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Abstract 

 
 Ethernet is currently the most popular networking technology 
because of its high performance, low cost and ubiquity nature.  
Ethernets rely on the dynamic computation of a cycle-free 
active forwarding topology.  For that it uses rapid spanning 
tree protocol.  Unfortunately, it exhibits count-to-infinity 
problem that may lead to forwarding loops under certain 
network failures. These consequences are considered serious 
since network can become highly congested and even packet 
forwarding can fail. In this work, a simple and effective 
solution to reduce count-to-infinity problem, called RSTP with 
epochs is proposed.  This eliminates the count-to-infinity 
induced forwarding loop and improves the convergence time. 
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1. Introduction 

Ethernet is the most popular networking technology in a 
wide range of environments due to its high performance-to-
cost ratio and ubiquity. In existing ethernet standards, 
packet flooding is used to deliver a packet to a new 
unknown destination address whose topological location in 
the network is unknown. An ethernet switch observes the 
flooding of packet to learn the topological location of an 
address. A switch identifies the port at which the packet 
from source S arrives. Then it uses this port for the packets 
whose destination address is source S. Thus, an ethernet 
network dynamically discovers the topological locations of 
interface addresses and dynamically builds packet 
forwarding tables accordingly. This mechanism is called 
address learning. Existing ethernet standards use a 
“Spanning Tree Protocol” which computes a cycle-free 
active forwarding topology to support the flooding of 
packets for new destination and address learning. In case of 
link failure, cycles in the physical topology provides a 
redundant path. It is necessary that the active forwarding 
topology to be cycle free because ethernet packets may 
cause congestion due to the lack of time-to-live field. When 
a link or switch failure occurs, it disturbs the active 
forwarding topology, the network leads to a packet loss. The 
active forwarding topology is recomputed to stop the packet 
loss.  

The dependability of ethernet relies on the ability of the 
spanning tree protocol to quickly recomputed cycle-free 
topology upon a partial network failure. In the present day, 
the rapid spanning tree protocol, RSTP [1] is the dominant 
spanning tree protocol.  But unfortunately, RSTP may 
exhibit the count-to-infinity problem. The spanning tree 
topology is continuously reconfigured during the count to 
infinity and it forms the temporary forwarding loop. The 
ports in the network can oscillate between forwarding and 
blocking data packets. Thus, many data packets may be 
dropped. The forwarding loop lasts until the count to 
infinity lasts. In the present work, count-to-infinity problem 
in RSTP is examined and an effective solution called RSTP 
with epochs is presented. We demonstrate the exact 
conditions under which the count to infinity problem occurs 
in RSTP and study the problem in detail with an example 
and identify the effects. This solution improves the 
convergence time of the spanning tree computation upon 
failure.  

In this work we perform an in-depth analysis of the count-
to-infinity problem and provide an effective solution. In 
section-II, a brief introduction of Spanning trees & BPDU’s 
is given. Section-III discusses in detail about count-to-
Infinity problem. Section-IV provides us the solution for 
reducing count-to-infinity called RSTP with Epochs. In 
Section-V, we evaluate the protocol. Section-VI describes 
the effects of count-to-Infinity on port saturation and also 
the results are evaluated. Conclusions of this work are given 
in section-VII. 

2. Rapid Spanning Tree Protocol (RSTP) 

  The rapid spanning tree protocol (RSTP) was introduced in 
the IEEE 802.1W standard and later revised in the IEEE 
802.1 D standards.  RSTP was derived from Spanning Tree 
protocol (STP) and it is designed to overcome STP’s long 
convergence time. 

2.1. The Spanning Tree 

  RSTP computes a unique spanning tree over the network 
of bridges and connecting links. Each bridge must have a 
unique ID. The spanning tree is rooted at the bridge with the 
lowest ID.  There exists only one possible path between any 
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nodes and it is of minimum cost.  A bridge port is one that 
connects a link to a bridge.  It has two main attributes, a 
‘port’ and its ‘state’. The port describes its role in the 
spanning tree.  The three roles of a port are: 

1) A root port connects a bridge to its parent in the 
spanning tree. 

