
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

Comparison of the Performance of Two Service Disciplines for a
Shared Bus Multiprocessor with Private Caches

Angel Vassilev Nikolov and Lerato Lerato

 1Department of Mathematics and Computer Science, National University of Lesotho
Roma, 180, Lesotho

2 Department of Mathematics and Computer Science, National University of Lesotho
Roma, 180, Lesotho

Abstract

In this paper, we compare two analytical models for evaluation
of cache coherence overhead of a shared bus multiprocessor with
private caches. The models are based on a closed queuing
network with different service disciplines. We find that the
priority discipline can be used as a lower-level bound. Some
numerical results are shown graphically.
Keywords: Invalidate cache coherence protocols,
multiprocessor, queuing network, work conserving
.

1. Introduction

Caches have been widely used in multiprocessors to
improve systems performance. Caching of shared data,
however, introduces the cache coherence problem. Simply
coherence can be defined as retrieving always the most
recent value for any data. Maintaining this feature solely
by the software makes the programmer’s task extremely
difficult. Modern multiprocessors solve the cache
coherence problem in hardware by implementing cache
coherence protocols [6]. There are two main classes of
hardware protocols, snoopy and directory based protocols.
Snoopy protocols use broadcast medium and hence apply
to a smaller-scale bus-based multiprocessors. In these
broadcast systems each cache “snoops” on the bus and
watches for transition that affects it. In this paper we
consider this class. Coherence requirements can be met in
two ways. Invalidate protocols invalidate other cache
copies on a write, so the processor has exclusive access to
a data before it writes that data. The alternative Update
protocols update all the cached copies of the data when
that data is written. Most multiprocessors use Invalidate
technique rather than Update technique because update
transactions are expensive.

Impact on the performance of the cache coherence
protocols can be studied using simulation or analytical

models. Simulation is accurate but very time consuming.
Analytical models based on queuing theory provide simple
but approximate approach for estimating the performance
of multiprocessors in the early design cycles. The most
commonly used method for this purpose is the Mean
Value Analysis (MVA), based on the forced law, i.e. in
equilibrium the output rate equals input rate. It offers no
possibility to study transient behavior, moreover the
assumption of exponential service times is not always
adequate [3]. Alternative solution is to describe the system
using discrete state continuous time Markov processes. In
[4] this approach is applied to a priority discipline where
the non-blocking (write-back) requests are served
immediately after their arrival, and in [5] a First-Come-
First-Served (FCFS) discipline is studied. As shown in [4,
5] this method eliminates the main drawbacks of MVA
analysis: inability to deal with transients and the
constraints on the service time distributions.

2. Description of the models

A multiprocessor consists of several processors connected
together to a shared main memory by a common complete
transaction bus. Each processor has a private cache. When
a processor issues a request to its cache, the cache
controller examines the state of the cache and takes
suitable action, which may include generating bus
transaction to access main memory. Coherence is
maintained by having all cache controllers "snoop" on the
bus and monitor the transaction. Snoopy cache-coherence
protocols fall in two major categories: Invalidate and
Update [6]. Invalidating protocols are studied here but the
concepts can be applied with some modifications to

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
www.IJCSI.org

2

updating protocols too. Transactions may or may not
include the memory block and the shared bus. Typical
transaction that does not include memory block is
Invalidate Cache Copy which occurs when a processor
requests writing in the cache. All other processors simply
change the status bit(s) of their on copies to Invalid. If the
memory block is uncached or not clean it can be uploaded
from the main memory, but in todays multiprocessors it is
rather uploaded from another cache designated as Owner
(O) (cache-to cache transfer). Memory-to cache transfer
occurs when the only clean copy is in the main memory. A
cache block is written back (WB) in the main memory
(bus is used) when a dirty copy is evicted [6]. Apparently
the bus can be considered as the bottleneck of the system.

For the model in [4] these WB requests are immediately
served, that is they have priority over all other transaction
types, and for the model presented in [5], WB requests and
all other requests are treated equally, i.e. the service
discipline is on First Come First Served (FCFS) basis.

In terms of the queuing theory processors can be viewed
as customers (clients) and the bus can be viewed as a
server. The FCFS queue and the priority queue are
illustrated in Fig. 1.a and Fig 1.b, respectively.

