
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 44

 An Effective Solution to Reduce Count-to-Infinity
Problem in Ethernet

1Ganesh.D, 2 Venkata Rama Prasad Vaddella

1Assistant Professor,
Department of Information Technology

Sree Vidyanikethan Engineering College, Tirupati-517 102, India

 2 Professor and Head
Department of Information Technology

Sree Vidyanikethan Engineering College, Tirupati-517 102, India

Abstract

 Ethernet is currently the most popular networking technology
because of its high performance, low cost and ubiquity nature.
Ethernets rely on the dynamic computation of a cycle-free
active forwarding topology. For that it uses rapid spanning
tree protocol. Unfortunately, it exhibits count-to-infinity
problem that may lead to forwarding loops under certain
network failures. These consequences are considered serious
since network can become highly congested and even packet
forwarding can fail. In this work, a simple and effective
solution to reduce count-to-infinity problem, called RSTP with
epochs is proposed. This eliminates the count-to-infinity
induced forwarding loop and improves the convergence time.

Keywords: count-to-infinity, Ethernet, spanning tree protocols

1. Introduction

Ethernet is the most popular networking technology in a
wide range of environments due to its high performance-to-
cost ratio and ubiquity. In existing ethernet standards,
packet flooding is used to deliver a packet to a new
unknown destination address whose topological location in
the network is unknown. An ethernet switch observes the
flooding of packet to learn the topological location of an
address. A switch identifies the port at which the packet
from source S arrives. Then it uses this port for the packets
whose destination address is source S. Thus, an ethernet
network dynamically discovers the topological locations of
interface addresses and dynamically builds packet
forwarding tables accordingly. This mechanism is called
address learning. Existing ethernet standards use a
“Spanning Tree Protocol” which computes a cycle-free
active forwarding topology to support the flooding of
packets for new destination and address learning. In case of
link failure, cycles in the physical topology provides a
redundant path. It is necessary that the active forwarding
topology to be cycle free because ethernet packets may
cause congestion due to the lack of time-to-live field. When
a link or switch failure occurs, it disturbs the active
forwarding topology, the network leads to a packet loss. The
active forwarding topology is recomputed to stop the packet
loss.

The dependability of ethernet relies on the ability of the
spanning tree protocol to quickly recomputed cycle-free
topology upon a partial network failure. In the present day,
the rapid spanning tree protocol, RSTP [1] is the dominant
spanning tree protocol. But unfortunately, RSTP may
exhibit the count-to-infinity problem. The spanning tree
topology is continuously reconfigured during the count to
infinity and it forms the temporary forwarding loop. The
ports in the network can oscillate between forwarding and
blocking data packets. Thus, many data packets may be
dropped. The forwarding loop lasts until the count to
infinity lasts. In the present work, count-to-infinity problem
in RSTP is examined and an effective solution called RSTP
with epochs is presented. We demonstrate the exact
conditions under which the count to infinity problem occurs
in RSTP and study the problem in detail with an example
and identify the effects. This solution improves the
convergence time of the spanning tree computation upon
failure.

In this work we perform an in-depth analysis of the count-
to-infinity problem and provide an effective solution. In
section-II, a brief introduction of Spanning trees & BPDU’s
is given. Section-III discusses in detail about count-to-
Infinity problem. Section-IV provides us the solution for
reducing count-to-infinity called RSTP with Epochs. In
Section-V, we evaluate the protocol. Section-VI describes
the effects of count-to-Infinity on port saturation and also
the results are evaluated. Conclusions of this work are given
in section-VII.

2. Rapid Spanning Tree Protocol (RSTP)

 The rapid spanning tree protocol (RSTP) was introduced in
the IEEE 802.1W standard and later revised in the IEEE
802.1 D standards. RSTP was derived from Spanning Tree
protocol (STP) and it is designed to overcome STP’s long
convergence time.

2.1. The Spanning Tree

 RSTP computes a unique spanning tree over the network
of bridges and connecting links. Each bridge must have a
unique ID. The spanning tree is rooted at the bridge with the
lowest ID. There exists only one possible path between any

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 45

nodes and it is of minimum cost. A bridge port is one that
connects a link to a bridge. It has two main attributes, a
‘port’ and its ‘state’. The port describes its role in the
spanning tree. The three roles of a port are:

1) A root port connects a bridge to its parent in the
spanning tree.

2) A designated port connects a bridge to one or more
children in the spanning tree.

3) An alternate port connects a bridge to a redundant link
that provides a backup path to the root.

 A port’s state describes whether the port forwards or
blocks the data.

