
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

1

QoS Assurance for Service-Based Applications

Using Discrete-Event Simulation

Yassine Jamoussi1, Maha Driss1,2, Jean-Marc Jézéquel2, and Henda Hajjami Ben Ghézala1

1ENSI, RIADI-GDL Laboratory, University of Manouba
La Manouba, 2010, Tunisia

2IRISA/INRIA, University of Rennes I
Rennes, 35042, France

Abstract

The new paradigm for distributed computing over the Internet is
that of Web services. The goal of Web services is to achieve
universal interoperability between applications by using
standardized protocols and languages. One of the key ideas of
the Web service paradigm is the ability of building complex and
value-added service-based applications by composing pre-
existing services. For a service-based application, in addition to
its functional requirements, Quality of service (QoS)
requirements are important and deserve a special attention. In
this paper, we introduce a discrete-event modeling approach for
service-based application. This approach is oriented towards QoS
assurance through discrete-event simulation.

Keywords: Web Services, Service-based applications, QoS
assurance, Discrete-event simulation.

1. Introduction

In the last ten years, the Service-Oriented Architecture
(SOA) emerged as a powerful solution to enable
interoperability between distributed software components
known as Web Services (WSs) [1, 2]. WSs are
universally accessible software components that are
advertised, discovered, and invoked through the Web.
The key aspect of the SOA is the use of standard
technologies such as: WSDL, UDDI, and SOAP. These
technologies define standard ways of WSs definition,
discovery, and invocation.
SOA is the best solution for composite application
integration. Indeed, WSs may be easily
composed/aggregated together into a new application,
regardless specific implementation platforms and
technologies [3]. The obtained Service-Based Application
(SBA) may be further published as a new service creating
a collaboration network between different organizations.
For example, telecommunication companies can be

considered as an example of service aggregators [4].
Multiple and different services such as calling services
(e.g., call forwarding and call barring), messaging
services (e.g., text messaging and video messaging), and
internet services (e.g., chat and e-mail) are brought
together and offered via telephone.
For an SBA, in addition to its functional requirements,
Quality of Service (QoS) requirements are important and
deserve a special attention. QoS requirements for SBAs
include response time, throughput, availability and
security [4, 5]. Being able to characterize SBAs based on
QoS has three distinct advantages [6]:

 It allows for the design of SBAs according to
QoS requirements. Indeed, it is important for
service providers to know the QoS of a SBA at
prior before offering it to their clients.

 It allows for the selection and the execution of
SBAs based on their QoS. Since many services
provide overlapping or identical functionality,
different SBAs can be composed, satisfying the
same functional requirement. A choice needs to
be made to determine which SBA is to be used to
provide with the more beneficial QoS.

 It allows for the evaluation of alternative
adaptation strategies. The dynamic and
unpredictable nature of the execution
environment (e.g., network resources and devices
characteristics) has an important impact on QoS
of SBAs. Thus, in order to better fulfill QoS
requirements, it is necessary to adapt SBAs in
response to an unexpected evolution of the
execution environment.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

2

To assure the desired QoS requirements for an SBA,
different analytical quality assurance techniques can be
used. The goal of these techniques is to evaluate QoS and
uncover quality defects in the SBAs after they have been
created. An example for analytical quality assurance
techniques is simulation. The goal of the simulation
technique is to emulate the conversational behavior of the
atomic WSs of an SBA. In this paper, we adopt a special
case of simulation that is Discrete-Event Simulation (DES)
to assure QoS of SBAs. DES has proved its effectiveness
for diagnosing the QoS of software applications [7, 8]. To
perform DES, we propose a discrete-event modeling
approach for SBAs. This approach enables analytical
description of SBAs and allows QoS evaluation in
different status and conditions of the execution
environment. To assure QoS evaluation, we define a
lightweight quality model for WSs focusing on essential
properties of QoS that play a critical role for the effective
management of WSs. These properties are measured by
DES technique. We propose also a context model that
supports an explicit description of the execution
environment. This model is depicted into the simulation
model in order to provide a context-based approach for
evaluating QoS of SBAs. Our approach is supported by a
simulation framework named SBAS.
The remainder of the paper is structured as follows:
Section 2 introduces an overview of the Web services
architecture. Section 3 reviews QoS assurance techniques
for SBAs. In section 4, discrete-event simulation issues
are addressed. We describe, in Section 5, the proposed
context model. In Section 6, we introduce our quality
model and explain metrics used to measure considered
QoS properties. Section 7 introduces our simulation
framework SBAS. Case study experimental results are
documented in Section 8. This paper ends with
concluding remarks and future work.

