
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 35
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

Energy Efficient Real-Time Scheduling in Distributed
Systems

Santhi Baskaran1 and P. Thambidurai2

 1 Department of information Technology, Pondicherry Engineering College

Puducherry – 605 008, India

2 Department of Computer Science and Engineering, Pondicherry Engineering College
Puducherry – 605 008, India

Abstract

Battery powered real-time systems have been widely used in
many applications. As the quantity and the functional complexity
of battery powered devices continue to increase, energy efficient
design of such devices has become important. Also these real-
time systems have to concurrently perform a multitude of
complex tasks with strict time constraints. Thus, minimizing
power consumption and extending battery life while guaranteeing
the timing constraints has become a critical aspect in designing
such systems. Moreover, energy consumption is also a critical
issue in parallel and distributed systems. We present novel
algorithms for energy efficient scheduling of Directed Acyclic
Graph (DAG) based applications on Dynamic Voltage Scaling
(DVS) enabled systems. Experimental results show that our
proposed algorithms give better results than the existing
algorithms.
Keywords: Real-time, slack, energy reduction, scheduling

1. Introduction

Energy consumption reduction is becoming nowadays an
issue reflected in most aspects of our lives. The obvious
driving force behind addressing energy consumption in
digital systems is the development of portable
communication and computation. The consumers demand
better performance and more functionality from the hand-
held devices, but this also means higher power and energy
consumption. Hence energy efficiency is an important
optimization goal in digital system design, and most of
these are in fact time critical systems.

Timeliness and energy efficiency are often seen as
conflicting goals. When designing a real-time system, the
first concern is usually time. Yet, with the right methods
energy efficiency can also be achieved. Energy-efficient
architectures may be selected, while still meeting the
timing constraints.

The ready availability of inexpensive processors with large
memory capacities and communication networks with
large bandwidth are making it more attractive to use
distributed (computer) systems for many of the real-time
applications. Distributed real-time systems have emerged
as a popular platform for applications such as multimedia,
mobile computing and information appliances. For hard
real-time systems, application deadlines must be met at all
time. However, early completion (before the dead- line) of
the applications may not bring the systems extra benefits.
In this case, we can trade this extra performance for other
valuable system resources, for example,
energy consumption. Dynamic voltage scaling (DVS),
which varies the processor speed and supply voltage
according to the workloads at run-time, can achieve the
highest possible energy efficiency for time-varying
computational loads while meeting the deadline
constraints [1]. DVS takes advantage of the quadratic
relationship between supply voltage and energy
consumption [2], which can result in significant energy
savings. There are many commercially available voltage-
scalable processors, including Intel’s Xscale [3],
Transmeta’s Crusoe [4], and AMD’s mobile processors
with AMD PowerNow! technology support [5].

An important problem that arises from using distributed
systems is how to assign tasks and resources to the
processors so as to fully utilize the processors, while
ensuring that the timing constraints of the tasks are met
along with energy efficiency. Hence in this paper we
address energy efficiency in the context of distributed real-
time systems, targeting variable speed processor
architectures.

In energy efficient scheduling, the set of tasks will have
certain deadline before which they should finish their

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 36
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

execution and hence there is always a time gap between
the actual execution time and the deadline. This time gap
is called slack. In this paper, we have proposed algorithms
to allocate this slack in an efficient way therefore resulting
in more energy savings.

Following this introduction, Section 2 gives a brief
overview of basics and related work. Details of system
model are presented in Section 3. In Section 4, we present
an overview of the existing algorithms. In Section 5, we
describe our energy-efficient algorithm in detail.
Experimental results are presented in Section 6. Finally,
we conclude in Section 7.

2. Basics and related work

Operating system is responsible for functioning of the
entire system, including task constraints and status,
resource usage, etc. Therefore, it is one of the most
effective and efficient approaches to reduce energy
consumption with proper task scheduling algorithms.

