
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
ISSN (Online): 1694- 0784
ISSN (Print): 1694-0814

26

C Implementation & comparison of companding & silence
audio compression techniques

Mrs. Kruti Dangarwala1 and Mr. Jigar Shah2

1Department of Computer Engineering,
Sri S’ad Vidya Mandal Institute of Technology

 Bharuch, Gujarat, India

2Department of Electronics and Telecommunication Engineering
Sri S’ad Vidya Mandal Institute of Technology

 Bharuch, Gujarat, India

Abstract

 Just about all the newest living room audio-video electronics
and PC multimedia products being designed today will
incorporate some form of compressed digitized-audio
processing capability. Audio compression reduces the bit rate
required to represent an analog audio signal while maintaining
the perceived audio quality. Discarding inaudible data reduces
the storage, transmission and compute requirements of
handling high-quality audio files. This paper covers wave
audio file format & algorithm of silence compression method
and companding method to compress and decompress wave
audio file. Then it compares the result of these two methods.
Keywords: thresold, chunk, bitstream, companding,
silence;

1. Introduction

Audio compression reduces the bit rate required to
represent an analog audio signal while maintaining the
perceived audio quality. Most audio decoders being
designed today are called "lossy," meaning that they
throw away information that cannot be heard by most
listeners. The information to be discarded is based on
psychoacoustics, which uses a model human auditory
perception to determine which parts of the audible
spectrum the largest portion of the human population
can detect. First, an audio encoder [1] divides the
frequency domain of the signal being digitized into
many bands and analyzes a block of audio to determine
what's called a "masking threshold." The number of bits
used to represent a tone depends on the masking
threshold. The noise associated with using fewer bits is
kept low enough so that it will not be heard. Tones that
are completely masked may not have any bits allocated
to them. Discarding inaudible data reduces the storage,
transmission and compute requirements of handling

high-quality audio files. Consider the example of a
typical audio signal found in a CD-quality audio device.
The CD player produces two channels of audio. Each
analog signal [2] in each channel is sampled at a 44.1-
kHz sample rate. Each sample is represented as a 16-bit
digital data word. To produce both channels requires a
data rate of 1.4 Mbits/second. However, with audio
compression this data rate is reduced around an order of
magnitude. Thus, a typical CD player is reading
compressed data from a compact disk at a rate just over
100 Kbits/s. Audio compression really consists of two
parts. The first part, called encoding, transforms the
digital audio data that resides, say, in a WAVE file, into a
highly compressed form called bitstream. To play the
bitstream on your soundcard, you need the second part,
called decoding. Decoding takes the bitstream and re-
expands it to a WAVE file.

2. WAVE AUDIO FILE FORMAT

The WAVE file format [1] is a subset of Microsoft's
RIFF spec, which can include lots of different kinds of
data. RIFF is a file format for storing many kinds of data,
primarily multimedia data like audio and video. It is
based on chunks and sub-chunks. Each chunk has a type,
represented by a four-character tag. This chunk type
comes first in the file, followed by the size of the chunk,
then the contents of the chunk. The entire RIFF file is a
big chunk that contains all the other chunks. The first
thing in the contents of the RIFF chunk is the "form
type," which describes the overall type of the file's
contents. So the structure of wave audio file looks like
this: a) RIFF Chunk b) Format Chunk c) Data Chunk

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

27

Table 1: RIFF CHUNK

Byte Number Description
0-3 “RIFF”(ASCII Character)

4-7 Total Length of Package to follow (Binary)
8-11 “WAVE”(ASCII Character)

Description of RIFF chunk as follows:
Offset Length Contents
 0 4 bytes 'RIFF'
 4 4 bytes <file length - 8>
 8 4 bytes 'WAVE'

Table 2: FORMAT CHUNK

Byte Number
0-3 “fmt_”(ASCII character)
4-7 Length of format chunk(Binary)
8-9 Always 0x01
10-11 Channel nos(0x01=mono,0x02=stereo)
12-15 Sample Rate(Binary,in Hz)
16-19 Bytes Per Second
20-21 Bytes Per Sample 1=8-bit mono,2=8-bit

stereo/16-bit mono,4=16-bit stereo
22-23 Bits Per Sample

Description of FORMAT chunk as follows:
12 4 bytes 'fmt '
16 4 bytes 0x00000010
20 2 bytes 0x0001 // Format tag: 1 = PCM
22 2 bytes <channels>
24 4 bytes <sample rate> // Samples per second
28 4 bytes <bytes/second> // sample rate * block
 align
32 2 bytes <block align> // channels *
 bits/sample / 8 34 2 bytes
 <bits/sample> // 8 or 16

Table 3: DATA CHUNK

Byte Number
0-3 “data”(ASCII character)
4-7 Length of data to follow
8-end Data(Samples)

Description of DATA chunk as follows:
 36 4 bytes ‘data’
 40 4 bytes <length of the data block>
 44 bytes <sample data>

The sample data must end on an even byte boundary.