2. Web Services Architecture Overview

SOA is an architecture that functions are defined as WSs.
According to [1, 2], WSs are self-contained, modular
applications that can be described, published, located, and
invoked over a network, generally, the World Wide Web.
The SOA is described through three different roles:
service provider, service requester and service registry.
SOA requires three fundamental operations: publishing,
finding, and binding. The key idea of the SOA is the
following: A service provider publishes services in a
service registry. The service requester searches for a
service in the registry. He finds one or more by browsing
or querying the registry. The service requester uses the
service description to bind a service. These ideas are
shown in the following figure 1. The above operations are

supported by standard technologies that are: UDDI,
WSDL, and SOAP [2].

 Universal Description, Discovery, and Integration
(UDDI) [9]: provides a registry where service
providers can register and publish their services.

 Web Services Description Language (WSDL)
[10]: is an XML based language for describing
WSs. It specifies the location of the WS and the
operations exposed by the WS.

 Simple Object Access Protocol (SOAP) [11]: is
an XML based protocol for exchanging
information between WSs or between a client and
a WS in a decentralized and distributed
environment.

Fig. 1 Service-Oriented Architecture

What makes the SOA attractive is the ability of creating
SBAs by composing existing WSs. Such a composition is
based on the common standards of WS interfaces
regardless of the languages that are used to implement the
WSs and the platforms where the WSs are executed. In
general, the WSs have the following features that make
them better in composition inside the heterogeneous
environments [3]:

 Loosely coupled: WSs are autonomous and can
operate independently one from another. The
loosely coupled feature enables WSs to locate
and communicate with each other dynamically at
runtime.

 Universal accessibility: WSs can be defined,
described and discovered through the Web that
enables an easy accessibility.

 Standard languages: WSs are described by
standard XML languages that have been
considered as parts of the Web technology.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

3

3. Quality of Service Assurance techniques for
Service-Based Applications

By QoS, we refer to non-functional requirements of SBAs
such as response time, throughput, availability, and
security [4, 5]. Thanks to the dynamic and unpredictable
nature of the execution environment, the management and
assurance of the QoS aspects of SBAs become of utmost
importance.
To achieve the desired QoS of an SBA, two
complementary kinds of techniques can be employed:
constructive and analytical quality assurance techniques.
Figure 2 provides an overview of these techniques.

Fig. 2 Overview of Quality Assurance Techniques for Service-Based
Applications

The goal of constructive quality assurance techniques is to
ensure QoS and prevent the introduction of quality defects
while the SBA is created. Examples of such techniques
include code generation, software development guidelines,
as well as templates. The goal of analytical quality
assurance techniques is to evaluate QoS and uncover
quality defects in an SBA after it has been created. We
sub-divide the analytical quality assurance techniques into
three major classes: static analysis, monitoring, and testing.
These classes have been proposed in the software quality
assurance literature [12, 13] and have been used in a
recent overview of quality assurance approaches for SBAs
[14].
This section will cover the state of the art in analytical
quality assurance techniques for SBAs as our work deals
with proposing DES as a new analytical testing technique
to assure QoS for SBAs.

3.1 Static Analysis

Numerous efforts have been made by leading research
groups to use static analysis to evaluate QoS and to
uncover quality defects in SBAs.

The aim of static analysis is to systematically examine an
SBA in order to ascertain whether some predefined QoS
properties are met. Examples of static analysis techniques
include formal ones, like data flow analysis, model
checking, symbolic execution, type checking and
correctness proofs. We present, in the following
paragraphs, some relevant approaches applying static
analysis to SBAs.
In [15], Nakajima uses the model-checker SPIN to verify a
set of QoS properties related to SBAs. SPIN provides a
specification language that describes the SBA to be a
collection of automata. The properties to be checked are
reachability, deadlock, and freedom. These QoS properties
are expressed as formulas of linear temporal logic.