Voltage scaling has been widely acknowledged as a
powerful and feasible technique for trading off energy
consumption for execution time. There is a rich literature
addressing variable-voltage scheduling for a set of
independent tasks with hard deadlines on a
single processor [6]. Hardware–software co-synthesis with
variable-voltage scaling for single-processor core-
based systems is considered for independent tasks [7]. An
offline algorithm, which generates a minimum-energy
preemptive schedule [8] is also proposed for a set of
independent tasks. This schedule, is based on an earliest
deadline first (EDF) scheme, and tries to achieve a
uniform scaling of voltage levels of different tasks.
Heuristic is provided for a similar problem as in [8] for
fixed-priority static scheduling [9]. An energy-priority
heuristic is provided for non preemptive scheduling of
independent real-time tasks [10]. An iterative slack-
allocation algorithm [11] proposed based on the Lagrange
Multiplier method, points out that variations in power
consumption among tasks invalidate the conclusion in [8]
that a uniform scaling is optimal. Though most of the
works on energy efficient real-time scheduling concentrate
on independent tasks over uniprocessor, research is also
now being focused on dependent tasks over distributed
systems.

Real-time scheduling for tasks with precedence
relationships on distributed systems has been addressed in
[12]–[15]. There is also work addressing variable-voltage
scaling for such systems [16]–[19], [20]. Hybrid
search strategies are used for dynamic voltage scaling
[16]. It uses a genetic algorithm with simulated healing for

global search and hill climbing and Monte Carlo
techniques for local search. The energy efficient real-time
scheduling problem is formulated as a linear
programming (LP) problem [17] for continuous voltage
levels, which can be solved in polynomial time. Algorithm
based on a list-scheduling heuristic with a special priority
function to tradeoff energy reduction for delay is also
proposed for distributed systems [18]. The work proposed
in [19] uses a genetic algorithm to optimize task
assignment, a genetic-list scheduling algorithm to optimize
the task execution order, and an iterative slack
allocation scheme, which allocates a small time unit to the
task that, leads to the most energy reduction in each step.
The performance and complexity of this approach are
dependent on the size of the time unit, which however,
cannot be determined systematically. The usage of a small
time unit for task extension can lead to large
computational complexity.

For distributed systems, allocation/assignment and
scheduling have each been proven to be NP-complete. For
variable-voltage scheduling, the problem is more
challenging since the supply voltages for executing tasks
have to be optimized to maximize power savings.
This requires intelligent slack allocation among tasks. The
previous work using global/search strategy [16] and
integer linear programming (ILP) [17] can lead to large
computational complexity. The problem is further
complicated when slack allocation has to consider
variations in power consumption among different tasks.
Among previous works, those in [11], [17], and [19]
consider variations in power consumption among different
tasks

The Linear Programming (LP) based algorithms proposed
in the literature for battery-powered multiprocessor or
distributed DVS systems allocate slack greedily to tasks
based on decreasing or increasing order of their finish time
[20], or allocates evenly to all tasks [21]. These algorithms
use integer linear programming based formulations that
can minimize the energy [17].

The slack allocation algorithms assume that an assignment
of tasks to processors has already been made. Variable
amount of slack is allocated to each task so that the total
energy is minimized while the deadlines can still be met.
The continuous voltage case is formulated as Linear
Programming [17] problem where the objective is,
minimization of total energy consumption. The constraints
include deadline constraints, precedence constraints in
original DAG and precedence constraints among tasks on
the same processor after assignment.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 37
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

Since the scheduling algorithm in [17] does not consider
the communication time among tasks, it is extended by
considering the communication time when representing
precedence relationships among tasks in the path based
algorithm proposed in [22]. This approach for energy
minimization is an iterative approach that allocates a small
amount of slack (called unit slack) to a subset of tasks. The
selection of tasks for this unit slack allocation is such that
the total energy consumption is minimized while the
deadline constraint is also met.

The above process is iteratively applied till all the slack is
used. These algorithms do not utilize the slack generated
dynamically due to the difference in worst case execution
time and actual execution time of real-time tasks. So the
existing algorithms have been modified in an efficient
way, to schedule the dynamic slack that is present between
the total execution time and deadline. New modified LP
and modified path-based algorithms are proposed, to
effectively use the slack so that energy efficiency of the
processor increases.

3. System Model

The Directed Acyclic Graph (DAG) represents the flow
among dependant tasks in a real-time application. In a
DAG a node represents a task and a directed edge between
nodes represents the precedence relationship among tasks.
The assignment of tasks in a DAG to the available
processors is done through scheduling algorithms, so that
the finish time of DAG is less than or equal to the
application deadline. Here we use the task’s execution
time at the maximum supply voltage during assignment to
guarantee deadline constraints. An assignment DAG
represents the direct workflow among tasks after processor
assignment. The direct precedence relationships of tasks in
an assignment DAG may change from its original DAG.