All numeric data fields are in the Intel format of low-
high byte ordering. 8-bit samples are stored as unsigned
bytes, ranging from 0 to 255. 16-bit samples are stored
as 2's-complement signed integers, ranging from -32768
to 32767.

For multi-channel data, samples are interleaved
between channels, like this: sample 0 for channel 0,
sample 0 for channel 1, sample 1 for channel 0 ,sample 1
for channel 1. For stereo audio, channel 0 is the left
channel and channel 1 is the right.

3. Silence Compression & Decompression
Techniques

3.1 Introduction

Silence Compression [4] on sound files is the
equivalent of run length encoding on normal data files.
In this case, the Runs we encode are sequences of
relative silence in a sound file. Here we replace
sequences of relative silence with absolute silence. So it
is known as Lossy technique.

3.2 User Parameters:

1) Thresold Value : It considered as Silence. With 8-bit
sample 80H considered as “pure” silence. Any Sample
value within a range of plus or minus 4 from 80H
considered as silence.

2) Silence_Code: It is code to encode a run of silence.
We used value FF to encode silence.The Silence_code is
followed by a single byte that indicates how many
consecutive silence codes there are.

3) Start_Threshold: It recognize the start of a run of
silence. We would not want to start encoding silence after
seeing just a single byte of silence. It does not even
become economical until 3 bytes of silence are seen. We
may want to experiment with even higher values than 3 to
see how it affects the fidelity of the recoding.

4) Stop_Threshold: It indicates how many consecutive
non silence codes need to be seen in the input stream
before we declare the silence run to be over.

3.3 Silence Compression Algorithm (Encoder)

1) Read 8-bit Sample Data From audio file.
2) Checking of Silence means find atleast 5 consecutive
 silence value: 80H or +4 /- 4 from 80H. (Indicate
 start of silence)
3) If get, Encode with Silence_Code followed by runs. \

 (Consecutive Silence values).
4) Stop to Encode when found atleast two Non-Silence

 values.
5) Repeat all above steps until end of file character
 found.
6) Print input File size, Output File Size and
 Compression Ratio.

This algorithm [4] takes 8-bit wave audio file as
input. Here It find starting of silence means check that at
least 5 consecutive silence value present or not. Here
80H considered as pure silence and +/- 4 from 80H also
consider as silence. If found, then it start encoding
process. Here consecutive silence values are encoded by
silence_code followed by runs (Consecutive silence
values). It stop encoding when it found at least two non-
silence values. Then it generate compressed file
extension of that file is also wav file.
Example of algorithm as follows:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

28

Input file consists of sample data like 80 81 80
81 80 80 80 45. Output file consists of compressed data
like FF745.
It display following attributes of input wave audio file.

a. Input file size in terms of bytes
b. Output file size in terms of bytes
c. Compression ratio.

3.4 Silence Dcompression Algorithm (Decoder)

1) Read 8-bit Sample from Compress file.
2) Check the Silence code means 0xff if it found,
 Check the next value means runs which
 Indicate no of silence value.
3) Replace it with 0x80 (silence value) no of runs

 times.
4) Repeat above step until we get end of file
 Character.

Example of algorithm as follows:

In input file (compressed file (extension of this file
.wav)) we find silence code , if we get then we check
next value which indicate no of silence value. Then we
replace with silence value no of runs times decided by
user. We stop the procedure when we get end of file
character.

If we get value 0xff5 in compress file, decode that value
by
0x80 0x80 0x80 0x80 0x80 0x80

4. Companding Compression &
Decompression Techniques

4.1 Introduction

Companding [4] uses the fact that the ear requires
more precise samples at low amplitudes (soft sounds).
But is more forgiving at higher amplitudes. A typical
ADC used in sound cards for personal computers
convert voltages to numbers linearly. If an amplitude a is
converted to the number n, then amplitude 2a will be
converted to the number 2n. It examines every sample in
the sound file and uses a nonlinear formula to reduce the
no. of bits devoted to it.

