
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

Agent-Based µ-Tools Integrated into a Co-Design Platform

Alain-Jérôme Fougères1

1 University of Technology of Belfort-Montbéliard
90010 Belfort, France

Abstract
In this paper we present successively the proposition and the
design of: 1) µ-tools adapted to collaborative activity of design,
and 2) a multi-agent platform adapted to innovative and
distributed design of products or services. This platform called
PLACID (innovating and distributed design platform) must
support applications of assistance to actors implies in a design
process that we have called µ-tools. µ-tools are developed with
an aim of bringing assistance to Co-design. The use of the
paradigm agent as well relates to the modeling and the
development of various layers of the platform, that those of the
human-computer interfaces. With these objectives, constraints
are added to facilitate the integration of new co-operative tools.
Keywords: multi-agent system, co-operative agents, co-design,
distributed design, micro-tools, development process.

1. Introduction

The objectives of this paper are to present: first, the design
of a platform adapted to the innovative and distributed
design, and secondly, assistance applications to actors of
design process that the platform supports. These
applications are called micro-tools (µ-tools) [23, 15]. The
concept of µ-tools consists of software applications which
are light, easy to use, integrated in a shared environment,
and connected between them using a database. This
Platform (PLACID: platform for innovating and
distributed design, Plate-forme Logiciel d'Aide à la
Conception Innovante et Distribuée in French) is
developed with an aim of bringing an assistance to the
work of co-design, guided or not by complex processes
(like workflow) for their capacity to manage flows of co-
operative work (control and execution of co-operative
processes). In addition to these objectives, strong
constraints of flexibility and adaptability are added, to
facilitate the integration of new co-operative tools.

We remember that, in a general way, co-operative
activities integrated in virtual spaces of design require
tools for:
- Interpersonal or group communication (synchronous

and/or asynchronous communication tools).

- Organization and cohesion of the groups and the
activities (coordination tools).

- Distribution and division of information, applications
and resources (distribution and sharing tools).

- Space-time definition of co-operation: space distance
between the members of a team (in a real or virtual
room), and temporal distance in the interaction
(sequentially or parallelism of tasks).

The co-operative design platform that we present in this
paper is based on a software agent approach – approach
well adapted for distribution of components. The principal
characteristics of agents (autonomy, adaptability, co-
operation and communication) make it possible, first, to
effectively manage distributed, heterogeneous and
autonomous components, and secondly, to facilitate
exchanges of information and resource sharing between
the components (interaction, communication and co-
operation). These agents are of type: application (µ-tools
or other tools of assistance to Co-design),
coordinator/mediator, system and interface. Agents based
system must manage organization and control of the
community of agents. The effective use of the co-
operative design platform (via an interface itself agent-
based) is done in a context of strong and multiple
interactions, multi-users and multi-modalities.

The µ-tools supported by this platform will not be
necessarily integrated in a preset process of design. Their
use can be specific, bringing a quite precise service in a
phase of design. In all cases, each µ-tool will be connected
to the multi-agent system (MAS) by the intermediary of a
host agent. This one will be used as interface of
communication (inputs/outputs) between µ-tools and co-
operative information system.

This article is structured as follows: in section 2 we
present the concepts implied in Co-design activities. The
following section describes capabilities of agent to
communicate and interact. Sections 4 and 5 successively
present objectives of PLACID platform and design of the
first set of µ-tools intended to validate this platform.
Finally, in section 6, we discuss the prospects of our work.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

2

2. µ-tools for Collaborative Work

2.1 Context of Co-design

The development of data-processing technologies, the
democratization of the Internet, the use of the new
resources on Internet gave rise to new working methods.
We speak of course, of the Computer Supported
Cooperative Work (CSCW) [5, 11, 21]. One of the major
topics in the field of the CSCW is the development of
groupwares. By definition a groupware is software which
assists a user group for realization of a joint project. Group
members collaborate remotely, either at the same moment
(synchronous activity), or at different times (asynchronous
activity). The fields of application are very numerous:
products design, teaching, trade or games. Groupwares
must make it possible to several users to collaborate in
explicit shared spaces. The concepts to be considered are
as follows [5, 6]:
- Time and space: to bring together several distant

people geographically (office in proximity or distant)
and/or not working at the same time (different
rhythms, incompatibility of the timetables...).