Figure 1 a) DAG b) Assignment on two processor c) Assignment
DAG

Figure 1(b) depicts the assignment of tasks for the DAG of
Figure 1(a). Figure 1(c) represents the assignment DAG,

which is the direct flow among tasks generated after
assignment.

The Number of cycles, Nτ, that a task τ needs to finish
remains a constant during voltage selection (VS), while
processor’s cycle time (CT) changes with the supply
voltage. For example if processors can operate on a
maximum voltage Vh and minimum voltage Vl , we
assume CT at Vh is 1 time unit and CT at Vl is 2 time unit.
This means slowing down the system increases execution
time of tasks with reduced energy.

4. Existing slack allocation algorithms

All slack allocation algorithms allocate variable amount of
slack to each task so that the total energy is minimized
while the deadlines can still be met. Several slack
allocation algorithms are discussed in the literature.
Among these, the following algorithms provide close to
optimal solutions. Hence, these two algorithms are
considered for improvement in this paper.

4.1 LP algorithm

The continuous voltage case is formulated as Linear
Programming (LP) [17] problem where the objective is
minimization of total energy consumption. The constraints
include deadline constraints and precedence constraints in
original DAG and assignment DAG.

This is presented as a two-phase framework that
integrates task scheduling and voltage selection together
to achieve the maximum energy saving of executing
dependent tasks on one or multiple variable voltage
processors. In the first phase, the EDF scheduling is used
for a single processor which is optimal in providing
slowdown opportunities and the priority based scheduling
is used for multiple processors that provide more slowing
down opportunities than a baseline scheduling. The
LP formulation in the second phase is the first exact
algorithm for the voltage selection (VS) problem. The LP
can be solved optimally in polynomial-time for the
continuous voltage or solved efficiently for general
discrete voltages. This algorithm compared to the baseline
scheduling along with scaling VS technique provides 14%
more slowing down opportunities. But it does not consider
the communication time among tasks, and hence extended
as modified LP algorithm for discrete voltage case with
resource reclaiming by considering the communication
time in assignment DAG.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 38
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

4.2 Path based algorithm

The path based algorithm [22] presented for continuous
voltage parallel and distributed system, is not only
considerably better than simplistic schemes but also
comparable to LP based algorithm, which provides near
optimal solutions.

The LP algorithm ignores the variable energy profiles of
tasks on different processors during slack allocation and
lead to poor energy reduction. Usage of this variable
energy profile can lead to more reduction in energy
requirements [19], [21]. However, because of the
dependency relationships among tasks in an assignment,
the sum of energy reduction of several tasks executed in
parallel may be higher than the highest energy reduction of
a single task. The path based algorithm effectively
addresses this issue and determines a set of multiple
independent tasks that together have the maximum energy
reduction. In Figure 1, the slack of time 5 to 6 is
considered for the slack allocation from start time to total
finish time. The slack can be allocated only to task τ2.
However, the slack of time 8 to 9 at Phase 2 can be
allocated to a subset of tasks (e.g., τ1, τ2 & τ3, or τ4). The
execution of Phase1 precedes the execution of Phase2 to
expect more energy saving by reducing the possibility of
redundant slack allocation to the same tasks.

This algorithm compared to LP based algorithm, provides
near optimal solutions and also improves energy reduction
by 9-29 %.

5. Proposed Algorithms

Both the proposed algorithms integrate task scheduling
and voltage selection together and achieve maximum
energy saving on distributed system comprised of variable
voltage processors, with discrete voltage case. The
proposed algorithms are improved over the existing ones
by considering new slacks generated due to AET of tasks
at runtime. This is achieved through resource reclaiming
procedure added to the existing algorithms.

5.1. Modified LP Algorithm

This algorithm integrates task scheduling and voltage
selection together to minimize energy consumption of
dependent tasks on systems with a given number of
variable voltage processors. The algorithm should also
guarantee that after the VS technique is applied, tasks with
deadlines still finish before their deadlines.