Non-Linear Formula For 16-bit samples to 15-bit
samples conversion:

Mapped=32767*(pow (2, sample/65356) (1)

Using this formula every 16-bit sample data

converted into 15-bit sample data. It performs non-linear
mapping such that small samples are less affected than
large ones.

Mapped 15-bit numbers can be decoded back into the
original 16-bit samples by the inverse formula:

Sample=65356 log2 (1+mapped/32767) (2)

Reducing 16-bit numbers to 15-bits does not
produce much compression. Better Compression can be
achieved by substituting a smaller number for 32767 in
“(1)” & “(2)”. A value of 127, For example would map
each 16-bit sample into 8-bit sample. So in this case we
compress file with compression ratio of 0.5 means 50%.
Here Decoding should be less accurate. A 16-bit sample
of 60,100, for example, would be mapped into the 8-bit
number 113, but this number would produce 60,172
when decoded by “(2)”. Even worse, the small 16-bit
sample 1000 would be mapped into 1.35, which has to
be rounded to 1. When “(2)” is used to decode a 1, it
produce 742, significantly different from the original
sample.

Here the Amount of Compression[2] should thus be a
user-Controlled parameter. And this is an interesting
example of a compression method where the
compression ratio is known in advance. Now no need to
go through the “(1)” & “(2)”. Since the mapping of all
the samples can be prepared in advance in a table. Both
decoding and encoding are thus fast.Use [4] in this
method.

4.2 Companding Compression Algorithm

1) Input the No. of Bits to use for output code.
2) Make Compress Look-Up Table using Non-
 Linear Formula : (8-bit to Input bit)

Value=128.0*(pow (2, code/N)-1.0)+0.5
Where, code: pow(2,inputbit) to 1
N: pow (2, Inputbit)
For each code we assign value 0 to 15 in table:
Index of table value
J+127  code+N-1
128-j  N-code
where j=value to zero

3) Now Read 8-bit samples from audio file and
 That sample become the index of compress
 look-up table, Find corresponding value, that
 output vale store in output file.
4) Repeat step-III until we get end of file
 character.
5) Print the Input file size in bytes, output file size
 in bytes & compression ratio.

Description of algorithm is that it used for converting

8- bit sample file into user defined output bit. For
example if we input output bit : 4 then we achieve 50%
compression. and we say compression ratio is 0.5.

So we say that in this method compression ratio is
known in advance. We adjust compression ratio
according our requirement. So it is crucial point compare
to another method.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

29

4.3 Companding Decompression Algorithm

1) Find the No. of bits used in compressed file.
2) Make Expand Look-Up table using Non-Linear
 Formula:

(Input bit  8-bit)
Value=128.0*(pow (2.0, code/N)-1.0)+0.5
Where code: 1 to pow (2, Inputbit)
N: pow (2, Inputbit)

For each code: we assign value 0 to 255 in
table:
Index of table value
N+code-1 128+(value+last_value)/2
N-code  127-(value+last_value)/2

Here initially, last_value=0 & for each code,
last_value=value

3) Now read input bit samples from audio file &

 that sample become the index of expand look-
 up table, find corresponding value, that output
 sample value store in output file.

4) Repeat the step-III until file size becomes zero.

5. Result/comparisons Between Two Lossy
Method

5.1 Companding Compression Method

1) INPUT AUDIO FILE:

Name of File: J1. WAV
Media Length: 4.320 sec
Audio Format: PCM, 8000Hz, 8-Bit, Mono
File Size: 33.8KB (34,618 BYTES)

User Parameter (No. Of Bits) 1

Input File Size(in Bytes) 34618
Output File Size(in Bytes) 4390

Compression Ratio(in
Percentage)

88%

User Parameter (No. Of Bits) 2

Input File Size(in Bytes) 34618
Output File Size(in Bytes) 8709

Compression Ratio(in
Percentage)

75%

User Parameter (No. Of Bits) 3

Input File Size(in Bytes) 34618
Output File Size(in Bytes) 13028

Compression Ratio(in
Percentage)