2) A designated port connects a bridge to one or more 
children in the spanning tree. 

3) An alternate port connects a bridge to a redundant link 
that provides a backup path to the root. 

  A port’s state describes whether the port forwards or 
blocks the data.  

2.2. Bridge Protocol Data Units (BPDUs) 

  BPDUS are used to exchange topology information 
between bridges.  Each bridge constructs its BPDUs based 
on the latest topology information that it has received from 
its parent bridge.  In the absence of any new information, 
bridges send a BPDU every ‘Hello time as a heartbeat. 
This heartbeat BPDUS are called Hello messages. A bridge 
must compare the BPDUs that it receives to use the best of 
these BPDUs.  According to the IEEE 802.1 D standard, 
BPDU m1 is better than BPDU m2 if: 

1) m1 is announcing a root with a lower bridge ID than 
that of m2  

2) Both BPDUS are announcing the same root out but m1 
is announcing a lower cost to reach the root. 

3) Both BPDUS are announcing the same root and cost, 
but m1 was last transmitted through a bridge with a 
lower ID than the bridge that last transmitted m2. 

4) Both BPDUs are announcing the same root and cost, 
both BPDUS were last transmitted through the same 
bridge, but m1 was transmitted from a port with a lower 
ID than the port that last transmitted m2. 

2.3. Building and maintaining the spanning tree 

  The Spanning Tree Algorithm (STA) uses the information 
in the BPDUs to select the root bridge which is having the 
lowest bridge ID and set the port roles on each bridge. 

  First, select the root bridge.  Second, a tree of shortest 
paths from the root to every bridge is constructed. If a 
bridge fails, a new one is computed. Third, disable all other 
root paths.  The port that has received the worst information 
than they are sending will become designated ports.  The 
port that has received the best information, among all 
information received by all bridge ports, for a path to the 
root becomes the root port.  A port becomes an alternate 
port and receives better information than it is sending. 

  If a root or alternate port has not received a BPDU in 3 
times the ‘Hello time’, the STA (Spanning Tree Algorithm) 
concludes that the path to the root through this port has 

failed and removes the information associated with this port. 
If a bridge detects failure at its root port, it chooses alternate 
port as root port. 

2.4. Topology change 

  A topology change can result in the reconfiguration of the 
spanning tree. The STA implements this by making a bridge 
send a topology change (TC) message whenever it detects a 
topology change event. The bridge sends such messages on 
all of its ports participating in the active topology.  A bridge 
receiving a TC message forwards this message on all of its 
ports participating in the active topology. The bridge 
receives a TC message on one of its ports; it flushes the 
forwarding table entries at all of its other port. Here we 
consider all the topologies while simulating the results.  

  

Fig.1. Simple topology vulnerable to count to infinity 

  2.5. Count to infinity problem in RSTP 

A count to infinity can occur in RSTP when there is a cycle 
in the physical topology and this cycle loses connectivity to 
the root bridge due to a network failure.  Fig.1 shows a 
simple topology vulnerable to count to infinity.  A link 
failure between the bridge 1 and 2 can result in a count to 
infinity. This problem arises when the bridges cache 
topology information from the port at their alternate ports, 
and use the information indiscriminately in the future, if the 
root port loses connectivity to the root bridge.  This 
topology information may be fresh or stale. Then the bridge 
may spread this stale information to other bridges resulting 
in a count to infinity. Here we present an example which 
illustrates count to infinity in RSTP which uses the 
following rules:    

1) If a bridge can no longer reach the root bridge via its 
root port and does not have an alternate port, it declares 
itself to the root. 

2) A bridge sends out a BPDU immediately after the 
topology information it is announcing has changed. 

3) A designated port becomes the root port if it receives a 
better BPDO than what the bridge has received before.  
That is, this BPDU announces a better path to the root 
than via the current root port. 