If dτ is the task’s delay , Tτ execution time of task τ at
highest voltage Vh and Sτ is the tasks start time, then the
timing constraints for multiprocessors can be modeled as

Sτ + dτ dlτ ith deadline
dτ Tτ, Sτ , int,

For a feasible scheduling, the above constraints guarantee
that tasks with deadlines will finish before their deadlines.

The objective of VS is to minimize the sum of each task
τ’s energy consumption by slowing down each task τ
without violating timing constraints. To trade the increase
of delay for energy saving, a relationship should be
established between dτ and Eτ. In the continuous voltage
case, Eτ is a convex function of dτ [17].

In the discrete voltage case, only a certain number of
voltages are available. This implies that a task’s delay can
only take discrete values. In this case the dτ and Eτ are
computed as linear function of Nτ,i, where Nτ,i is the
number of cycles that task τ is executed at a discrete
voltage Vi < Vh.

The task scheduling policy used in this algorithm provides
the maximum slowing down potentials for voltage
selection to utilize energy saving. To provide more energy
saving opportunities in the scheduling for VS to utilize, we
use a priority based on task’s deadline, dependencies and
the usage of processors in the system. The latest finish
time (LFT) for a task is assigned based on their deadline or
task’s successors to meet their deadline. Leaf task’s LFT is
its deadline or overall DAG’s deadline. Starting from leaf
tasks and traversing the DAG backward, we can assign
each task a latest finish time. Task τ latest finish time LFTτ
is defined as

LFTτ = min (dlτ, min (LFTsτ - Tsτ)),
where LFTsτ and Tsτ are the latest finish time and execution
time of direct successor tasks of task τ in the DAG
respectively. Let us denote task τ’s ready time when all its
predecessors finish as Rτ, its earliest start time when it is
ready and there is a processor available as ESTτ, and ith
processor’s available time as PATi. These values are
updated during the scheduling as we build the scheduling
step by step. At each step, task τ’s priority PRτ, is
evaluated as
 PRτ = LFTτ +ESTτ
 ESTτ = max (Rτ, min (PATi)), and i= 1 to N (N is
Number of processors in the system).

A task with smallest priority value is assigned to a
processor Pi, if Pi is available at the same time when task
is ready. If more than one processor is readily available
before the task is ready then select the latest among all
processors available when the task becomes ready. If no
processor is available, when task is ready select the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 39
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

processor that is available the earliest. This selection and
assignment of tasks repeat until all tasks are scheduled.

The static initial scheduling of tasks is based on the worst
case execution time of the tasks. But, it is possible that a
task executes less than its worst case computation time,
because of data-dependent loops and conditional
statements in the task code or architectural features of the
system, such as cache hits and branch predictions or both.
Hence the modified LP algorithm is improved over the
basic LP algorithm to provide resource reclaiming at
program runtime for scheduler to adjust the schedule
online according to the actual execution time (AET). This
newly generated slack time thus can be better utilized for
more energy savings. The algorithm is given below.

Modified LP Algorithm()
begin

Order the tasks in non decreasing order of priority in the
task queue.
For processors P=1 to N do

 {N is the total number of processors}
 begin

Get the first task τf from task queue.
If τf can be executed then
 start execution.

While task queue is not empty do
begin

 If a task is under execution on P then
 begin
 Wait for its completion
 Invoke resource reclaiming
 Get next task from queue

Apply VS for energy saving
 end
 end
 end
 end

5.2. Modified path based algorithm

This algorithm is developed for discrete voltage based
slack allocation for DAG’s on distributed system. First
tasks are assigned to processors based on priority
scheduling discussed in modified LP algorithm, resulting
in an assignment DAG. Modified path based slack
allocation algorithm applied to it for energy minimization.
This is an iterative approach that allocates a small amount
of slack (called unit slack) in each iteration to a subset of
suitable tasks so that the total energy consumption is
minimized while the deadline constraint is also met.

The above process is iteratively applied till all the slacks
are used. The purpose of each iteration to find a weighted
maximal independent set of tasks, where the weight is

given by the amount of energy reduction by allocating unit
slack. The dependency relationships in an assignment
DAG [23] contains total slack which can be allocated to
the different tasks. For instance, in Figure 1, consider an
example in which one unit of slack can be allocated. The
total tasks that can be allocated for one unit of slack is one
or two:

If task τ7 (or τ1) is allocated the slack; no other task can
use this slack to meet the deadline. Tasks τ2 and τ3 (or τ2 &
τ4, τ2& τ6, τ4 & τ5, τ5 & τ6) can use this slack concurrently
as they are not dependent on each other and both can be
slowed down. The appropriate option to choose between
the two choices depends on the energy reduction in task τ7
versus the sum of energy reduction for tasks τ2 and τ3. This
slack allocation algorithm considers the overall
assignment-based task dependency relationship [23], while
the most other algorithms ignore them. This algorithm has
two phases.