In [16], Salaün et al. propose an approach that uses
process algebra as an abstract representation means to
describe, compose, and reason on SBAs. The techniques
used to check whether an SBA described in process-
algebraic notations respects temporal QoS properties (e.g.
safety and liveness) are referred to as model checking
methods.
In [17], Foster et al. propose the tool LTSA-WS to verify
SBAs. This tool supports verification of QoS properties
(e.g. absence of deadlock and liveness) created from
design specifications and implementation models of SBAs
to confirm expected QoS results from the viewpoints of
both the designer and implementer. Scenarios are modeled
in UML, in the form of message sequence charts, and then
compiled into the finite state process algebra to concisely
model the required choreography behavior and to verify
the required QoS properties.
In [18, 19], Kazhamiakin et al. and Osterweil address the
problem of the verification and the analysis of SBAs
defined as a set of behavioral models against various QoS
requirements. The works focus on modeling and analyzing
specific QoS behavioral properties of SBAs, namely
asynchronous communications, data and time-related
properties. In [18], Kazhamiakin et al. present a
framework which relies on a formal model where temporal
logics are exploited for the specification and the
verification of the above QoS behavioral properties.

3.1 Monitoring

Monitoring has been widely used in many disciplines and,
in particular, in service-oriented engineering.
Monitoring is defined as a process of observing, collecting,
and reporting information about the execution and the
evolution of SBAs. The relevant references of monitoring
are summarized in the following paragraphs.
In [20], Keller and Ludwig propose the WSLA framework
for the specification and the monitoring of service-level
agreements. The WSLA framework defines a language for

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

4

the specification of contract information that allows for
describing the parties involved in the agreement, the
relevant QoS properties, as well as the ways to observe
and measure them and the obligations and constraints
imposed on these properties.
In [21], Ludwig et al. propose an architecture and
implementation for the creation, the management, and the
monitoring of service-level agreements represented as
WS-Agreement documents. WS-Agreement specification
provides a standardized way of defining contractual
information between service provider and customer. The
proposed architecture is called CREMONA. The
monitoring module of CREMONA is not only used to
observe and detect contract violations, but also to predict
future violations and to engage appropriate adaptation
strategies in advance.
In [22], Curbera et al. propose the COLOMBO platform
for developing, deploying, and executing SBAs. The
COLOMBO platform incorporates the tools and facilities
for checking, monitoring, and enforcing service
requirements expressed in WS-Policy notations. WS-
Policy notations define the QoS assertions that can be
attached to a particular WS, operation, or a message type.
In [23], Baresi and Guinea propose the run-time
monitoring framework DYNAMO. DYNAMO uses an
expressive monitoring language namely WSCoL for
specifying monitoring rules. DYNAMO oversees the
execution of SBAs by checking monitoring rules and by
reacting as soon as they are violated by means of the
associated adaptation strategies. In [24], Baresi et al.
extend this work for what concerns the kind of properties
the approach can monitor. The extended specification
language, namely Timed WSCoL, allows for specifying
temporal QoS properties over the events that occur during
the SBA execution.

3.1 Testing

Testing is a frequently used technique for the analysis and
the prediction of QoS of SBAs.
The goal of testing is to systematically execute SBAs in
order to uncover QoS defects. During testing, the SBA
which is tested is fed with concrete inputs and the
produced outputs are observed. The observed outputs can
deviate from the expected outputs with respect to
functionality as well as QoS. When the observed outputs
deviate from the expected outputs, a defect is uncovered.
A special case of testing is simulation. Simulation allows
us to predict software applications performance in
different status and load conditions of the execution
environment. The predicted results are used to provide
feedback on the efficiency of the application. Simulating
SBAs for QoS evaluation is a research area with little

previous work. Works in simulation that are the closest to
ours are described by [25], [26], and [27].
In [25], Narayanan and McIlraith propose a model-
theoretic semantics as well as distributed operational
semantics that can be used for the simulation, the
validation, the verification, the automated composition and
the enactment of DAMLS-described SBAs. To provide a
full service description, Narayanan and McIlraith use the
machinery of situation calculus and its execution
behaviour described with Petri Nets. They use the
simulation and modeling environment KarmaSIM to
translate DAML-S markups to situation calculus and Petri
Nets. In this work, three QoS properties are analyzed:
reachability, liveness and the existence of deadlocks.
In [26], Chandrasekaran et al. focus on problems related to
SBA specification, evaluation, and execution using
Service Composition and Execution Tool (SCET).
SCET allows to compose statically a WS process with
WSFL and to generate a simulation model that can be
processed by the JSIM simulation environment. In this
work, Chandrasekaran et al. have enhanced WSFL to
include QoS measures obtained by performing simulation
tests.
In [27], Mancini et al. present a framework which is aimed
at supporting the development of self-optimizing,
predictive and autonomic systems for WS architectures. It
adopts a simulation-based methodology which allows
predicting QoS properties in different status and load
conditions. In contrast to [25] and [26], this work
considers execution environment information in the
simulation models. This work focuses on simulating only
atomic WSs. It proposes also only one possible QoS
optimization that is response time minimization.
Enhancements are needed to simulate SBAs and to add
more optimization rules for QoS properties.