2.2. Bridge Protocol Data Units (BPDUs)

 BPDUS are used to exchange topology information
between bridges. Each bridge constructs its BPDUs based
on the latest topology information that it has received from
its parent bridge. In the absence of any new information,
bridges send a BPDU every ‘Hello time as a heartbeat.
This heartbeat BPDUS are called Hello messages. A bridge
must compare the BPDUs that it receives to use the best of
these BPDUs. According to the IEEE 802.1 D standard,
BPDU m1 is better than BPDU m2 if:

1) m1 is announcing a root with a lower bridge ID than
that of m2

2) Both BPDUS are announcing the same root out but m1
is announcing a lower cost to reach the root.

3) Both BPDUS are announcing the same root and cost,
but m1 was last transmitted through a bridge with a
lower ID than the bridge that last transmitted m2.

4) Both BPDUs are announcing the same root and cost,
both BPDUS were last transmitted through the same
bridge, but m1 was transmitted from a port with a lower
ID than the port that last transmitted m2.

2.3. Building and maintaining the spanning tree

 The Spanning Tree Algorithm (STA) uses the information
in the BPDUs to select the root bridge which is having the
lowest bridge ID and set the port roles on each bridge.

 First, select the root bridge. Second, a tree of shortest
paths from the root to every bridge is constructed. If a
bridge fails, a new one is computed. Third, disable all other
root paths. The port that has received the worst information
than they are sending will become designated ports. The
port that has received the best information, among all
information received by all bridge ports, for a path to the
root becomes the root port. A port becomes an alternate
port and receives better information than it is sending.

 If a root or alternate port has not received a BPDU in 3
times the ‘Hello time’, the STA (Spanning Tree Algorithm)
concludes that the path to the root through this port has

failed and removes the information associated with this port.
If a bridge detects failure at its root port, it chooses alternate
port as root port.

2.4. Topology change

 A topology change can result in the reconfiguration of the
spanning tree. The STA implements this by making a bridge
send a topology change (TC) message whenever it detects a
topology change event. The bridge sends such messages on
all of its ports participating in the active topology. A bridge
receiving a TC message forwards this message on all of its
ports participating in the active topology. The bridge
receives a TC message on one of its ports; it flushes the
forwarding table entries at all of its other port. Here we
consider all the topologies while simulating the results.

Fig.1. Simple topology vulnerable to count to infinity

 2.5. Count to infinity problem in RSTP

A count to infinity can occur in RSTP when there is a cycle
in the physical topology and this cycle loses connectivity to
the root bridge due to a network failure. Fig.1 shows a
simple topology vulnerable to count to infinity. A link
failure between the bridge 1 and 2 can result in a count to
infinity. This problem arises when the bridges cache
topology information from the port at their alternate ports,
and use the information indiscriminately in the future, if the
root port loses connectivity to the root bridge. This
topology information may be fresh or stale. Then the bridge
may spread this stale information to other bridges resulting
in a count to infinity. Here we present an example which
illustrates count to infinity in RSTP which uses the
following rules:

1) If a bridge can no longer reach the root bridge via its
root port and does not have an alternate port, it declares
itself to the root.

2) A bridge sends out a BPDU immediately after the
topology information it is announcing has changed.

3) A designated port becomes the root port if it receives a
better BPDO than what the bridge has received before.
That is, this BPDU announces a better path to the root
than via the current root port.

4) When a bridge loses connectivity to the root bridge via
its root port and it has one or more alternate ports, it

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 46

adopts the alternate port with the lowest cost path to the
root as its new root port.

Fig.2. An example of count to infinity

(a) Time t1 (b) Time t2 (c) Time t3 (d) Time t4 (e) Time t5 (f) Time t6

 Figure-2 shows a network in which each box represents a
bridge. The upper number is the bridge ID and the lower
two numbers represent the root bridge and the cost to the
root. The cost is arbitrarily set to 20.

 Figure 2 (a) shows the stable active topology at time t1.
Figure 2 (b) shows the network at time t2 when the link
between bridge 1 and 2 dies. Bridge 2 declares itself to be
the root since it has no alternate port (rule1). Bridge 2
announces to bridge 3 and 4 that it is the root (rule 2). At
time t3 bridge3 makes bridge 2 its root as it does not have
any alternate port. But bridge 4 has an alternate port
forming a path to bridge1. Bridge 4 incorrectly uses this
alternate port as its new root port. It makes bridge 3 its
parent on the path to the now unavailable bridge 1 (rule 4).
Bridge 4 doesn’t know that this formed topology
information at the alternate port is stale. At time t4, bridge
4 announces to bridge that it has a path to bridge1,
spreading the stale topology information and initiating a
count to infinity. Bridge 2 makes bridge 4 its parent and
updates the cost to bridge1. At time t5 bridge 3 sends a
BPDU to bridge 4 saying that bridge 2 is the root. Since
bridge 3 is parent for bridge 4, bridge 4 accepts this
information and sets its cost to bridge 2 as 40. At time t6
bridge 2 sends a BPDU to bridge 3 saying that it has path to
bridge1. Bridge 3 makes bridge 2 its parent, updating its
cost to bridge 1 continues to go around the cycle in a count
to infinity until either it reaches its maximum age.