- Modes of co-operation: asynchronous co-operation
(autonomous working method), co-operation in
session (the objective being to decrease the times of
interaction between the various actors of a project),
co-operation in meeting (the roles of actors are
defined and each one takes part in its turn), close co-
operation (increase in co-production).

- Flexibility in heterogeneous fields: interactions,
distribution of data, resource sharing, access control,
representation of information, planning for tasks
execution.

Activities of co-operative and distributed design are
exchanges, division and co-operation between participants.
It is usual to present co-operative information systems like
being able to answer to the different needs of co-operation:
- Facilitating the resource sharing.

- Assisting the coordination.

- Improving the communication of group.

- Supporting the individual motivation.

- Supporting the development of organization.

Activities related to collaborative work are mostly
exchanges (language acts, transactions…), sharing and
cooperation among participants. Then, to memorize easily
the functions of groupware applications, it is convenient to
take into account five main functions, namely: 1)
Communication between participants of the community; 2)

Coordination between them – this function can be insured
by a centralized way or not; 3) Co-memorization, which
means community’s memory construction – it may be a
project traceability support, like the set of sheets of paper
produced during the course of action; 4) Co-production of
shared resources, like proxemic space of cooperation,
shared objects; and 5) Control of processes, control data or
files circulation – it may be workflow, which is a
convenient software application if photographed
evaluators The following figure (see Figure 1) schematizes
relations between these basic functionalities of groupware.
We have called this functional model: 5Co [15]. This
model supplements the model 3C (communication, co-
operation, coordination) [6], defining spaces necessary to
the artifacts of collaboration.

Communication

Co-production

Coordination Control of
process

Co-memorizing

Fig. 1 Basic functions for Co-design – The 5Co

How to design software applications that should achieved
the 5-Co model, and that both in a technocentric and in an
anthropocentric point of view? CSCW approach can be
complemented by a more “microscopic” one, focused on
course of action, within many different operations are
realized, at a very short term, and by cyclical and
opportunistic way. To aid these tasks, a new software
concept can be defined. It is called “micro-tool” (µ-tool).

2.2 Concept of µ-Tool

The concept of µ-tool [23, 15] is opposed to the current
tendency tools of design, which are often heavy,
prescriptive, and not used. Ideally, these tools must be (see
Figure 2):
- Easy to learn (a few minutes) and easy to use.

- Simple (even if they are developed on the basis of an
elaborate theory).

- Easily programmable, easily modifiable by designers
or by users themselves, usable in an opportunist way.

- Autonomous, but also reactive when they are defined
for co-operative processes (CMT: Co-operative
Micro-Tools). Those are distributed between actors
who act according to their skills – this corresponds to
the needs for concurrent engineering.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

3

DB
Collaborative platform (PLACID)

Fig. 2 Concept of µ-tools.

We have just defined the concept of µ-tool like which can
bring a support to realization of an elementary and specific
task entering in a well defined activity (table 1).

Table 1: Adapted levels of co-operative information systems according
to the Activity Theory [24, 13, 15].

Level Activity
Theory

Human
centered

System centered

Macro Activity Motivation Co-operative
system

Micro Action/Task Goal Micro-tool

Nano Operation Conditions Functionality

The product of a task can be an intermediate object of
design. Development of µ-tools corresponds to an oriented
step activity. We present below the various principles
which lead to their data-processing structuring:
- Use of µ-tool is individual or collective; tasks can be

structured in action plan. Then, it is necessary to
specify the conditions of use of a µ-tool (life cycle of
generated objects, share conditions...).

- Interaction between actor and µ-tool relates mainly to
data acquisition (objects of activity), their relations,
their accesses and their management, with graphic
tools for example.

- Identification and description of µ-tool being the
result of a collective and multi-field work; realization
of models is recommended to facilitate exchange of
ideas.

- µ-tools are developed according to a procedure of
software quality which we defined in our laboratory.