4. Discrete-Event Simulation Modeling of
Service-Based Applications

Our work deals with using simulation as an analytical
testing technique to assure QoS of SBAs.
There are two main reasons for adopting simulation
techniques: first, simulation is a dynamic analytical
technique that allows QoS predictions for software
applications in different status and conditions of the
execution environment. Second, simulation allows to tune
and to evaluate software applications without experiencing
the cost of enacting them. The originality of our work is
the adoption of a special case of simulation that is the
Discrete-Event Simulation (DES) to evaluate and assure
QoS of SBAs.
In this paper, we propose a SBA modeling approach that is
oriented towards QoS evaluation through DES. DES is a

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

5

kind of qualitative description of a dynamic system the
behavior of which is event-driven. This technique is
frequently used to analyze and predict the QoS of software
applications. Giving the evolution of the operation of an
application, we can analyze its behavior and evaluate
appropriate quality measures. [7] and [8] are fundamental
works about discrete-event systems diagnosis. DES is
suitable to model the behavior of a SBA since it is
composed of WSs which are decentralized and dynamic.
The interactions between WSs can be modeled by a
synchronized composition of several local models.
To elaborate our simulation model for SBAs, we are based
on the work presented in [28] that focuses on modeling
distributed applications. We model an SBA as a
combination of two types of entities: distributed
application and network infrastructure entities [29]. Our
simulation model is shown in figure 3.

Fig. 3 Discrete-Event Simulation Model for Service-Based Applications

4.1 Distributed Application Modeling

The operation of the distributed applications is based on the
client-server model. In this model, the client sends a set of
requests to the server and the server sends a response back
to the client for each request. The operation scenario is
supported through specifying groups of actions:

 Processing: indicating data processing;

 Request: indicating invocation of a server process;

 Write: indicating data storage;

 Read: indicating data retrieval;

 Transfer: indicating data transfer between client and
server processes;

 Synchronize: indicating replica synchronization.

Each WS is executed on a processing node. Processing
action indicates invocation of the processing unit of the
corresponding node and is characterized by the amount of
data to be processed.
Request action indicates invocation of a server process and
is characterized by the name of the server, the name of the
WS, its invoked interface and the required inputs. Request
action implies activation of the network, since the request
and the reply must be transferred from the invoking to the
invoked process, and vice versa.
There are two available actions for data storing, reading and
writing, which are respectively characterized by the amount
of the stored and retrieved data and the invoked server. The
observations and performance analysis of SBAs have
proven that SOAP messages are small and simple [30].
A transfer action is used to indicate SOAP messages
exchanged between processes.
A synchronize action is needed since the replication of data
is a common practice in such distributed applications.
Synchronize action parameters include the process replicas
that must be synchronized and the amount of transferred
data.
To describe the operation of a SBA, we proceed by
transforming the process behavior written in BPEL [31] into
discrete-event actions. BPEL is a standard proposed by IBM
and Microsoft along with several other companies to model
composed Web services. BPEL defines a grammar for
describing the behavior of a SBA. It is composed of fifteen
activity types, some of them are basic activities and the
others are structured activities. Among the basic activities,
the most important ones are the following:

 The <receive> activity: is for accepting the triggering
message from another WS;

 The <reply> activity: is for returning the response to
its requestor;

 The <invoke> activity: is for invoking another WS.

The structured activities define the execution orders of the
activities inside their scopes. For example:

 The <sequence> activity: defines the sequential order
of the activities inside its scope;

 The <flow> activity: defines the concurrent relations
of the activities inside its scope.