4) When a bridge loses connectivity to the root bridge via 
its root port and it has one or more alternate ports, it 
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adopts the alternate port with the lowest cost path to the 
root as its new root port. 

Fig.2. An example of count to infinity 
 
(a) Time t1 (b) Time t2 (c) Time t3 (d) Time t4 (e) Time t5 (f) Time t6 

  Figure-2 shows a network in which each box represents a 
bridge.  The upper number is the bridge ID and the lower 
two numbers represent the root bridge and the cost to the 
root.  The cost is arbitrarily set to 20. 

  Figure 2 (a) shows the stable active topology at time t1. 
Figure 2 (b) shows the network at time t2 when the link 
between bridge 1 and 2 dies. Bridge 2 declares itself to be 
the root since it has no alternate port (rule1).  Bridge 2 
announces to bridge 3 and 4 that it is the root (rule 2).  At 
time t3 bridge3 makes bridge 2 its root as it does not have 
any alternate port.  But bridge 4 has an alternate port 
forming a path to bridge1.  Bridge 4 incorrectly uses this 
alternate port as its new root port.  It makes bridge 3 its 
parent on the path to the now unavailable bridge 1 (rule 4).   
Bridge 4 doesn’t know that this formed topology 
information at the alternate port is stale.  At time t4, bridge 
4 announces to bridge that it has a path to bridge1, 
spreading the stale topology information and initiating a 
count to infinity.  Bridge 2 makes bridge 4 its parent and 
updates the cost to bridge1.  At time t5 bridge 3 sends a 
BPDU to bridge 4 saying that bridge 2 is the root.  Since 
bridge 3 is parent for bridge 4, bridge 4 accepts this 
information and sets its cost to bridge 2 as 40.  At time t6 
bridge 2 sends a BPDU to bridge 3 saying that it has path to 
bridge1.  Bridge 3 makes bridge 2 its parent, updating its 
cost to bridge 1 continues to go around the cycle in a count 
to infinity until either it reaches its maximum age. 

  Whenever a network is partitioned, if the partition does not 
contain the root bridge as a cycle, there exists a race 
condition that can result in the count-to-infinity behavior. 

1) Claim 1: If a network is partitioned, the partition 
without the previous root bridge must contain a 
bridge that has no alternate port. 

2) Claim 2: If a network is partitioned, and the partition 
without the previous root bridge contains a cycle, a 
race condition exists that may lead to count-to-
infinity. 

  Count-to-infinity may even occur without a network 
partition. This new topology information will go around the 
loop until it reaches an alternate port caching stale, but 
better information.  Again this stale information will chose 
the new information around the loop in a count to infinity.  
This will keep going until the stale topology information 
reaches its massage. 

3. Count to Infinity Induced Forwarding Loops 

  The reasons for the formation of a count to infinity 
induced forwarding loop are. 

1. Count to infinity occurs around a physical network 
cycle. 

2. During count to infinity, the fresh topology 
information stalls at a bridge because the bridge port 
has reached its TX hold count and subsequently the 
stale information is received at the bridge.  As a 
result, the fresh information is eliminated from the 
network. 

3. The sync. operation that would have prevented a 
forwarding loop is not performed by a bridge because 
of a race condition allowing the forwarding loop to 
be formed. 

3.1. Duration of count to infinity 

A count to infinity must end when the stale information is 
discarded due to reaching the maximum age.  Thus the stale 
information can cross at most maximum age hops.  
Topology information in a BPDU can reside in memory at a 
bridge for at most (3x Hello time) unless it gets refreshed by 
a new incoming BPDU. Therefore the theoretical upper 
bound for stale information to stay in the network is (3 x 
Hello time x Max Age).    