63%

User Parameter (No. Of Bits) 4
Input File Size(in Bytes) 34618

Output File Size(in Bytes) 17347
Compression Ratio(in Percentage) 50%

User Parameter (No. Of Bits) 5

Input File Size(in Bytes) 34618
Output File Size(in Bytes) 21666

Compression Ratio(in Percentage) 38%

User Parameter (No. Of Bits) 6
Input File Size(in Bytes) 34618

Output File Size(in Bytes) 25985
Compression Ratio(in Percentage) 25%

User Parameter (No. Of Bits) 7

Input File Size(in Bytes) 34618
Output File Size(in Bytes) 30304

Compression Ratio(in Percentage) 13%

User Parameter (No. Of Bits) 8
Input File Size(in Bytes) 34618

Output File Size(in Bytes) 34618
Compression Ratio(in Percentage) 0%

5.2 Silence Compression Method:
1)INPUT AUDIO FILE :

Name of File: J1. WAV
Media Length: 4.320 SEC
Audio Format: PCM, 8000HZ, 8-BIT, Mono
File Size: 33.8KB (34,618 BYTES)

Input File Size(in Bytes) 34618

Output File Size(in Bytes) 25099
Compression Ratio(in Percentage) 28%

 2) INPUT AUDIO FILE:

Name Of File:: Chimes2.wav
Media Length: 0.63 sec
Audio Format: PCM, 22,050Hz, 8-Bit, Mono
File Size: 14028 bytes

Input File Size(in Bytes) 14028

Output File Size(in Bytes) 7052
Compression Ratio(in Percentage) 50%

 3) INPUT AUDIO FILE:

Name Of File: Chord2.wav
Media Length: 1.09 sec
Audio Format: PCM, 22,050Hz, 8-Bit, Mono
File Size: 14028 bytes

Input File Size(in Bytes) 14028

Output File Size(in Bytes) 9074
Compression Ratio(in Percentage) 36%

4) INPUT AUDIO FILE:

Name Of File: Ding2.wav
Media Length: 0.91 sec
Audio Format: PCM, 22,050Hz, 8-Bit, Mono
File Size: 20298 bytes

Input File Size(in Bytes) 20298

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 3, March 2010
www.IJCSI.org

30

Output File Size(in Bytes) 13887
Compression Ratio(in Percentage) 32%

5) INPUT AUDIO FILE:

Name Of File: Logoff2.wav
Media Length: 3.54 sec
Audio Format : PCM,22,050Hz,8-Bit,Mono
File Size: 783625 bytes

Input File Size(in Bytes) 783625

Output File Size(in Bytes) 60645
Compression Ratio(in Percentage) 23%

 6) INPUT AUDIO FILE:

 Name Of File:: Notify2.wav
 Media Length: 1.35 sec
Audio Format: PCM, 22,050Hz, 8-Bit, Mono
 File Size: 29930 Bytes

Input File Size(in Bytes) 29930

Output File Size(in Bytes) 13310
Compression Ratio(in Percentage) 56%

6. Conclusions

We can achieve more compression using
silence compression if more silence values are
present out input audio file. Silence method is lossy
method because here we consider +/-4 from 80H is
consider as silence & when we perform
compression we replace it with 80H runs times.
When we decompress the audio file using silence
method we get the original size but we do not get
original data. Some losses occur. Companding
method is also lossy method but one advantage is
here we can adjust compression ratio according our
requirement. Here depending upon no. of bits used
in output file we get compression ratio. When we
decompress the audio file using companding
method we get the original size as well as we get
original data only minor losses occur. But we get
audio quality. Compare to silence method
companding method is good and better.

 References
[1] David Salomon Data Compression 1995, 2nd ed.,

The Complete reference
[2] John G. Proakis and Dimitris G. Manolakis Digital

Signal Processing Principles, Algorithms &
Applications ,3rd ed.,

[3] David Pan, “A Tutorial on MPEG/Audio
Compression”, IEEE multimedia, Vol 2, No. 2

[4] Mark Nelson Data Compression, 2nd ed.
[5] Stephen J. Solari Digital Video and Audio
 Compression.

 [6] Cliff Wootton A practical guide to video and audio
compression

Kruti J Dangarwala had passed B.E (computer science) in

2001, M.E (computer engg.) In 2005. She is currently employed
at SVMIT, Bharuch, Gujarat State, India as an assistant

professor. She has published two technical papers in various
conferences.

Jigar H. Shah had passed B.E. (Electronics) in 1997, M.E.

(Microprocessor) in 2006. Presently he is pursuing Ph.D.
degree. He is currently employed at SVMIT, Bharuch, Gujarat
State, India as an assistant professor. He has published five
technical papers in various conferences and also has five book
titles. He is life member of ISTE and IETE.