Each activity can be translated into the discrete-event
formalism as one or several actions.
Basic activities involve processing, request, and data
storing actions, while structured ones involve transferered
and synchronized actions.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

6

4.1 Network Infrastructure Modeling

In the proposed modeling scheme, the network
infrastructure is considered as a collection of individual
networks and internetworks, exchanging messages
through relay nodes (active communication devices e.g.
routers and switches). Communication channels represent
protocol suites (i.e. routing protocols (OSI layers 2 and 3)
and peer-to-peer protocols (OSI layers 4-7)).
According to the SOA, communication between WSs is
performed through exchanging SOAP messages.
figure 4 illustrates one way of making a remote call using
SOAP in OSI network reference model [32].

Fig. 4 Sending a SOAP Request under OSI

First at application level, a native data object needs to be
serialized into XML as SOAP request. Then, the SOAP
message is passed to HTTP level. The HTTP layer, on the
client-side, needs to “handshake” with service-side by
sending a “POST” request. This request initiated a TCP
connection. Once receiving “HTTP: ACK”, the client-side
HTTP begins to send the whole SOAP message via
TCP/IP. The SOAP message may be partitioned into a set
of small segments at TCP layer. Appropriate headers and
footers are attached to each segment as the segments are
passed through Transport, Network, Data Link layers,
until reaching the Network Interface Card (NIC) at the
physical layer. The NIC is responsible for putting the
packages onto the wire at a specific speed (network
bandwidth) to next network device (such as a router or a
switch), till server NIC [32]. The path from bottom
(physical layer) to the top (application layer) on the
service-side is opposite to the process on the client-side:
the received packages are unpacked at each layer and
forwarded to next layer for further retrieving.

4.1 Context Model

By the term “context”, we mean “information utilized by the
web service to adjust execution and output to provide the
client with a customized and personalized behavior”[33].
Since SBAs are operating in dynamic environments,
variations of execution context lead to variations in QoS
expectations. In this work, we propose a context-based
approach for evaluating SBAs performances. We consider a
context model which consists of a set of elements grouped
in 2 axes.

Fig. 5 Context Model

 User context: describes user preferences. To each
QoS property, user attributes a weight. He chooses
the value of this weight according to the level of
the QoS property he needs. (e.g., execution
time0.8).

 Computing context: describes network connectivity
(e.g., Internet connectivity, locality, and bandwidth)
and devices capabilities (e.g., memory capacity and
CPU speed).

Context information are described in the simulation model.
Context changes are modeled as discrete events.

4.2 QoS Model

In [34], we define a light-weight quality model focusing on
essential properties of QoS that play critical role for the
effective management of WSs and that can be measured by
DES technique. The QoS properties detailed above are
defined in the context of atomic WSs. They are also used to
evaluate the QoS of composite WSs. To provide aggregation
functions for computing the QoS of composite WSs, we use
the QoS computation models described by [6] and [35]. In
these works, authors propose aggregation formulae for each
pair QoS property/control statement (e.g., Sequence, Switch,
Flow, and Loop). QoS aggregation functions are
summarized in table 1.

 Response Time: it corresponds to the total time
needed by a WS to transform a set of inputs into

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

7

outputs. Response Time (RT) for a service s can
be computed as follows:

RT(s) = ST(s) + DT(s) (1)

– Service Time (ST) is the time that the WS
takes to perform its task.

– Delay Time (DT) is the time taken to
send/receive SOAP messages.

 Reliability: it corresponds to the likelihood that
the service will perform for its users on demand.
Reliability (R) of a service s is function of the
Failure Rate (FR):

R(s) = (1-FR(s))*100 (2)
– FR= successful executions/scheduled

executions

 Availability: it refers to the rate of Service
Activity (SA). Availability (A), during a time
interval I, for a service s corresponds to:

A(s) = SA(s)/I (3)

 Scalability: it computes the capacity of the
service to manage loads. To test the scalability of
a WS, we conducted the simulation while
changing the number of concurrent clients.