In phase1 slack available from start time to total finish
time based on a given assignment is considered for
maximum energy reduction by delaying appropriate tasks.
In this case the slack can be allocated to only a subset of
tasks that are not on the critical path. In phase2 slack
available from total finish time to deadline is considered
for further energy reduction. In this case the slack can
potentially be allocated to all the tasks.

For each of the two phases, this algorithm iteratively
allocates one unit of slack, called unitSlack. The size of the
unitSlack can be reduced to a level where further reducing
it does not significantly improve the energy requirements.
For Phase1, at each iteration only tasks with the maximum
available slack are considered since the number of slack
allocable tasks is limited and the amount of available slack
for each task is different. The maximum available slack of
task τ is slackτ, and is defined as

slackτ = LSTτ - ESTτ and
LSTτ = LFT τ - Tτ, where LST τ is the latest start

time of task τ.
The set of tasks which can share unitslack simultaneously
is found using compatible task matrix. If task τi and task τj
are in the same assignment-based path, elements mij and
mji in compatible matrix M are set to zero. Otherwise the
elements are set to one. This matrix can be easily
generated by performing a transitive closure on the
assignment DAG and then taking compliment of that
matrix. Here set of tasks considered at each iteration may
be changed. This process is iteratively executed till there is
no task which can use slack until total finish time.

Meanwhile, at Phase2, all tasks are considered for slack
allocation at each iteration. The number of iterations at
Phase2 is equal to totalSlack divided by unitSlack, where

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 40
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

totalSlack is the slack available between actual deadline
and total finish time. At each iteration, one unitSlack is
allocated to one or more tasks that lead to maximum
energy reduction.
The energy reduction of a task is defined by the difference
between its original energy and its energy expected after
allocating a unitslack to the task. A branch and bound
algorithm is used to search all the compatible solutions to
determine the one that has maximum energy reduction.
The complete modified path based algorithm is stated
informally as below.

Modified Path based Algorithm()
begin

Assign tasks to N processors using Priority based
scheduling and obtain assignment DAG.
While unitslack exists in phase1 do
begin

 Find tasks with maximum available slack
 Generate compatible matrix to find slack

sharable tasks
 Find task set with maximum energy reduction

using branch and bound search
 Invoke resource reclaiming
 end

While unitslack exists in phase2 do
begin

 Delay all last tasks on processors to extend up to
deadline

 Invoke resource reclaiming
 end
end

6. Results and Discussions

To evaluate the efficiency of our algorithms in energy
saving, we conducted experiments through simulation on
various task graphs consisting of 2 to 20 tasks, generated
randomly. The comparison of energy consumption for the
above task graphs between the existing LP and modified
LP algorithms, as well as existing path based and modified
path based algorithms are analyzed. For each set of tasks
the number of processors is kept constant and the energy
consumption for a minimum of ten DAGs are noted. The
average values of all those DAGs were calculated. Each
point in the above graphs is the average value of such
DAGs. This method was repeated by changing the number
of processors (varied between 2 to 10) and comparisons
were made between the existing and proposed algorithms.
A few sample results of those comparisons are shown in
the graphs below.

From the graphs it is inferred that path based algorithms
provide more energy savings than LP based algorithms.
The modified algorithms outperform existing ones by
reducing on an average 5% more energy. This is due to the
addition of resource reclaiming technique in the proposed
algorithms.

a) Number of Processors = 3

b) Number of Processors = 10

Figure 2. Comparison of energy consumption(in %) between LP and

modified LP algorithms

a) Number of Processors = 5

Energy consumption, p=10

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19
No of tasks

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

LP algorithm

Modified LP algorithm

Energy consumption, p=3

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19
No of tasks

E
n

er
g

y
 c

o
n

su
m

p
ti

o
n

LP algorithm

Modified LP algorithm

Energy consumption, p=5

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19
No of tasks

E
n

er
g

y
co

n
su

m
p

ti
o

n

Path based algorithm

Modified path based

algorithm

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 41
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

b) Number of Processors = 10

Figure 3. Comparison of energy consumption (in %) between path

based and modified path based algorithms

Table 1: Comparisons of overall energy consumption for all four

algorithms

Algorithm Average Energy
Consumption (%)