µ-tools make it possible to divide software into modules
adapted to achievement of simple tasks. Several tools in
association can fulfill more complex functions. We

defined a complete process of development of µ-tools for
all actors cooperate (Figure 3). This process begins with
the analysis of activity and leads on the corresponding
software products and on the delivery of seven documents
constituting the memory of their designs. Three great
phases structure this process which we called IDI
(Identification, Design, and Integration):
- Phase of identification of µ-tools, referring on the

higher levels of engineering system and requiring a
large collaboration of all actors, consists: 1) in
identifying among the tasks which make a specific
activity, those which could be instrumented, 2) then,
to specify them.

- Phase of design aims, according to an incremental
approach which facilitates permanent dialogue
between all actors of development process, to define
the architecture of µ-tool and these components, to
develop them (UML/Java), to test them, and finally to
validate the user interface.

- Phase of integration into PLACID, agent platform that
is connected to an ORB (Object Broker Request,
CORBA in fact) for exchanges management and
information sharing.

Integration Space of
co-design

Analyze Identification

Design

. Activity Theory

. SADT

A_UML

Incremental
development

of µ-tools

Identified
µ-tools

Prototype of
µ-tool

Co-Actors

. PLACID

. Corba

. Web services

Fig. 3 Development process of µ-tool.

3. Agents for Co-operative Activities

Multi-agent systems have been proposed as a new
approach for distributed artificial intelligence [27]. The
main characteristics of agents (autonomy, distribution,
adaptability, flexibility, cooperation and communication
[29] permit, on the one hand, to manage efficiently the
heterogeneous, autonomous and distributed solutions, and
on the other hand, to facilitate exchanges of information
and the sharing of resources between solutions
(communication and cooperation). The idea of using the
paradigm agent to design complex, interactive systems,

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

4

either distributed or cooperative is very attractive. Indeed,
very early, researchers found in the set of characteristics of
agents, the means to design efficiently some cooperative
information systems [26, 25, 3]. Other researchers, as
Jennings [12], justified the adequacy of the approach agent
for distributed system modeling and design (adequacy
hypothesis).

MAS make it possible to distribute agents (processes)
which are communicating entities, autonomous, reactive
and having competences [22, 7]. To design MAS
according to these criteria, it is necessary that each agent
owns the three following properties: independence,
communication and intelligence (expertise, skills, know-
how). We also must define the architecture of agents
(cognitive functions, interactions), and structure the
knowledge necessary for their various activities. These
properties correspond to those definite as well for an
assistance platform to the collaborative design, as for the
applications which it supports (all the more when they are
co-operative µ-tools).

3.1 Agent Modeling

Agents being heterogeneous entities with various modes
of interactions and complex behaviours, it is necessary to
define their type of organization, and their capacity of
evolution. Many definitions of paradigm agent have been
proposed, one of the most consensual was made by
Wooldridge. According to Wooldridge [28] an agent is an
encapsulated computer system that is situated in some
environment and that is capable of flexible, autonomous
action in that environment in order to meet its design
objectives. Furthermore, a software agent is rational,
finalized and co-operative [29].

The autonomy of an agent is technically implemented by:
1) an independent process, 2) an individual memory
(knowledge and data), and 3) ability to interact with other
agents (perception or reception, emission or action).

The systemic model of MAS is defined as follows: the
agents of MAS evolve in an environment and interact with
each other, respecting the roles assigned to them in an
organization. Then MAS are described by the following
quadruplet (1):

MAS = <Agt, Int, Ro, Co> (1)

Where Agt is the set of agents, Int is the set of interactions
defined for these MAS, Ro is the set of roles to be played
by agents and Co is the organization of agents into
communities, when they are defined [18].