Each processor alternates execution (think, compute)
phases and phases when it waits for a memory request to
be served. The execution phase is assumed exponentially
distributed with parameter λ. This assumption is adequate
for most applications [3]. Immediately after issuing a
coherence request the customer blocks itself. The service
time for blocking request has a density function f1(x).

 p

 q

 Fig. 1.a

When service is completed the processor (customer)
resumes processing with probability p or resumes
processing and generates a new request with probability q
(p+q=1). Details on how to obtain the input parameters

are given in [7, 8]. This new request has a different
density

 p

 q

 Fig. 1.b

function f2(x) and corresponds to WB transaction. It does
not block the customer but the server is held until
completion of WB transaction therefore adding to the
queue. WB request in Fig. 1.a joins the tail of the queue of
blocking and non-blocking requests. In Fig. 1.b if a WB
request is generated the bus (server) is not relinquished by
the processor whose coherence transaction was just
completed. The service of the WB request is started
immediately for this processor, and only after its
completion the first processor in the queue gets access to
the bus.

The equations describing these queues and their solutions
are given in [4, 5]. We start with fairly complex set of
integro-differential equations but the output is a set of
linear equations from which the steady-state probabilities
and hence the throughput can be determined. For the
FCFS discipline, however, the number of linear equations
grows enormously for large N, so the exact solution is too
complicated to be practical. The networks in Fig. 1.a and
Fig. 1.b are “work conserving” since the server does not
go idle if there is a customer in the queue, and the amount
of the service time does not depend on the service
discipline [2]. The mean waiting time is same for Fig. 1.a
and Fig. 1.b according to the conservation law [4, 5].
Distributions of waits, however, are different: in Fig. 1.b
non-blocking (WB) requests do not wait at all because
they are served immediately after arrival, so that the
waiting time is zero, while for the network in Fig. 1.a the
waiting time is greater than zero. Blocking requests in Fig.
1.a therefore wait longer and the throughput is smaller
than that in Fig. 1.b, thus we can conclude that the priority
scheme (Fig. 1.b) can be regarded as lower-level bound
for FCFS discipline (Fig. 1.a).

S

S

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
www.IJCSI.org

3

Average Number of Blocked Customers (processors),
ANBC, for the two disciplines, computed using the
formulas, derived in [4] and [5] are illustrated in Table 1.a
through 1.h for blocking caches (BL). For all cases

x
exf 1

11)(
 and

x
exf 2

22)(
 , and p=0.8 and

1.01 [1/t.u.]1.

λ FCFS Priority % difference
0.001 0.07014828 0.07344077 4.69361131

0.002 0.18977920 0.20284240 6.88336661

0.003 0.34289203 0.36860743 7.49956231

0.004 0.51524391 0.55285868 7.30038140

0.005 0.69555280 0.74238917 6.73368933

0.006 0.87572487 0.92861078 6.03910016

0.007 1.05045078 1.10650487 5.33619402

0.008 1.21657142 1.27350263 4.67964332

0.009 1.37245655 1.42859627 4.09045568

0.010 1.51749673 1.57171551 3.57290955

 1.a)

N=4, 2 =0.01[1/t.u.]

λ FCFS Priority % difference
0.001 0.10346160 0.10967984 6.01018450

0.002 0.29814050 0.32060606 7.53522768

0.003 0.53750740 0.57628734 7.21477436

0.004 0.78870741 0.83859945 6.32579880

0.005 1.03240021 1.08777002 5.36321218

0.006 1.25904105 1.31562088 4.49388283

0.007 1.46505497 1.52011385 3.75814410

0.008 1.65010151 1.70210131 3.15130902

0.009 1.81540668 1.86361092 2.65528566

0.010 1.96283453 2.00700331 2.25025446

 1.b)N=4,

2 =0.006667[1/t.u.]

λ FCFS Priority % difference
0.001 0.09793845 0.10393609 6.12389310

0.002 0.27607106 0.29989579 8.62992741

0.003 0.50864514 0.55419819 8.95576169

0.004 0.77068883 0.83443491 8.27131302

0.005 1.04195502 1.11731297 7.23236099

0.006 1.30831803 1.38883665 6.15436121

0.007 1.56119524 1.64188994 5.16877695

0.008 1.79617630 1.87372614 4.31749579

0.009 2.01163620 2.08410558 3.60250972

1 t. u.-time unit

0.010 2.20764176 2.27409559 3.01017303

 1.c)N=5, 2 =0.01[1/t.u.]