LP 85

Modified LP 79

Path based 82

Modified Path based 77

From Table 1, it is noted that in existing algorithms, Path
based algorithm consumes less energy than LP algorithm.
This is due to the concept of unit slack introduced. It can
also be observed from the results that our proposed
algorithms have less energy consumption than the existing
ones by 5%, thus leading to more energy efficiency.

7. Conclusions

In this paper, two modified DVS algorithms for discrete
voltage case and distributed systems are presented. These
algorithms handle task graphs with precedence and timing
constraints along with communication time. The resource
reclaiming component is used to improve energy reduction
over the existing LP and path based optimal slack
allocation algorithms. Experimental results show that the
proposed algorithms are comparable to exiting algorithms
in providing optimal solutions as well as consume energy
5% less than the than the existing ones. The task graphs
considered in this paper are assumed to be free of resource
constraints which arise due to the use of non-sharable
resources by the tasks. So this algorithm can be extended
by considering resource constraints in addition to the
precedence and timing constraints for dependant tasks.

References

[1] T. D. Burd, T. Pering, A. Stratakos, and R. Brodersen, A
dynamic voltage scaled microprocessor system", IEEE J.
Solid-State Circuits, Vol. 35, pp. 1571{1580, 2000.

[2] T. Burd and R. Brodersen. Energy Efficient CMOS
Microprocessor Design. In Proceedings of 28th Annual
Hawaii International Conference on System Sciences.,
pages 288–297, January 1995.

[3] Intel Xscale. [Online]. Available:
http://www.intel.com/design/intelxscale/

[4] Transmeta Crusoe. [Online]. Available:
http://www.transmeta.com

[5] AMD PowerNow! [Online]. Available: http://www.amd.com
[6] N. K. Jha, “Low power system scheduling and synthesis,” in

Proc. Int. Conf. Comput.-Aided Des., Nov. 2001, pp. 259–
263.

[7] I. Hong, D. Kirovski, G. Qu, M. Potkonjak, and M. B.
Srivastava, “Power optimization of variable-voltage core-
based systems,” IEEE Trans. Comput.-Aided Design Integer
Circuits Syst., vol. 18, no. 12, pp. 1702–1714, Dec. 1999.

[8] F. Yao, A. Demers, and S. Shenker, “A scheduling model
for reduced CPU energy,” in Proc. Symp. Foundations
Comput. Sci., Oct. 1995, pp. 374–382.

[9] P. B. Jorgensen and J. Madsen, “Critical path driven co
synthesis for heterogeneous target architectures,” in Proc.
Int. Workshop Hardware/ Software Code., Mar. 1997, pp.
15–19.

[10] J. Pouwelse, K. Langendoen, and H. Sips, “Energy priority
scheduling for variable voltage processors,” in Proc. Int.
Symp. Low-Power Electron. and Des., Aug. 2001, pp. 26–
31.

[11] A. Manzak and C. Chakrabarti, “Variable voltage task
scheduling algorithms for minimizing energy,” in Proc. Int.
Symp. Low Power Electron. and Des., Aug. 2001, pp. 279–
282.

[12] Y. Kwok and I. Ahmad, “Dynamic critical-path scheduling:
An effective technique for allocating task graphs to
multiprocessors,” IEEE Trans. Parallel Distrib. Syst., vol. 7,
no. 5, pp. 506–521, May 1996.

 [13] P. Eles, A. Doboli, P. Pop, and Z. Peng, “Scheduling with
bus access optimization for distributed embedded systems,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 8,
no. 5, pp. 472–491, Oct. 2000.

 [14] G. Sih and E. A. Lee, “A compile-time scheduling heuristic
for interconnection constrained heterogeneous processor
architectures,” IEEE Trans. Parallel Distrib. Syst., vol. 4,
no. 2, pp. 175–187, Feb. 1993.