Many structures of agents known as “cognitive” are
inspired by the cycle <perceive, decide, act>. However,
our agent model [8, 9] is rather inspired by Rasmussen’s
three-level operator [19]: 1) reflex-based behaviour, 2)
rule-based behaviour, and 3) knowledge-based behaviour
with interpretation, decision and plan (Figure 4). We
interpreted this model as a model of process for agents
[17, 18]. The latter are both cognitive and reactive.
Moreover, they have behaviours adapted to the tasks they
perform. We added one level at this scale to include
behaviour based on a system of agents. We call an actor
(or collective agent) a system of cooperative agents in
which the behaviour is defined by collective decision tasks
and collective coordination tasks [17].

actions

goals

informations

Observation Execution

Situation
recognition

Association
state/task

Procedure /
rules

Identification/
interpretation

Planning

Level 1:
skill-based
behaviour

Level 2:
rule-based
behaviour

Level 3:
knowledge-based
behaviour

sign reflex

Decision
of task

Cognitive agent

Routine agent

Reactive agent

Identification/
communication

Coordination
Level 4:
cooperative
behaviour

Collective
decision

Actor
Collective agent

Fig. 4 Variability behaviors of agents, based on Rasmussen’s model.

Thus, these agents (whose functional architecture and
formalization in the form of UML class diagram are
proposed in Figures 5.a and 5.b) may perform reflex
actions, routine actions, or creative and cooperative
actions in new situations. An agent that we consider in this
paper, corresponds to the second level of Rasmussen’s
scale (Figure 4), and is described by the following
quadruplet (2):

Agent = <O, D, A, KB> (2)

Where O is the observation function of an agent; D is its
decision function to interpret the observed events; A is its
function of managing actions; and KB is the knowledge
contained in its memory, among which are the decision
rules and fuzzy values of the domain (the acquaintances
and/or networks of affinities between agents), along with
dynamic knowledge (observed events, internal states, etc.).
The management of resources is provided by a set of
managers M = (Mm, Ma, Mk), where Mm is the message
manager, Ma is the action manager and Mk is the
knowledge-base manager (Figure 5a).

The decision rules of an agent (Rule), gathered in its
knowledge base, are described by the following triplet (3):

Rule = <E, C, Act> (3)

Where E is the set of events, C is the set of conditions and
Act is the set of actions.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

5

Actions of each agent are controlled by a manager Ma
which memorizes tasks in the form (4):

Task = <Act, S, Re> (4)

Where a task (Task) is characterized by a set of associated
actions (Act), a set of states (S) and a set of results (Re).

Mm

KB

{ECA Rules}
{acquaintances}

Observation Decision Action

Ma

Mk

Out(a)

Message
manager

Action
manager

Knowledge
manager

In(e)

a)

Mk
<< thread >>

Out
<< thread >>

Agent_Class_Name, Roles
<< agent >>

Properties
<< attributes >>

Actions
<< methods >>

Functions
<< methods >>

In
<< thread >>

Ma
<< thread >> Mm

<< thread >>

b)

m1 … mi a1 … aj

Fig. 5 Model of agent: a) functional architecture, and b) UML structure.

3.2 Communicating Agents

Communication between agents, following the HCI model,
is characterized by: 1) a communication mode (sharing
information or sending messages); 2) a common language;
and 3) a communication protocol. To communicate with
each other, agents exchange messages in a similar syntax
KQML [14], an interaction language based on the concept
of speech acts. These exchanges are controlled by a

communication protocol in which a response is required
for some speech acts (ask/answer, inform/confirm, etc.).

To design MAS, we developed a generic set of
communication acts [17]. The agents perform five speech
acts: inform, diffuse, ask, reply and confirm. The basic
elements of this language (variables and primitives of the
language) are listed in the following table (Table 2). These
five speech acts are sufficient to enable agents to perceive
the intention associated with the propositional content of a
message. A communication act between two agents (CA)
is then defined by the quintuplet (5):

CA = <l, xe, xr, t, m> (5)

Where l is a speech act denoted by a performative verb, xe
is the source of communication, xr is the receiver, t is the
type of message and m is the message itself, which can be
an assertion, a question, a response, etc.

Table 2: Elements of interaction language

Language Meaning

x, e, a, m, t respectively are agent, event, action,
message and type of message

inform(xe, xr, t, m) xe sends to xr the message m of type t

diffuse(xe, xi, t, m) xe sends to the list xi the message m of
type t

ask(xe,xr, t, m) xe asks xr the request m of type t

answer(xe, xr, t, m) xe answers xr the message m of type t

confirm(xe,xr, t, m) xe confirms to xr that it agree with the
message m of type t

3.3 Co-operating Agents

The systems of co-operative work consist of distributed,
heterogeneous and autonomous components. Then, MAS
are well adapted. The potential contribution of paradigm
agents concerns:
- A more natural interactivity (methods, presentation).