 Whenever a network is partitioned, if the partition does not
contain the root bridge as a cycle, there exists a race
condition that can result in the count-to-infinity behavior.

1) Claim 1: If a network is partitioned, the partition
without the previous root bridge must contain a
bridge that has no alternate port.

2) Claim 2: If a network is partitioned, and the partition
without the previous root bridge contains a cycle, a
race condition exists that may lead to count-to-
infinity.

 Count-to-infinity may even occur without a network
partition. This new topology information will go around the
loop until it reaches an alternate port caching stale, but
better information. Again this stale information will chose
the new information around the loop in a count to infinity.
This will keep going until the stale topology information
reaches its massage.

3. Count to Infinity Induced Forwarding Loops

 The reasons for the formation of a count to infinity
induced forwarding loop are.

1. Count to infinity occurs around a physical network
cycle.

2. During count to infinity, the fresh topology
information stalls at a bridge because the bridge port
has reached its TX hold count and subsequently the
stale information is received at the bridge. As a
result, the fresh information is eliminated from the
network.

3. The sync. operation that would have prevented a
forwarding loop is not performed by a bridge because
of a race condition allowing the forwarding loop to
be formed.

3.1. Duration of count to infinity

A count to infinity must end when the stale information is
discarded due to reaching the maximum age. Thus the stale
information can cross at most maximum age hops.
Topology information in a BPDU can reside in memory at a
bridge for at most (3x Hello time) unless it gets refreshed by
a new incoming BPDU. Therefore the theoretical upper
bound for stale information to stay in the network is (3 x
Hello time x Max Age).

 Figure 3 shows the convergence times measured. For
every number of links the experiment is repeated 10 times
and report the measured conveyance times under the count
to infinity. In our experiments we use a simulator [2] that is
based on the simulator by Myers et al. [3]. Adding more
redundant links dramatically increases the convergence
time. This is because adding more redundant links results in
more alternate ports per bridge.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 47

Fig.3. Convergence time in a network of 16 bridges after failure of root

4. RSTP with Epochs

 RSTP with Epochs is an extension to RSTP. It mainly
concentrates on introducing sequence numbers in the
BPDUs. The root bridge adds a sequence number to each
BPDU it generates. Then the other bridges generate and
transmit their own BPDUs based on the latest root’s BPDU
and including the root’s latest sequence number. The
purpose of these sequence numbers is to identify stale
BPDUs.

 An Epoch is an interval starting when the true root bridge
achieves root status and ending when the true root bridge
contests for root status. Another bridge will contend for
root status because it did not hear from the previous root or
because it finds its bridge ID to be lower than that of the
previous root. A bridge may find it has a lower bridge ID
than the root because it has just joined the network and its
bridge ID is lower than the current root’s bridge ID, making
it eligible to be the new root. If the previous root has retired
and contending bridge is eligible to be the root, the new root
will use a sequence number higher than the highest
sequence number it received from the retired root.

 If the old root is reachable and eligible to be the root, it
will use sequence number higher than the contending bridge
sequence numbers to re-take the network. Each bridge has a
local representation of an epoch with an interval of
sequence numbers it heard from the same root bridge. The
interval is represented by two sequence numbers, first seqno
and current seqno. First seqno is the sequence number this
bridge has heard from the current root. Current seqno is the
current or latest sequence number the bridge has heard from

Fig.4. Handling the death of the parent bridge

the root. Based on these two values the bridges will work.
Each bridge records two values, first seqno and current
seqno., that it has received from the current root bridge.
These two sequence numbers represents the current epoch.