  Figure 3 shows the convergence times measured.  For 
every number of links the experiment is repeated 10 times 
and report the measured conveyance times under the count 
to infinity. In our experiments we use a simulator [2] that is 
based on the simulator by Myers et al. [3]. Adding more 
redundant links dramatically increases the convergence 
time. This is because adding more redundant links results in 
more alternate ports per bridge. 
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Fig.3. Convergence time in a network of 16 bridges after failure of root  

4. RSTP with Epochs 

  RSTP with Epochs is an extension to RSTP.  It mainly 
concentrates on introducing sequence numbers in the 
BPDUs.  The root bridge adds a sequence number to each 
BPDU it generates.  Then the other bridges generate and 
transmit their own BPDUs based on the latest root’s BPDU 
and including the root’s latest sequence number.  The 
purpose of these sequence numbers is to identify stale 
BPDUs. 

  An Epoch is an interval starting when the true root bridge 
achieves root status and ending when the true root bridge 
contests for root status.  Another bridge will contend for 
root status because it did not hear from the previous root or 
because it finds its bridge ID to be lower than that of the 
previous root.  A bridge may find it has a lower bridge ID 
than the root because it has just joined the network and its 
bridge ID is lower than the current root’s bridge ID, making 
it eligible to be the new root.  If the previous root has retired 
and contending bridge is eligible to be the root, the new root 
will use a sequence number higher than the highest 
sequence number it received from the retired root. 

  If the old root is reachable and eligible to be the root, it 
will use sequence number higher than the contending bridge 
sequence numbers to re-take the network.  Each bridge has a 
local representation of an epoch with an interval of 
sequence numbers it heard from the same root bridge.  The 
interval is represented by two sequence numbers, first seqno 
and current seqno.  First seqno is the sequence number this 
bridge has heard from the current root.  Current seqno is the 
current or latest sequence number the bridge has heard from  

 

 

 

 

 

Fig.4. Handling the death of the parent bridge 

 

the root. Based on these two values the bridges will work. 
Each bridge records two values, first seqno and current 
seqno., that it has received from the current root bridge. 
These two sequence numbers represents the current epoch. 

 

 

Fig.5. Handling the reception of BPDU in the RSTP with epochs 

 

A BPDU with a sequence number less than the recorded 
first seqno must be a stale BPDU belonging to an earlier 
epoch. Figure 4 shows the flow chart to handle the death of 
the parent bridge.  When a bridge detects disconnection 
from it parent, it goes for any alternate ports if available.It 
chooses one of these alternate ports as its new root port.  If 
the bridge does not have any alternate ports, it declares itself 
as the new root and starts broad casting its own BPDUs that 
have a sequence number larger than that the last sequence 
number that it received from the old root. 
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Figure 5 shows the handling of the receipt of a BPDU in 
RSTP with Epochs.  Bridges discard the sequence numbers 
when comparing BPDUS declaring the same root.  If a 
BPDU arrives declaring a different root than the one 
perceived root then it signals the beginning of a new epoch.  
The new epoch has a different root declared by the received 
BPDU.  The first and last sequence numbers are set to the 
sequence number reported by the BPDU is larger than or 
equal to the first recorded sequence number but smaller than 
or equal to the largest recorded sequence number of the 
current root, the bridge with the lowest ID, among the ones 
declared by the BPDU and the current root and it is the one 
accepted by the bridge as the current root.  

If a bridge receives a BPDU declaring another bridge with 
an inferior bridge ID to its own as the root, the bridge starts 
sending BPDUs declaring itself as the root. These BPDUs 
are given a sequence number that is larger than that received 
from the bridge with the inferior ID.  When one of these 

BPDUs reaches the old root bridge with the inferior ID, it 
will stop declaring itself as the root. Fig 6(b) shows the 
convergence times measure. RSTP with epochs can 
convergence in at most 400 microseconds in these 
experiments, but RSTP takes second to converge even under 
this simple network. In the third set of experiments we use 
simple “Ring” topologies where the bridges form a simple 
cycle. Again we kill the Root Bridge and measure the 
convergence time for both protocols.  Figure 6(c) shows the 
convergence times measured. Here RSTP with Epochs takes 
roughly twice the amount of time to converge compared to 
RSTP. 