 [15] J. Liu, P. H. Chou, and N. Bagherzadeh, “Communication
speed selection for embedded systems with networked
voltage-scalable processors,” in Proc. Int. Workshop
Hardware/Software Code., May 2002, pp. 169–174.

[16] N. Bambha, S. S. Bhattacharyya, J. Teich, and E. Zitzler,
“Hybrid search strategies for dynamic voltage scaling in
embedded multiprocessors,” in Proc. Int. Workshop
Hardware/Software Co-Design, Apr. 2001, pp. 243–248.

 [17] Y. Zhang, X. Hu, and D. Chen, “Task scheduling and
voltage selection for energy minimization,” in Proc. Des.
Autom. Conf., Jun. 2002, pp. 183–188.

 [18] F. Gruian and K. Kuchcinski, “LEneS: Task-scheduling for
low-energy systems using variable voltage processors,” in

Energy consumption, p=10

55

60

65

70

75

80

85

90

95

100

1 3 5 7 9 11 13 15 17 19
No of tasks

E
n

er
g

y
co

n
su

m
p

ti
o

n

Path based algorithm

Modified path based
algorithm

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 4, May 2010 42
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

Proc. Asian South Pacific Des. Autom. Conf., Jan. 2001, pp.
449–455.

 [19] M. T. Schmitz and B. M. Al-Hashimi, “Considering power
variations of DVS processing elements for energy
minimization in distributed systems,” in Proc. Int. Symp.
Syst. Synthesis, Oct. 2001, pp. 250–255.

 [20] P. Chowdhury and C. Chakrabarti, “Static task scheduling
algorithms for battery-powered DVS systems”, IEEE Trans.
On Very large Scale Integration Systems, 13(2), pp. 226-
237, Feb. 2005.

[21] J. Luo and N. K. Jha, “Power-conscious joint scheduling of
Periodic task graphs and aperiodic tasks in distributed real-
time embedded systems”, Int. Conf. on Computer-Aided
Design, pp. 357-364, Nov. 2000.

[22] Jaeyeon Kang and Sanjay Ranka , "Dynamic Algorithms
for Energy Minimization on Parallel Machines”, 16th
Euromicro Conference on Parallel, Distributed and
Network-Based Processing , pp. 399-406, 2008.

[23] Youlin Ruan, Gan Liu, Qinghua Li and Tingyao Jiang, “ An
Efficient Scheduling Algorithm for Dependent Tasks”, Int.
Conference on Computer and Information Technology,
pp.456-459, May. 2004.

Mrs. Santhi Baskaran received her B.E.
degree in Computer Science and
Engineering from University of Madras,
Chennai, India in 1989 and M.Tech.
degree in Computer Science and
Engineering from Pondicherry University,
Puducherry, India in 1998. She served as
Senior Lecturer and Head of the Computer
Technology Department, in the
Polytechnic Colleges, Puducherry. India,

for eleven years, since 1989. She joined Pondicherry Engineering
College, Puducherry, India in 2000 and currently working as Associate
Professor in the Department of information Technology. Now she is
pursuing her PhD degree in Computer Science and Engineering. Her
areas of interest include Real-time systems, embedded systems and
operating systems. She has published research papers in International and
National Conferences. She is a Life member of Indian Society for
Technical Education and Computer Society of India.

Prof. Dr. P. Thambidurai is a Member of
IEEE Computer Society. He received his
PhD degree in Computer science from the
Alagappa University, Karaikudi, India in
1995. From 1999, he served as Professor
and Head of the Department of Computer
Science & Engineering and Information
Technology, Pondicherry Engineering
College, Puducherry, India, till August
2006. Now he is the Principal for

Perunthalaivar Kamarajar Institute of Engineering and Technology
(PKIET) an Government institute at Karaikal, India. His areas of interest
include Natural Language Processing, Data Compression and Real-time
systems. He has published over 50 research papers in International
Journals and Conferences. He is a Fellow of Institution of Engineers
(India). He is a Life member of Indian Society for Technical Education
and Computer Society of India. He served as Chairman of Computer
Society of India, Pondicherry Chapter for two years. Prof. P.Thambidurai
is serving as an Expert member to All India Council for Technical
Education (AICTE) and an Adviser to Union Public Service Commission
(UPSC), Govt. of India. He is also an Expert Member of IT Task Force
and Implementation of e-Governance in the UT of Puducherry.