- The management of repetitive actions and the
delegation of tasks without interest for the user.

- The decision-making by the comprehension of the
context of use (relevance).

- The personalization of information (preferences, goals
and capacities of the user).

The individual and co-operative behaviors of the agents
are varied: initializations, planning of actions, emission
and reception of documents, information or document

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

6

retrieval, supervision of procedures, etc. Each one of these
services corresponds to a competence.

3.4 Process of Agentification

The agents are entities having competences which enable
them to play one or more roles in an organization. They
are grouped within MAS organized according to a
hierarchical structure (three types of agents: specialists,
mediators and supervisors). For the specification and the
conceptualization of MAS [2] we retain proposals made in
the definition of the language A_UML [16, 1], like our
own methodological proposals [8] (see Figure 6):
1) To design the use case diagram (services provided by

the system), and for each identified use carried out 3
following phases;

2) To design the classes diagram connecting the agents
concerned with the use (we can also use the
collaboration diagram);

3) To define behavior of each agent with a states
diagram or an activities diagram;

4) On the basis of scenarios of use, to design the
sequence diagrams which specify the exchanges of
messages between agents (and their scheduling).

1) Use case diagram 2) Class diagram

4) Sequency diagram: a scenario of use3) Activity diagram: agent behaviour

Transmission

: actor A : actor B

Send_Msg

Receive_Msg <<agent>
Emitter

<<agent>>
System

<<agent>>
Receiver

<<agent>>
User

Services() ;
Reception() ;

Services() ;
Manadge() ;

Services() ;
Emission() ;

Send() ;
Receive() ;

<<agent>>
:receiver

Initialize

Receive:/
Process / Ack

Terminer

Services() ;
Reception() ;

:actor A :actor B

<<agent>>
:emitter

<<agent>>
:canal

<<agent>>
:receiver

msg()

msg()
msg()

msg()

ack()

ack()
ack()

ack()

Fig. 6 Methodology followed for the illustration of §5.1.

4. Description of PLACID

4.1 Project Objectives

The development of PLACID is defined in the 2 research
orientations of our team (first, point of view on the

product, and secondly, co-operation in design), in order to
facilitate the use of design µ-tools by a team of close or
distant designers, within the activity of distributed design,
structured in modules (functional, structural, manufacture,
maintenance). PLACID offers a set of services for use of
an environment of virtual co-design (shared objects,
services of tasks management and communications, and
tools of decision-making aid).

Figure 7 presents the modular architecture of the platform.
The 5 layers defined allow multi-platforms uses and
facilitates its evolution:
- Layer 1: level of user interface, with a context of

many interactions, multi-user and multimode.

- Layer 2: level of workspace organized according to
the context of an individual or co-operative activity.

- Layer 3: level of management of Co-design assistance
tools (µ-tools and other design tools).

- Layer 4: level of management of co-operative work,
allowing to control and to carry out co-operative
processes.

- Layer 5: level of operating system and management of
low level communications.

Communication and operating system

Co-operating system

DB/XML

tools tools tools tools

Workspace i

UI i

Workspace j

UI j

Fig. 7 Modular architecture of PLACID platform.

For data management we retained an architecture adapted
to co-operative information systems [25]: a federating
DBMS of multi-bases. This makes it possible to run total
or local applications.

4.2 Architecture of PLACID

The various possible configurations of PLACID platform
as well allow specific use of a design µ-tool, as
constitution of "virtual desks of Co-design". This is
facilitated by the agent-based design of PLACID. The first
layer of platform (see figure 8) is connected to CORBA
(Common Object Request Broker Architecture) in charge

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

7

of management of exchanges and shared information. This
layer of agents is composed of two groups: “mediators”
agents, in direct interaction with users and µ-tools, and
“tools” agents (executants) that have essential skills of co-
operation.