6. Effect of Count to Infinity on Port Saturation 

  A port is said to be saturated if it has reached its TX hold 
count limit but still has more BPDUs to transport. We 
present a time sequence of the number of saturated ports in 
the whole network in the three experiment scenarios. 

Fig.6. Convergence Time in a network of 4 to 10 bridges (a) Complete Graph topologies (b) Loop topologies (c) Nodes in the ring

 5. Evaluating RSTP with Epochs 

In this section, we compare the convergence times of RSTP 
and RSTP with epochs in the event of failure in three 
families of topologies.  For each family of topologies, the 
number of bridges in the network varies and the 
corresponding convergence time is measured. 

  In the first experiment we take a set of complete graphs 
varying the number of bridges in the network.  In each run 
we kill the root bridge and measure the time.  It takes for the 
network to converge under both protocols. 

Fig 6(a) shows the convergence times measured. Here the 
vertical bar represents the range of values measured for each 
network size.  In the graph, the highest convergence time 
observed for RSTP with epochs is only 100 micro seconds. 
RSTP with epochs does not suffer from the count-to-infinity 
problem on the other hand; RSTP takes a much longer time 
to converge. 

  In the second set of experiments we use simpler loop 
topologies. For example, a network with 10 bridges means 
the loop has 9 bridges and the loop is connected to the root 
bridge that does not lie on the loop.  Again, we kill the Root 
Bridge and measure the convergence time for both 
protocols. 

  

Fig.7 Time sequence of number of ports that reached their TxHoldCount 
limit while still having more BPDUs waiting for transmission. This 
experiment is for a 10 bridge fully connected graph topology where the 
root bridge dies at time 20 (a) RSTP (b) RSTP with Epochs. In the first 
experiment a complete graph of 10 nodes.  

 

Figure 7 (a) shows the spike in the number of saturated 
ports at startup. Due to spike in the transmitted BPDUs at 
startup by both protocols, starting from time 20 when the 
root port dies, we find a long period of time that is close to 
20 seconds in RSTP. This is due to count to infinity 
problem where BPDUs spin around the loop causing the 
ports to quickly reach their TX hold count limit.  But RSTP 
with Epochs does not suffer from the count-to-infinity 
problem. 
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Fig.8 Time sequence of number of ports that reached their TxHoldCount 
limit while they still have more BPDUs waiting for transmission. This 
experiment is for a 10 bridge “loop” topology. The root bridge dies at time 
20. (a) RSTP. (b) RSTP with Epochs. 

 Similarly in the second experiment, we observe from figure 
8 (a) the spike in the number of satured ports at startup.  We 
also observe in RSTP a period after the failure of the root 
bridge where there are several saturated ports. Again this is 
due to the count-to-infinity problem. 

Fig. 9 Time sequence of number of ports reaching their TxHoldCount limit 
while still having more BPDUs waiting for transmission. This experiment 
is for a 10 bridge ring topology where a link connecting the root bridge to a 
neighbor dies at time 20. (a) RSTP. (b) RSTP with Epochs. 

  In the third experiment, failure of the root cuts the loop so 
there is no count to infinity.  Thus for both protocols no 
ports get saturated after the failure that you can see in fig.9 

7. Conclusions 

In studying RSTP under partial network failure, it can 
exhibit a count-to-infinity problem.  In experiments, we 
observe that in some scenarios the count to infinity can 
extend the convergence time to reach 50 seconds.  During 
the count to infinity, bridges transmit a lot more BPDUs 
than during its normal operation.  In this work, we identify 
the exact conditions under which the count-to-infinity 
problem arises.  We propose a simple and effective solution 
called RSTP with epochs that eliminate the count to infinity 
problem. This solution also enhances the convergence time. 

References 

1) “Spanning tree protocol problems and related design 
consideration,” Cisco systems, Inc. (online).  
www.cisco.can/ward/public/473/16.htm/ 

2) K. Elmeleegy, “RSTP with Epochs simulator”, 2007 (online)  
http://www.cs.rice.edu/kdiaa/ethernet 

3) K. Elmelegy, A. L. Cox, and T.S.E.Ng, “On count-to-infinity 
induced forwarding loops in Ethernet networks,” in Proc. IEEE 
Infocom 2006, Barcelona, Spain, Apr. 2006. 