Fig.5. Handling the reception of BPDU in the RSTP with epochs

A BPDU with a sequence number less than the recorded
first seqno must be a stale BPDU belonging to an earlier
epoch. Figure 4 shows the flow chart to handle the death of
the parent bridge. When a bridge detects disconnection
from it parent, it goes for any alternate ports if available.It
chooses one of these alternate ports as its new root port. If
the bridge does not have any alternate ports, it declares itself
as the new root and starts broad casting its own BPDUs that
have a sequence number larger than that the last sequence
number that it received from the old root.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 48

Figure 5 shows the handling of the receipt of a BPDU in
RSTP with Epochs. Bridges discard the sequence numbers
when comparing BPDUS declaring the same root. If a
BPDU arrives declaring a different root than the one
perceived root then it signals the beginning of a new epoch.
The new epoch has a different root declared by the received
BPDU. The first and last sequence numbers are set to the
sequence number reported by the BPDU is larger than or
equal to the first recorded sequence number but smaller than
or equal to the largest recorded sequence number of the
current root, the bridge with the lowest ID, among the ones
declared by the BPDU and the current root and it is the one
accepted by the bridge as the current root.

If a bridge receives a BPDU declaring another bridge with
an inferior bridge ID to its own as the root, the bridge starts
sending BPDUs declaring itself as the root. These BPDUs
are given a sequence number that is larger than that received
from the bridge with the inferior ID. When one of these

BPDUs reaches the old root bridge with the inferior ID, it
will stop declaring itself as the root. Fig 6(b) shows the
convergence times measure. RSTP with epochs can
convergence in at most 400 microseconds in these
experiments, but RSTP takes second to converge even under
this simple network. In the third set of experiments we use
simple “Ring” topologies where the bridges form a simple
cycle. Again we kill the Root Bridge and measure the
convergence time for both protocols. Figure 6(c) shows the
convergence times measured. Here RSTP with Epochs takes
roughly twice the amount of time to converge compared to
RSTP.

6. Effect of Count to Infinity on Port Saturation

 A port is said to be saturated if it has reached its TX hold
count limit but still has more BPDUs to transport. We
present a time sequence of the number of saturated ports in
the whole network in the three experiment scenarios.

Fig.6. Convergence Time in a network of 4 to 10 bridges (a) Complete Graph topologies (b) Loop topologies (c) Nodes in the ring

 5. Evaluating RSTP with Epochs

In this section, we compare the convergence times of RSTP
and RSTP with epochs in the event of failure in three
families of topologies. For each family of topologies, the
number of bridges in the network varies and the
corresponding convergence time is measured.

 In the first experiment we take a set of complete graphs
varying the number of bridges in the network. In each run
we kill the root bridge and measure the time. It takes for the
network to converge under both protocols.

Fig 6(a) shows the convergence times measured. Here the
vertical bar represents the range of values measured for each
network size. In the graph, the highest convergence time
observed for RSTP with epochs is only 100 micro seconds.
RSTP with epochs does not suffer from the count-to-infinity
problem on the other hand; RSTP takes a much longer time
to converge.

 In the second set of experiments we use simpler loop
topologies. For example, a network with 10 bridges means
the loop has 9 bridges and the loop is connected to the root
bridge that does not lie on the loop. Again, we kill the Root
Bridge and measure the convergence time for both
protocols.

Fig.7 Time sequence of number of ports that reached their TxHoldCount
limit while still having more BPDUs waiting for transmission. This
experiment is for a 10 bridge fully connected graph topology where the
root bridge dies at time 20 (a) RSTP (b) RSTP with Epochs. In the first
experiment a complete graph of 10 nodes.

Figure 7 (a) shows the spike in the number of saturated
ports at startup. Due to spike in the transmitted BPDUs at
startup by both protocols, starting from time 20 when the
root port dies, we find a long period of time that is close to
20 seconds in RSTP. This is due to count to infinity
problem where BPDUs spin around the loop causing the
ports to quickly reach their TX hold count limit. But RSTP
with Epochs does not suffer from the count-to-infinity
problem.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 3, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 49

Fig.8 Time sequence of number of ports that reached their TxHoldCount
limit while they still have more BPDUs waiting for transmission. This
experiment is for a 10 bridge “loop” topology. The root bridge dies at time
20. (a) RSTP. (b) RSTP with Epochs.

 Similarly in the second experiment, we observe from figure
8 (a) the spike in the number of satured ports at startup. We
also observe in RSTP a period after the failure of the root
bridge where there are several saturated ports. Again this is
due to the count-to-infinity problem.

Fig. 9 Time sequence of number of ports reaching their TxHoldCount limit
while still having more BPDUs waiting for transmission. This experiment
is for a 10 bridge ring topology where a link connecting the root bridge to a
neighbor dies at time 20. (a) RSTP. (b) RSTP with Epochs.