Space activity

DB
XML

Co-operative use

CORBA

Tools agents Tools agents Tools agents

Space of
design µ-tool

µ-tool

µ-tool

µ-tool µ-tool

µ-tool

µ-tool

Space activity

Individual use

XML
DB

Space of
co-design

Fig. 8 Various configurations to use the platform.

5. Illustration of µ-Tools Integration: the
Papoticiel

To test PLACID platform according to points of view
presented above, we decided to develop 2 types of µ-tools:
the first correspond to an electronic meeting for distant
and collaborative use (Papoticiel, a chat tool), and the
second allow carrying out a functional analysis in design
activity. Following we present the first set of µ-tools.

An application of electronic meeting, in addition to the
communication aspects, connects applications of co-
operation as varied as: management of a group,
maintenance of a diary, management of a group memory
through the filing of discussions in meetings, edition of
minutes of meeting. We describe below, some elements of
Papoticiel µ-tools design, according to the methodology
presented in figure 6:
- Use case diagram (see Figure 9) defines context of

use of Papoticiel. This application can be started on
initiative of a group member (initiator) or by the
software agent <diary>. SADT diagram (see Figure
10) can also design to represent tasks model of use of
chat (for example: to open the chat, to check
presences, to discuss, to close the chat).

- Class diagram of electronic meeting to define the
structure of agents, and the interrelationships between
agents (this one can be supplemented by a
collaboration diagram).

- Finally, sequence diagram or collaboration diagram.
The following figure (Figure 11) illustrates the
scenario "begin-end" of these µ-tools, started by a
participant of meeting (initiator).

Groups

Vote

Meeting

Discussion

Archiving

Notes

Electronic
Meeting

Participants

Diary

Initiator

starts takes part

programs

Fig. 9 Use-case diagram of Papoticiel.

To open
papoticiel

Context Objective Participants

PLACID

Participants

Documents

Decisions

report

To check
participants

To talk

To close
papoticiel

Decisions

Report

List of
participants

Information
participants

Fig. 10 SADT diagram of the task «Using Papoticiel».

To design µ-tools of electronic meeting, illustrated by the
preceding figures, we needed 7 types of agents which are
described in table 3. Agent structure of Papoticiel above
PLACID platform is presented in figure 12. Papoticiel, in
addition to agents already available on PLACID platform,
requires the deployment of 2 other agents
(<customerCorba> agent and <serverCorba> agent) to
manage co-operation as well as multi-user context.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

8

:Participant

:Initiator

:ChatAgent

:GroupAgent

:DBAgent

:ArchiveAgent :ComAgent

:VoteAgent

:HostAgent

:HostAgent

2.1: creation
1: starts 2.2: informs

6: Ok

5: confirms

3: informs

4: Ok

Fig. 11 Collaboration diagram illustrating scenario "begin-end".

Table 3: Competences of the various agents of Papoticiel

Agents Skills

<User>

 Authentication and user identification
 Access management towards other agents
 Access management to other resources/services
 Transmission of messages

<Com>

 Identification of messages’ writers
 Messages queues management
 Sending of messages to agents
 Sending of messages to participants

<Papoticiel>

 Access management to application
 Queues management to avoid conflicts
 Sending of messages to agents

<DB>

 Data update
 Sending of messages
 Sending of results (during a later consultation)
 Saving of messages and results

<Group>

 Management of various working groups
 User identification
 Connection with other services (or agents)

<Archive>

 User identification
 Reception of messages
 Filing of messages
 Filing outcome of votes

<Vote>

 Activation of beginning and end of votes
 Sending the voting results
 Connection with agents

Integration of Papoticiel into PLACID platform is carried
out in 2 phases: the first corresponds to the agentification

of µ-tools composing Papoticiel, the second consists in
defining then including <Corba> agent on the
communication level of Papoticiel. To finish this
description, we present the user interface of a prototype of
workspace for functional analysis activity [17] (see figure
14). This figure shows the 3 µ-tools of the Papoticiel
which are integrated into PLACID (Papoticiel/chat tool,
Agenda/diary tool, Vote/voting tool).

