2005. Lecture Notes
in Computer Science, 2005, Vol. 3406, Springer-Verlag,
Berlin Heidelberg, 657 – 669.

[12] A. Hulth, J. Karlgren, A. Jonsson, H. Boström, Automatic
Keyword Extraction Using Domain Knowledge, In A.

Gelbukh (ed.): CICLing 2001. Lecture Notes in Computer
Science, 2001, Vol. 2004, Springer-Verlag, Berlin
Heidelberg, 472 – 482.

[13] Y. Matsuo, Y. Ohsawa, M. Ishizuka, KeyWorld: Extracting
Keywords from a Document as a Small World, In K. P.
Jantke, A. shinohara (eds.): DS 2001. Lecture Notes in
Computer Science, 2001, Vol. 2226, Springer-Verlag,
Berlin Heidelberg, 271– 281.

[14] J. Wang, H. Peng, J.-S. Hu, Automatic Keyphrases
Extraction from Document Using Neural Network., ICMLC
2005, 633-641

[15] P. D. Turney, Learning algorithm for keyphrase extraction,
Journal of Information Retrieval, 2000, 2(4), 303-36

[16] E. Frank, G. Paynter, I. H. Witten, C. Gutwin, C. Nevill-
Manning, Domain-specific keyphrase extraction. In
proceeding of the sixteenth international joint conference on
artificial intelligence, 1999, San Mateo, CA.

[17] I. H. Witten, G.W. Paynter, E. Frank et al, KEA: Practical
Automatic Keyphrase Extraction, In E. A. Fox, N. Rowe
(eds.): Proceedings of Digital Libraries’99: The Fourth
ACM Conference on Digital Libraries. 1999, ACM Press,
Berkeley, CA , 254 – 255.

[18] N. Kumar , K. Srinathan, Automatic keyphrase extraction
from scientific documents using N-gram filtration
technique, Proceeding of the eighth ACM symposium on
Document engineering, September 16-19, 2008, Sao Paulo,
Brazil.

[19] Q. Li, Y. Brook Wu, Identifying important concepts from
medical documents. Journal of Biomedical Informatics,
2006, 668-679

[20] C. Fellbaum, WordNet: An electronic lexical database.
Cambridge: MIT Press, 1998.

[21] G.K. Zipf, The psycho-biology of language. Cambridge,
1935 (reprinted 1965), MA:MIT press

[22] R. Duda, P. Hart, Pattern classification and scene analysis,
1973, Wiley and Son

[23] J.S.Denker, Y. leCun, transforming neural-net output labels
to probability distributions, AT & T Bell Labs Technical
Memorandum 11359-901120-05

[24] H. P. Edmundson. “New methods in automatic extracting”.
Journal of the Association for Computing Machinery, 1969,
16(2), 264–285

[25] H. Liu, MontyLingua: An end-to-end natural language
processor with common sense, 2004, retrieved in 2005 from
web.media.mit.edu/~hugo/montylingua.