Table 1: QoS Aggregation Functions per control statement

4. Our Simulation Framework SBAS

We have conducted simulation experiments using NS-2
simulator [36]. NS-2 is a discrete-events simulator; its code
is written in C++ with an OTcl interpreter as a front end.
NS-2 is targeted at networking research. It provides
substantial support for simulation of TCP, routing, and
multicast protocols over wired and wireless networks. The
main advantages of such an object-oriented simulator are
reusability and easy maintenance. To support SBA
simulation, we have extended the C++ class hierarchy of
NS-2 in order to implement HTTP, SMTP, and SOAP
protocols.
Our simulation framework (SBAS) is modular and includes:
a graphical user interface, a BPEL generator, a simulation
model generator, a models library and NS-2 simulator. The

architecture of SBAS is presented in figure 6. User specifies
the SBA under study. SBAS constructs corresponding
BPEL model. Simulation model is implemented as actions
organized in the object hierarchy of the NS-2 simulator.
When simulation has been completed, results are collected
and subjected to output QoS analysis.

5. Experimentations

In this section, we describe three SBAs which satisfy the
same functional requirement. We use our discrete-event
simulation approach to evaluate QoS of each of these SBAs.

Fig. 6 Our Framework for Simulating Service-Based Applications: SBAS

To express variability modeling of SBAs, we adopt the
MAP formalism [37]. A map is a labeled directed graph
with intentions as nodes and strategies as edges between
intentions. An intention is a goal that can be achieved by the
performance of the process. Each map has two distinct
intentions Start and Stop to respectively begin and end the
navigation into the map. A strategy is an approach, a manner
to achieve an intention. The MAP permits to capture
variability by focusing on the strategy to achieve an
intention and the potential alternatives to accomplish the
same intention.
We consider an abstract intention Buy books online. Maps
(described in Figure 7, Figure 8, and Figure 9) present
possible refinements of this abstract intention. They model
different SBAs (SBA1, SBA2, and SBA3) that ensure the
same functional requirement Buy books online.

Aggregation
function

Response
Time (RT)

Reliability
(R)

Availability
(A)

Scalability
(S)

 Sequence 
n

i isRT
1

)( 
n

i isR
1

)( 
n

i isA
1

)( 
n

i isS
1

)(

Switch
  

n

i ii sRTp
1

)(* 
n

i ii sRp
1

)(*

 

n

i ii sAp
1

)(*  
n

i ii sSp
1

)(*

Flow

  niisRTMax ..1)(

 

n

i isR
1

)( 
n

i isA
1

)( 
n

i isS
1

)(

Loop

)(* sRTk ksR)(ksA)(ksS)(

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

8

Fig. 7 Map of SBA1

SBA1 begins by invoking SearchByISBN (SI) service. This
service allows the customer to search a book by entering its
ISBN code. The total price to pay is calculated using the
CalculateTotalPrice (CTP) service. The client’s account is
then checked for sufficient funds using the CheckCredit
(CCr) service. If the client has sufficient credit, the
ReleaseOrder (RO) service is invoked in order to send the
book. Otherwise, the SendCreditLowInfo (SCLI) service is
invoked.

Fig. 8 Map of SBA2

In SBA2, the client begins also by searching the book that
he wants to buy using the SearchByISBN (SI) service. The
FindLowestFare (FLF) service allows him to find the
cheapest bookstore. The client’s credit is then checked by
VerifyCredit (VC) service. If the client has sufficient credit,
ChargeCard (CC), DispatchBook (DB), and
SendConfirmationSMS (SCS) are invoked. Otherwise,
InsufficientCreditSMS (ICS) is executed in order to inform
the client of his insufficient credit.

Fig. 9 Map of SBA3

SBA3 begins also by invoking the SearchByISBN (SI)
service. The FindPayPalBookStores (FPBS) service allows
the client to find book stores accepting PayPal payments.
The client’s PayPal account is checked by
CheckPayPalAccount (CPA) service. If the client has a
PayPal account, the ChargeCard (CC) and the
ReleaseOrder (RO) services are invoked. Otherwise, the
CreatePayPalAccount (CrPA) is executed to permit to the
client to create a PayPal account.
Figure 10 shows the execution context of the user.

 Devices: PC, CPU: 1.86GHz, RAM: 2Go.

 Internet connectivity: NUMERIS, Modem speed:
512KB/s.

 Network: topology: user is connected to an Internet
Service Provider (ISP), which is in its turn
connected to Server through a Router (R).

– Link User ISP: throughput: 512KB/s,
delay: 50ms.

– Link ISP R: throughput: 1MB/s, delay:
25ms.

– Link R Server: throughput: 512KB/s,
delay: 50ms.