 In the third experiment, failure of the root cuts the loop so
there is no count to infinity. Thus for both protocols no
ports get saturated after the failure that you can see in fig.9

7. Conclusions

In studying RSTP under partial network failure, it can
exhibit a count-to-infinity problem. In experiments, we
observe that in some scenarios the count to infinity can
extend the convergence time to reach 50 seconds. During
the count to infinity, bridges transmit a lot more BPDUs
than during its normal operation. In this work, we identify
the exact conditions under which the count-to-infinity
problem arises. We propose a simple and effective solution
called RSTP with epochs that eliminate the count to infinity
problem. This solution also enhances the convergence time.

References

1) “Spanning tree protocol problems and related design
consideration,” Cisco systems, Inc. (online).
www.cisco.can/ward/public/473/16.htm/

2) K. Elmeleegy, “RSTP with Epochs simulator”, 2007 (online)
http://www.cs.rice.edu/kdiaa/ethernet

3) K. Elmelegy, A. L. Cox, and T.S.E.Ng, “On count-to-infinity
induced forwarding loops in Ethernet networks,” in Proc. IEEE
Infocom 2006, Barcelona, Spain, Apr. 2006.

4) K. Elmelegy, A.L.Cax, and T.S.E.Ng, “ Etherfuse: An Ethernet
watch dog,” in Proc. ACM SIG Communications, Kyoto, Japan,
Aug.2007, pp. 253-264.

5) Khaled Elmeleegy, Alan L. Cox, and T. S. Eugene Ng.
“Understanding and Mitigating the Effects of Count to Infinity in
Ethernet Networks”. To appear in IEEE/ACM Transactions on
Networking.

6) R. Garcia, J. Duato and F.Silla “LSOM:A link state protocol
over MAC addresses for metropolitan backbones using optical
Ethernet switches” in proc. 2nd IEEE Int .Symp. Network
Computing and Applications (NCA’03), pp.315-321, Apr.2003.

7) J. J. Gracia-lunes-Aceves, “Loop-free routing using diffusing
computations,” IEEE/ACM Trans. on Networking, vol.1, No.1,
pp.130-141, Feb.1993

8) J. M. Jafee and F. H. Moss, “A responsive distributed routing
algorithm in computer networks,” IEEE Trans. on
Communications., vol. 30, No.7, pp.1758-1767, July 1982

9)R.Pelman “RBridges:Transparent Routing,”in proc.IEEE IN-
FOCOM,2004,vol.2,pp.234-244

10)S.Ray,R.A.Guerin and R.Sofia “Distributed path computation
with out Transient loops” ,” IEEE Trans. on Communications., vol.
30, No.7, July

Mr. D. Ganesh received his B.Tech degree in
Information Technology from JNT University,
Hyderabad in 2006 and M.Tech degree in
Computer Science and Engineering from
Acharya Nagarjuna University in 2010.During
the period 2006-07 he worked as Assistant
Professor in Information Technology

department at AITS, Rajampet, India. Since 2007, he is working
as Assistant Professor in IT Department at Sree Vidyanikethan
Engineering College, Tirupati, India. He has Published 4 papers
in national and International conferences. His current research
interests are computer networks, Object oriented design and
unified modeling. He is a member of ISTE, CSI

Dr. Rama Prasad V Vaddella was born in
Tirupati, India in 1962. He received the M.Sc
(Tech.) degree in Electronic Instrumentation
from Sri Venkateswara University, Tirupati in
1986 and M.E degree in Information Systems
from BITS, Pilani, India in 1991. During the period

1989-1992 he worked as Assistant Lecturer in Computer
Science at BITS, Pilani. From 1992 to 1995, he worked as
Lecturer in Computer Science and Engineering and as
Associate Professor from 1995 to 1998 at RVR & JC College of
Engineering, Guntur, India. Since 1998, he is working as
Professor and Head of Information Technology department at
Sree Vidyanikethan Engineering College, Tirupati, India. He
was awarded the Ph.D degree in Computer Science by J.N.T.
Univeristy, Hyderabad, during 2007 for his thesis in Fractal
Image Compression. He is also holding the additional position
of Chairman, Board of Studies in Computer Science, and Vice-
Principal at Sree Vidyanikethan Engineering College
(Autonomous under JNT University, Anantapur, India). He has
also worked as a short time Research Assistant at Indian
Institute of Science, Bangalore during the year 1986. He has
published about 10 papers in national and international
conferences and 05 papers in International journals, edited
books, and refereed conferences. He is also a member of the
editorial review board for 05 International journals in Computer
Science and Information Technology. His current research
interests include computer graphics, image processing,
computer networks, computer architecture and neural
networks. He is a member of IEEE, ISTE and CSI