4)  K. Elmelegy, A.L.Cax, and T.S.E.Ng, “ Etherfuse: An Ethernet 
watch dog,” in Proc. ACM SIG Communications, Kyoto, Japan, 
Aug.2007, pp. 253-264. 

5)  Khaled Elmeleegy, Alan L. Cox, and T. S. Eugene Ng. 
“Understanding and Mitigating the Effects of Count to Infinity in 
Ethernet Networks”. To appear in IEEE/ACM Transactions on 
Networking. 

6)  R. Garcia, J. Duato and F.Silla “LSOM:A link state protocol 
over MAC addresses for metropolitan backbones using optical 
Ethernet switches” in proc. 2nd IEEE Int .Symp. Network 
Computing and Applications (NCA’03), pp.315-321, Apr.2003. 

7) J. J. Gracia-lunes-Aceves, “Loop-free routing using diffusing 
computations,” IEEE/ACM Trans. on Networking, vol.1, No.1, 
pp.130-141, Feb.1993 

8) J. M. Jafee and F. H. Moss, “A responsive distributed routing 
algorithm in computer networks,” IEEE Trans. on 
Communications., vol. 30, No.7, pp.1758-1767, July 1982 

9)R.Pelman  “RBridges:Transparent Routing,”in proc.IEEE IN-
FOCOM,2004,vol.2,pp.234-244 

10)S.Ray,R.A.Guerin and R.Sofia “Distributed path computation 
with out Transient loops” ,” IEEE Trans. on Communications., vol. 
30, No.7, July  

                             

Mr. D. Ganesh received his B.Tech degree in 
Information Technology from JNT University, 
Hyderabad in 2006 and M.Tech degree in 
Computer Science and Engineering from 
Acharya Nagarjuna University in 2010.During 
the period 2006-07 he worked as Assistant 
Professor in Information Technology 

department at AITS, Rajampet, India. Since 2007, he is working 
as Assistant Professor in IT Department at Sree Vidyanikethan 
Engineering College, Tirupati, India. He has Published 4 papers 
in national and International conferences. His current research 
interests are computer networks, Object oriented design and 
unified modeling. He is a member of ISTE, CSI 
 

Dr. Rama Prasad V Vaddella was born in 
Tirupati, India in 1962. He received the M.Sc 
(Tech.) degree in Electronic Instrumentation 
from Sri Venkateswara University, Tirupati in 
1986 and M.E degree in Information Systems 
from BITS, Pilani, India in 1991. During the period 

1989-1992 he worked as Assistant Lecturer in Computer 
Science at BITS, Pilani. From 1992 to 1995, he worked as 
Lecturer in Computer Science and Engineering and as 
Associate Professor from 1995 to 1998 at RVR & JC College of 
Engineering, Guntur, India. Since 1998, he is working as 
Professor and Head of Information Technology department at 
Sree Vidyanikethan Engineering College, Tirupati, India. He 
was awarded the Ph.D degree in Computer Science by J.N.T. 
Univeristy, Hyderabad, during 2007 for his thesis in Fractal 
Image Compression. He is also holding the additional position 
of Chairman, Board of Studies in Computer Science, and Vice-
Principal at Sree Vidyanikethan Engineering College 
(Autonomous under JNT University, Anantapur, India). He has 
also worked as a short time Research Assistant at Indian 
Institute of Science, Bangalore during the year 1986. He has 
published about 10 papers in national and international 
conferences and 05 papers in International journals, edited 
books, and refereed conferences. He is also a member of the 
editorial review board for 05 International journals in Computer 
Science and Information Technology. His current research 
interests include computer graphics, image processing, 
computer networks, computer architecture and neural 
networks. He is a member of IEEE, ISTE and CSI 