Fig. 10 User’s Execution Context

Table 2 illustrates the user’s preferences. For each QoS
property i, the user attribute a weight.

Table 2: User’s QoS Preferences

QoS property Weight

Response Time 0.35
Reliability 0.3

Availability 0.2
Scalability 0.15

The configuration of the simulation platform is Dual-Core
based Windows XP system. For each QoS property, we
performed a set of simulation experiments, and we have
considered the average value. Simulation results (figure 11,
figure12, figure 13, and figure 14) show that SBA1 is
more reliable, available, and scalable than SBA2 and
SBA3, but SBA2 is faster than SBA1 and SBA3.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

9

Fig. 8 Response Time Simulation Results

Fig. 9 Reliability Simulation Results

Fig. 10 Availability Simulation Results

Fig. 11 Scalability Simulation Results

To validate these results in order to help the user to choose
the appropriate SBA, we use a Benefit Function (BF). BF
is computed as follows:

1*
1 1

'    

n

i

n

i iii withdBF  (4)

Where d'i is a normalized value of a QoS dimension (i.e.,
QoS property) di and wi denotes the user’s assigned
relative importance to the dimension. As dimensions can
be of different units (e.g., response time is in second and
availability in percentage), in order to allow for a uniform
measurement of WS QoS independent of units, data
normalization is applied, which essentially transforms
values of different units into comparable ones. By
considering a 75% confidence interval, the dimensions
that are stronger with larger values (e.g., reliability,
availability and scalability) are normalized according to
the following equation:

























otherwise
d

dmd
d

ddmdifd

ddmdifd

nf

i
i

ii

ii

5.0
)(*4

)(

)(*2)(0

)(*2)(1

)(

'

'

'






 (5)

While for QoS dimensions that are stronger with smaller
values (e.g., response time), they are normalized according
to the following equation so that smaller values contribute
more to the user’s benefit:























otherwise
d

dmd
d

ddmdifd

ddmdifd

nf

i
i

ii

ii

)(*4

)(
5.0

)(*2)(1

)(*2)(0

)(

'

'

'






 (6)

Where di is the value of dimension d for the service
instance i, and m(d) and δ(d) are the mean and standard
deviation values for dimension d respectively.
The validation of SBA1, SBA2, and SBA3 has given the
results shown in table 3. This validation proves that SBA1
is more appropriate for users’ expectations than the SBA2
and SBA3 are.

Table 3: Validation Results

 SBA1 SBA2 SBA3

BF 0.31 0.265 0.12

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

10

5. Conclusion and Future Work

In this work, we adopted a discrete-events simulation
approach to evaluate QoS of SBAs. We presented a
simulation modeling approach. This approach enables an
analytical description of SBAs and allows QoS predictions
in the different status and conditions of the execution
context.
We defined a light-weight quality model considering a set
of QoS properties that can be measured by simulation
techniques. We proposed also a context model that
describes execution environment and the user’s
preferences. This model is depicted into the simulation
model in order to provide a context-based approach for
evaluating SBAs.
To show the effectiveness of our approach, we have
conducted a set of simulation experiments in order to
evaluate and to validate three SBAs that provide the same
required functionality.
One possible extension of our work is the support of
dynamic adaptations of SBAs. It requires extensive
simulation experiments to define, validate and enhance the
adaptation strategies.

Acknowledgments

This work has been supported by the European
Communitys Seventh Framework Programme FP7/2007-
2013 under grant agreement 215483 (S-Cube).
(http://www.s-cube-network.eu/).

References

[1] M. N. Huhns, and M. P. Singh, "Service-oriented Computing:

Key Concepts and Principles", in IEEE Internet Computing,
Vol. 9, No. 1, 2005, pp. 75–81.

[2] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S.
Weerawarana, "Unraveling the Web Services Web: An
Introduction to SOAP, WSDL, and UDDI", IEEE Internet
Computing, Vol. 6, No. 2, 2002, pp. 86–93.

[3] M. P. Papazoglou, "Service-oriented Computing: Concepts,
Characteristics and Directions", in Proceedings of WISE '03:
International Conference on Web Information Systems
Engineering, 2003, pp. 3–12.

[4] J. O’Sullivan, D. Edmond, and A. Hofstede, "What’s in a
Service? Towards Accurate Description of Non-functional
Service properties", Distributed and Parallel Databases, Vol.
12, No. 2, 2002, pp. 117–133.