 Layer 3:
µ-tools

Layer 2 :
high level agents

Layer 3 :
low level agents

Diary
agent

User
agent

Papoticiel
agent

Vote
agent

Archive
agent

Group
agent

DB/XML
agent

Com.
agent

Communication layer - CORBA

Corba
agent

Competences

Corba
agent

Fig. 12 Agent structure of Papoticiel on PLACID platform.

Fig. 13 Integration of the µ-tool “Agenda/Diary” into PLACID platform.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

9

Fig. 14 Functional Analysis Workspace and µ-tools of Papoticiel.

6. Conclusions

A first study on prospects for co-operative work and
agents technologies had provided us with a set of
promising concepts which were used for the definition of
PLACID platform:
- About CSCW: definition of project of distributed co-

design, supporting services of shared resources, of
group coordination, of electronic meeting, of group
decisions, report of working session and of group
memories.

- About MAS: distribution of co-operative activities,
distribution of components of design assistance;
decision-making aid in the process of distributed
design, management of actions (repetitive or implicit
tasks within a cooperative activity), design of human-
computer interfaces.

Following this study and a first phase of specification of
PLACID, we produced a prototype of the platform. This
one was tested by the use of 2 sets of µ-tools (until other
µ-tools are developed then integrated into the platform):
- The first makes it possible to use and to coordinate an

elementary electronic meeting coupled to a tool for
assistance to groups’ management; so we could test
the synchronization and the distant exchange.

- The second corresponds to 6 modules deployed to
carry out an External Functional Analysis during
product design activity; so we could test the chaining
process and the use of a database.

Since, we launched the development of three other sets of
µ-tools for co-design: a first for assistance to the
deployment of TRIZ methodology (Teoria Reschenia
Izobretateliskih Zadaci, theory of resolution of the
innovating problems), a second for assistance to the
Performance Evaluation in engineering of manufacturing
systems, and a third for the Technical Functional Analysis.

Our current work concerns on identification and definition
of generic CMT (Co-operative Micro-Tools), and
generalization of µ-tools-based assistance to any type of
co-operative activities, in particular in the field of software
engineering [17, 18].

Acknowledgments

We gratefully acknowledge the PRéCI (Regional Center
of Design and Innovation – Franche-Comté, France) for
supporting our research topic “Design of Innovative
Micro-Tools”, as part of its plan of action “Anticipating
the needs of SMEs in terms of design and innovation”.

References
[1] B. Bauer, and J. Odell, "UML 2.0 and agents: how to build

agent-based systems with the new UML standard",
Engineering Applications of Artificial Intelligence, Vol. 18,
No. 2, 2005, pp. 141-157.

[2] P.K. Biswas, "Towards an agent-oriented approach to
conceptualization", Applied Soft Computing, Vol. 8, No. 1,
2008, pp. 127-139.

[3] L. Cernuzzi, M. Cossentino, and F. Zambonelli, "Process
models for agent-based development", Engineering
Applications of Artificial Intelligence, Vol. 18, No. 2, 2005,
pp. 205-222.

[4] J. Coutaz, "PAC-ing the software architecture of your User
Interface", in DSV-IS’97, Specification and Verification of
Interactive Systems, Springer-Verlag, 1997, pp. 15-32.

[5] C.A. Ellis, S.J. Gibbs, and G.L. Rein, "Groupware: some
issues and experiences", Communications of ACM, Vol. 34,
No. 1, 1991, pp. 38-58.

[6] C.A. Ellis, and J. Wainer, "A conceptual model of
Groupware", in Proceedings of CSCW’94, ACM Press, 1994,
pp. 79-88.

[7] J. Ferber, Multi-Agent Systems: towards a collective
intelligence, Addison-Wesley, Reading, 1998.

[8] A.-J. Fougères, "Model of cognitive agents to simulate
complex information systems", in IEEE International
Conference SMC’02, 2002, Hammamet.

[9] A.-J. Fougères, "Agents to cooperate in distributed design
process", in IEEE International Conference on Systems, Man
and Cybernetics, 2004, The Hague, Netherlands, pp. 2629-
2634.

[10] A.-J. Fougères, "Assistance to agent-based µ-tools
development for a co-operative design platform", in

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 3, No 8, May 2010
www.IJCSI.org

10

Proceedings of Virtual Concept’06, 2006, Springer Verlag,
Playa Del Carmen, Mexico.

