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Abstract 
Low-frequency technology has been widely used for detecting 
objects placed underground. Low-frequency radio-frequency 
identification (RFID) systems provide the advantage of better 
propagation in lossy materials such as rocks and soil. In this 
paper, we assume that buried objects will be tagged with low 
frequency RFID passive transponders and that a reader with the 
large single-loop antenna will be used to detect the objects. We 
propose new orientation-insensitive transponder’s antenna. 
Simulated and measured results obtained from fabricated 
antennas based on the new design show some advantage over the 
traditional design. The new antenna offers a more uniform 
magnetic field pattern. 
Keywords: Low-frequency RFID, double-rod, ferrite core, coils. 

1. Introduction 

Conventionally, low-frequency transponders have a 
multiple-turn coil wound around the longitudinal axis of a 
cylindrical ferrite core. Therefore, this type of transponder 
is strongly directional, which means the transponder’s 
reception sensitivity is highest to the signals incident from 
the direction parallel to the longitudinal axis of the ferrite 
core and lowest to the signals incident from the direction 
orthogonal to the longitudinal axis of the ferrite core. 
 
RFID technology has been used in the detection of 
underground objects [1-3]. A simple RFID system consists 
of two components which communicate wirelessly. The 
first component, a reader, is connected to a relatively large 
antenna. The second component, called the tag or 
transponder has a small antenna. Low-Frequency (LF) 
band or Long-wave radio frequencies correspond to those 
below 500 kHz. Most publications on the RFID 
technology focused on transponders without a ferrite core. 
At LF, transponders with ferrite-core increase the 
magnetic field coupling between the reader’s and the 
transponder’s antennas. 
 

It is possible to increase the overall reception sensitivity of 
this type of transponder’s antenna by arranging two or 
three transponder-units that are mutually orthogonal to one 
another. However, it is not always practical to mount two 
or three transponders on one object-to-be-identified due to 
limited space. When two or three separate transponders are 
mounted in one object this way, the space occupied by the 
object increases and thus the object itself must be large 
enough to accommodate these transponders.  
 
This paper presents one novel design that alleviates above-
discussed problems that conventional cylindrical ferrite-
core antennas have. Compared to the scenario where 
several transponder-antennas are to be used to provide the 
same feature, the new design would be smaller. 
 
This type of RFID system is intended to be used to detect 
the buried objects in the proximity of the reader single-
loop antenna in media such as rocks, wet soil, cement, etc. 
Typically, the transponders would be attached to the 
underground objects, while the reader’s large single-loop 
antenna is placed directly on the ground surface or very 
near the ground surface. 
 
RFID systems need to be designed and tuned to operate in 
these conditions. However, few published academic 
research has focused on these areas, especially for low-
frequency RFID. Thus an investigation of some important 
parameters affecting the low-frequency RFID performance, 
by means of numerical simulations of transponder-reader 
coupling supported by the measurements, which is 
presented in this paper, is beneficial. 
 
Signal attenuation has been shown to be a major factor 
when the frequency is above LF range [4-6]. In this 
research, we studied the performance of RFID systems 
working in the range of 125-150 kHz.  
 
Wireless communication can be grouped into two modes: 
near-field and far-field communications. In the near field 
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region, the electric and magnetic field components decay 
rapidly with the distance (i.e.: one over distance-cube) [8]. 
 
In low-frequency RFID systems, as distance between the 
reader and the transponder is much shorter than the free-
space wavelength, the magnetic coupling between the 
reader’s single-loop antenna and the transponder’s coil 
antenna is the dominant mode of operation. 
 
One of the research objectives was to study the near-field 
coupling of the low frequency RFID system as a function 
of various media where the transponder is buried. 
Experimentations were performed on a coil transponder 
placed underneath a large container containing the media 
to be studied. The experimentations were limited to small 
rocks and open-air. Numerical data were obtained using 
FEKO. FEKO is a full wave, method of moment (MoM) 
based simulation software for the analysis of various 
electromagnetic problems. FEKO calculates the 
electromagnetic fields by first calculating the electric 
surface currents on conducting surfaces and equivalent 
electric and magnetic surface current on the surface of a 
dielectric volume [7]. 
 
We analyzed the effects of the single-loop antenna’s radius 
on the received power at the transponder-transponder’s 
antenna in Section-2. In addition, the effect of the relative-
orientation between the reader and the transponder-
antenna and the effect of using a ferrite core, to the 
coupling, is presented. In Section 3, the proposed 
transponder-antenna is described.  

2. Characterization of Single-Loop Antenna 

Current low-frequency RFID systems operate in the near-
field region, where the communicating antennas are 
multiple-turn antennas. In our research, the transponder-
coil consists of approximately 500 turns. We used two 
coils with inner diameter of 0.8 cm. One coil contained a 
ferrite core, and another one was used without the core. 
The reader’s antenna is a large single-loop antenna of 
various diameters. 
 