λ FCFS Priority % difference
0.001 0.15052080 0.16214798 7.72463209

0.002 0.44663225 0.48738023 9.12338382

0.003 0.80995181 0.87613907 8.17175362

0.004 1.18338340 1.26277196 6.70860895

0.005 1.53527328 1.61736280 5.34689961

0.006 1.85242056 1.93081123 4.23179647

0.007 2.13201057 2.20360391 3.35802017

0.008 2.37611381 2.43985641 2.68264077

0.009 2.58864894 2.64458879 2.16096717

0.010 2.77390615 2.82261385 1.75592431

 1.d) N=5,

2 =0.006667[1/t.u]

λ FCFS Priority % difference
0.001 0.13018580 0.13994358 7.49526844

0.002 0.38029905 0.41883309 10.13256380

0.003 0.71209440 0.78311783 9.97387757

0.004 1.08482965 1.17914296 8.69383567

0.005 1.46496035 1.56995792 7.16726391

0.006 1.83015922 1.93551924 5.75687720

0.007 2.16831417 2.26748158 4.57347954

0.008 2.47457869 2.56422251 3.62258949

0.009 2.74850736 2.82748357 2.87342179

0.010 2.99197323 3.06042246 2.28776217

 1.e)N=6,

2 =0.01[1/t.u.]

λ FCFS Priority % difference
0.001 0.20681137 0.22608037 9.31718650

0.002 0.62839527 0.69329368 10.32764113

0.003 1.14251792 1.24085044 8.60665053

0.004 1.65787655 1.76701584 6.58307686

0.005 2.12793843 2.23247579 4.91261212

0.006 2.53767126 2.63056168 3.66045914

0.007 2.88784045 2.96720787 2.74833134

0.008 3.18525763 3.25171044 2.08626186

0.009 3.43809333 3.49318909 1.60250898

0.010 3.65399343 3.69949483 1.24525116

 1.f)N=6,

2 =0.006666[1/t.u.]

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
www.IJCSI.org

4

 Table 1

Since the percentage difference of ANBCs is always
positive we can confirm that the priority scheme can serve
as a lower-level bound.

If we look more closely at the tables, we find that the
difference is smaller for heavier workload (λ).In spite of
the fact that FCFS is more favorable to shorter request
than the priority scheme its impact is diminished if the
system handles more requests in the case of heavy
workload.

It also can be observed that the difference does not vary
significantly with N.

3. Some numerical results

We measure the system performance in ANPEC (Average
Number of Processors Engaged in Computation) [1].
Obviously from the definition ANBCNANPEC .
Results are illustrated in Fig. 2.

0

5

10

15

20

25

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N
A

N
P

E
C

λ=0.002,BL

λ=0.004,BL

λ=0.006,BL

λ=0.008,BL

λ=0.01,BL

λ=0.002,NBL

λ=0.004,NBL

λ=0.006,NBL

λ=0.008,NBL

λ=0.01,NBL

Fig. 2.a. p=0.9, 2 =0.01[1/t.u.]

0

2

4

6

8

10

12

14

16

18

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N

A
N

P
E

C

λ=0.002,BL

λ=0.004,BL

λ=0.006,BL

λ=0.008,BL

λ=0.01,BL

λ=0.002,NBL

λ=0.004,NBL

λ=0.006,NBL

λ=0.008,NBL

λ=0.01,NBL

 Fig. 2.b. p=0.8, 2 =0.01[1/t.u.]

λ FCFS Priority % difference
0.001 0.16711501 0.18183576 8.80875460
0.002 0.50408229 0.56151276 11.39307364
0.003 0.95693912 1.05819964 10.58170982
0.004 1.46217043 1.58867062 8.65153531
0.005 1.96736551 2.09885671 6.68361840
0.006 2.44010356 2.56304970 5.03856237
0.007 2.86557429 2.97351291 3.76673603
0.008 3.24038821 3.33162878 2.81572935
0.009 3.56716080 3.64255966 2.11369397
0.01 3.85102404 3.91251645 1.59678065

 1.g) N=7,

2 =0.01[1/t.u.]

λ FCFS Priority % difference
0.001 0.27284496 0.30228227 10.78902581

0.002 0.84595961 0.94043547 11.16789163

0.003 1.53800360 1.67035363 8.60531312

0.004 2.21148627 2.34637907 6.09964432

0.005 2.80406596 2.92305851 4.24357205

0.006 3.30291100 3.40088073 2.96616340

0.007 3.71635507 3.79441291 2.10038698

0.008 4.05853034 4.11982682 1.51031226

0.009 4.34322475 4.39112053 1.10276991

0.010 4.58205090 4.61947983 0.81685963

 1.h) N=7,

2 =0.006667[1/t.u.]

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
www.IJCSI.org

5

0

2

4

6

8

10

12

14

16

18

20

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N

A
N

P
E

C

λ=0.002,BL

λ=0.004,BL

λ=0.006,BL

λ=0.008,BL

λ=0.01,BL

λ=0.002,NBL

λ=0.004,NBL

λ=0.006,NBL

λ=0.008,NBL

λ=0.01,NBL

Fig. 2.c. p=0.9, 2 =0.0066666667[1/t.u.]