[11] J. Grudin, "Computer-Supported Cooperative Work: History
and Focus", IEEE Computer, Vol. 27, No. 5, 1994, pp. 19-
26.

[12] N.R. Jennings, "On agent-based software engineering",
Artificial Intelligence, Vol. 117, 2000, pp. 277-296.

[13] K. Kuutti, "Activity Theory as a Potential Framework for
Human-Computer Interaction Research", in Context and
Consciousness. Activity Theory and Human-Computer
Interaction, Bonnie A. Nardi (Ed.), 1996, MIT Press,
Cambridge, pp. 17-44.

[14] Y. Labrou, T. Finin, and Y. Peng, "The current landscape of
agent communication languages", Intelligent Systems, Vol.
14, No. 2, 1999, pp. 45-52.

[15] J.-P. Micaëlli, and A.-J. Fougères, L’évaluation créative,
Presses de l’UTBM, Belfort, avril, 2007.

[16] J. Odell, H.V.D. Parunak, and B. Bauer, "Extending UML
for agents", in Proceedings of the AOIS Workshop at the
17th Nat. conf. on Artificial Intelligence, 2000, Austin,
Texas.

[17] V. Ospina, and A.-J. Fougères, "Agent-based Mediation
System to Facilitate Cooperation in Distributed Design",
WSEAS Transactions on Computers, Vol. 6, No. 8, 2009, pp.
937-948.

[18] E. Ostrosi, and A.-J. Fougères, "Fuzzy Agents for Product
Configuration in Collaborative and Distributed Design
Process, Applied Soft Computing, (to appear in 2010).

[19] J. Rasmussen, "Skills, rules, and knowledge; signals, signs,
and symbols, and other distinctions in human performance
models", IEEE Transactions on Systems, Man, and
Cybernetics, Vol. 13, 1983, pp. 257-266.

[20] J.-C. Routier, and P. Mathieu, "A multi-agent approach to
cooperative work", in Proceedings of the CADUI’02
Conference, 2002, Kluwer Academic Publisher.

[21] K. Schmidt, and L. Bannon, "Taking CSCW seriously",
Computer Supported Cooperative Work Journal, Vol. 1, No.
1, 1992, pp. 7-40.

[22] Y. Shoham, "Agent-Oriented Programming", Artificial
Intelligence, Vol. 60, 1993, pp. 51-92.

[23] E. Van Handenhoven, and P. Trassaert, "Design knowledge
and design skills", International Conference on Engineering
Design (ICED 99), 1999, Munich.

[24] L.S. Vygotski, Mind and Society, Cambridge MA: Harvard
University Press, 1978.

[25] G. Wagner, "The agent–object-relationship metamodel:
towards a unified view of state and behaviour", Information
Systems, Vol. 28, No. 5, 2003, pp. 475–504.

[26] J. Wainer, and C.A. Ellis, "Agents in Groupware Systems",
in Proceedings of the Fourth International Workshop on
Groupware, 1998, Rio de Janeiro, Brazil, pp. 157-168.

[27] G. Weiss, Multiagent Systems: A Modern Approach to
Distributed Artificial Intelligence, The MIT Press, 1999.

[28] M. Wooldridge, "Agent-based Software Engineering", IEE
Proceedings on Software Engineering, Vol. 144, No. 1, 1997,
pp. 26-37.

[29] M. Wooldridge, An introduction to multiagent systems,
John Wiley & Sons, 2002.

Alain-Jérôme Fougères is Computer Engineer and PhD in
Artificial Intelligence from the University of Technology of
Compiègne. He is currently a member of the Laboratory of
Mecatronics3M (M3M) at the University of Technology of Belfort –
Montbéliard (UTBM), where he conducts his research on
cooperation in design. His areas of interests and scientific
contributions concern the natural language processing, the
knowledge representation, the design of multi-agent systems, in
particular architecture, interactions, communication and co-
operation problems. In recent years, his research has focused on
the context of co-operative work (mediation of cooperation and
context sharing), mainly in the field of mechanical systems co-
design.