The use of the ferrite core helped increase the magnetic 
coupling between the reader’s single-loop and the 
transponder’s coil, particularly for the LF range. 
 
An investigation of two coils (with ferrite-core and 
without ferrite-core) has been conducted to compare the 
effect of the ferrite-core. Both have the same number of 
windings (500 turns). This number of turns stems from the 
optimal number of turns (to maximize the radiated power), 
calculated from equations given in [9]. The ferrite 

permeability was estimated to be 1300, based on typical 
ferrite values [10]. 

2.1 Effect of the Single-Loop Size and Multiple-Turn 
Coil Position 

The single-loop’s radius influences the coupling between 
the multiple-turn coil and the single-loop. The effect of 
horizontal positioning (with respect to the plane of the 
loop) is analyzed. Measured and simulated data are plotted 
in Figure 1. It shows the simulated near-field total power 
coupled from a single-turn loop to a ferrite-coil, taken in 
the air at one meter above the loop-horizontal plane. The 
power at the loop’s output terminals is 216 mW. 
 

 

Fig. 1  Coupling between a large coil and a small coil, simulated and 
measured (diamond-dot), as a function of lateral position. 

From our measurements and simulations, the coupled 
power decreases as the loop-radius increases. At LF, the 
wave-length equals to 2.14 km; thus the single-turn loop 
and the coil effective electrical-size are extremely small at 
this frequency, compared to the wave-length. In a two-
dimensional representation, the measured results showed a 
similar trend as the simulated data, i.e. the coupled power 
peaked when the coil’s position was at the center of the 
single-turn loop, when the loop-radius was at one meter or 
less, and the vertical-distance was at one meter. On the 
other hand, when the loop-radius was large, there were two 
maxima, each located near the edge of the single-turn loop, 
similar to results published in [11]. 

2.2 Effect of Ferrite and Coil-Orientation with 
respect to the Z-axis 

The rotation of the transponder’s coil can greatly affect the 
coupling between it and the reader’s loop. Fig. 2 depicts 
the θ-angle of this rotation.  
 

Position of the coil moving 1m above the loop's plane [m]
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Fig. 2  Angle of rotation of the transponder. 

 
Simulation of a coil with and without ferrite-core, when 
the angle of rotation is between 0 and 360o, has shown that 
a coil with ferrite-core (solid-line) has a magnetic coupling 
about 125 times greater than a coil without a ferrite-core 
(dashed-line), as shown in Figure 3, where the values on 
the left-y-axis were normalized to the maximum non-
ferrite value. 
 

 

Fig. 3  Received magnetic field at the transponder’s coil as a function of 
its orientation’s angle. 

This increase of the received magnetic field is due to the 
longitudinal shape and the permeability of the cylindrical 
ferrite-core. 

3. Transponder-Antenna for Low-Frequency 
RFID 

The cylindrical (rod) coil antenna is a highly directional 
antenna when it operates in the axial radiation mode. Two 
of the main parameters of the antenna are the high number 
of turns and the coil’s circumference which is required to 
be much smaller than the axial length of the coil-cylinder 
[12]. 
 
Because of the high directivity of the cylindrical coil 
antenna with a very small diameter, good transmission and 

reception can only be guaranteed when the incoming 
electromagnetic waves are on the axis of the cylindrical 
coil. The maximum transponder’s sensitivity can be 
improved with increased diameter, number of coil-turns, or 
insertion of a ferrite core [13]. However, this will increase 
the size and the weight of the antenna, which when used as 
RFID transponders, would not be desirable. 
 
Instead, we propose the design of a dual-coil ferrite-core 
antenna that has a more uniform performance and is less 
dependent on the orientation of the cylindrical coil. 
 
Shown in Figure 4 are two fabricated antennas: 14cm 
ferrite-rod length and 7cm ferrite-rod length. 
 

 

Fig. 4  Fabricated double-rod antennas (14cm version and 7cm version). 

The two ferrite-cores are symmetric; one ferrite-core is cut 
into two equal parts, which are then attached at the center 
of the other ferrite-core. 
 
The operation of a coil-antenna with a single ferrite-core 
has long been employed to receive magnetic field. These 
antennas normally consist of a coil wound on a single 
cylindrical core of high permeability of which the length-
to-diameter ratio is very high. Provided that the magnetic 
flux concentration in the ferrite core is uniform, a long-
cylindrical ferrite coil has an effective inductance 
estimated to be [14]: 

 

  (1) 
 
where μ is the effective permeability of the coil, l is the 
length of the wounded ferrite-core, N is the number of 
coil-turns, and a is the radius of one wire-loop. 
 
Electric field equations in the far-field of a cylindrical-coil 
antenna have been derived in [12]. 
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