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

N

A
N

P
E

C

λ=0.002,BL

λ=0.004,BL

λ=0.006,BL

λ=0.008,BL

λ=0.01,BL

λ=0.002,NBL

λ=0.004,NBL

λ=0.006,NBL

λ=0.008,NBL

λ=0.01,NBL

Fig. 2.d. p=0.8, 2 =0.0066666667[1/t.u.]

From the figures, it can be seen that the performance
increases nonlinearly as N increases and at some point
saturation sets in. Saturation depends heavily on the
workload (λ): in all graphics ANPEC saturates quickly
with λ=0.01[1/t.u.], while it still continues to grow with
λ=0.001[1/t.u.]. Evidently, with increased main memory
traffic (smaller p), the performance degradation is more
significant (Fig. 2.a and 2.b, and Fig. 2.c and Fig. 2.d). It
can also be concluded that the impact of memory access
time is also significant, for instance saturation for

λ=0.01[1/t.u.], and 2 =0.01[1/t.u.] sets in for N=8 (Fig.

2.b), while for 2 =0.00666666667[1/t.u.], and same

value of λ (Fig. 2.d) it occurs for N=6.

Apparently, introduction of NBL caches results in
improved overall performance.

4. Concluding Remarks

Based on the work conservation law we conclude that the
priority service discipline produces smaller performance
than the FCFS. At the early stage of the design this model
can be used as a worst-case approximation for the systems
performance. Solving these equations requires
insignificant computational effort because their number is
2N+1 [5].

References

1. A. Ametistova, and I. Mitrani, Modeling and Evaluation of
Cache Coherence Protocols in Multiprocessor Systems, In 9th
UK Performance Engineering Workshop for Computer and
Telecommunication Systems: Computer and Telecommunication
Systems Performance Engineering, Loughborough University,
UK, Jul 1993

2. L. Kleinrock, Queueing Systems, Volume 1, Theory, Wiley-
Interscience, 1st Edition, 1975

3. R. E. Matick, Comparison of analytic performance models
using closed mean-value analysis versus open-queuing theory for
estimating cycles per instruction of memory hierarchies, IBM
Journal of Research and Development, Jul 2003

4. A. V. Nikolov; Analytical Model for a Multiprocessor with
Private Caches and Shared Memory, Int. Journal of Computers,
Communications & Control, Vol. III (2008), No. 2, pp. 172-
182

5. A. V. Nikolov, Model of a Shared-Memory Multiprocessor,
International Journal of Computer Science and Network
Security, vol. 9, No.5, May 2009, pp. 64-70

6. J. Sustersic, A. Hurson, Coherence protocol for bus-based
and scalable multiprocessors, Internet and wireless distributed
computing environments: a survey, Advances in Computers,
vol.59, 2003, pp. 211-278

7. S.Srbljic, Z.G. Vranesic, M. Stumm, L. Budin, Models for
performance Prediction of Cache Coherence Protocols, Technical
Report CSRI-332, Jul , 1995, Computer Science Research
Institute, University of Toronto

8. S.Srbljic, Z.G. Vranesic, M. Stumm, L. Budin, Analytical
prediction of Performance for Cache Coherence protocols, IEEE

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 2, No 5, March 2010
www.IJCSI.org

6

Transactions on Computers, Vol.46, Issue 11 (Nov 1997), pp.
1155-1173

Angel Vassilev Nikolov received the BEng degree in Electronic
and Computer Engineering from the Technical University of
Budapest, Hungary in 1974 and the PhD degree in Computer
Science from the Bulgarian Academy of Sciences in 1982 where
he worked as a Research Associate. In 1989 he was promoted to
Associate Research Professor in Bulgaria. Dr Nikolov also served
as a Lecturer of Computer Science at the National University of
Science and Technology, Bulawayo, Zimbabwe and at the Grande
Prairie Regional College, Alberta, Canada and as an Associate
Professor at Sharjah College, United Arab Emirates. Currently he
works for the National University of Lesotho, Roma, Lesotho. His
research interests include computer architecture, performance
evaluation of multiprocessors, and reliability modeling.

Lerato Lerato obtained a BSc. degree in Electrical Engineering in
2001 and MSc. Eng (Electrical) in 2004 at the University of Cape
Town in South Africa. In 2004 he was employed as a Speech
Scientist at Intelleca Voice & Mobile (Pty) Ltd. in Johannesburg.
He is currently teaching in the Department of Mathematics and
Computer Science at the National University of Lesotho. His
current research fields largely include speech technology and IVR
platforms and computer architecture.