[5] D. A. Menascé, "QoS Issues in Web Services", IEEE Internet
Computing, Vol. 6, No. 6, pp. 72–75.

[6] J. Cardoso, J. Miller, A. Sheth, and J. Arnold, "Modeling
Quality of Service for Workflows and Web Service
Processes", Journal of Web Semantics, Vol. 1, No. 3, 2004,
pp. 281-308.

[7] M. Sampath, R. Sengupta, S. Lafortune, K. Sinnamohideen,
and D. Teneketzis, "Diagnosability of Discrete-Event

Systems", IEEE Transactions on Automatic Control, Vol. 40,
No. 9, 1995, pp. 1555–1575.

[8] M. Cordier, and S. Thiébaux, "Event-based Diagnosis for
Evolutive Systems", in Proceedings of DX '94: International
workshop on Principles of diagnosis, 1994, pp. 64-69.

[9] Universal Description, Discovery and Integration
specification 3.0.2, http://uddi.org/pubs/uddi-v3.0.2-
20041019.htm

[10] Web Services Description Language 2.0,
http://www.w3.org/TR/wsdl20/

[11] Simple Object Access Protocol 1.2,
http://www.w3.org/TR/SOAP/

[12] L. J. Osterweil, "Strategic Directions in Software Quality",
ACM Computing Surveys, Vol. 28, No. 4, 1996, pp. 738-750.

[13] G. J. Myers, "Art of Software Testing", John Wiley & Sons
(Eds.), ISBN: 978-0-471-04328-7, 1979.

[14] L. Baresi, and E. DiNitto, "Test and Analysis of Web
Services", Elisabetta (Eds.), ISBN: 978-3-540-72911-2, 2007.

[15] S. Nakajima, "Model Checking Verification for Reliable
Web Service", in Proceedings of OOPSLA '02: Workshop
on Object-Oriented Web Services, 2002, pp. 20.

[16] G. Salaün, L. Bordeaux, and M. Schaerf, " Describing and
Reasoning on Web Services using Process Alge bra ", in
Proceedings of ICWS '04: IEEE International Conference
on Web Services, 2004, pp. 43.

[17] H. Foster, S. Uchitel, J. Magee, and J. Kramer, "LTSA-WS:
A Tool for Model-based Verification of Web Service
Compositions and Choreography", in Proceedings of ICSE
'06: International Conference on Software Engineering, 2006,
pp. 771– 774.

[18] L. J. Osterweil, "Formal Analysis of Web Service
Compositions", Ph.D. Dissertation, 2007.

[19] R. Kazhamiakin, M. Pistore, and L. Santuari, "Analysis of
Communication Models in Web Service Compositions", in
Proceedings of WWW’06: International Conference on
World Wide Web, 2006, pp. 267-276.

[20] A. Keller, and H. Ludwig, "The WSLA Framework:
Specifying and Monitoring Service Level Agreements for
Web Services", Journal of Network and Systems
Management, Vol. 11, No. 1, 2003, pp. 57–81.

[21] H. Ludwig, A. Dan, and R. Kearney, "CREMONA: An
Architecture and Library for Creation and Monitoring of
WS-Agreements", in Proceedings of ICSOC '04: IEEE
International Conference on Service Oriented Computing,
2004, pp. 65–74.

[22] F. Curbera, M. J. Duftler, R. Khalaf, W. Nagy, N. Mukhi,
and S. Weerawarana, "Colombo: Lightweight Middleware
for Service-Oriented Computing", IBM Systems Journal, Vol.
44, No. 4, 2005, pp. 799-820.

[23] L. Baresi, and S. Guinea, "Towards Dynamic Monitoring of
WS-BPEL Processes", in Proceedings of ICSOC '05:
International Conference of Service-Oriented Computing,
2005, pp. 269–282.

[24] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, and P.
Spoletini, "A Timed Extension of WSCoL", in Proceedings
of ICWS '07: IEEE International Conference on Web
Services, 2007, pp. 663–670.

[25] S. Narayanan, and S. A. McIlraith, "Simulation, Verification,
and Automated Composition of Web Services", in

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 6, July 2010
www.IJCSI.org

11

Proceedings of WWW '02: International Conference on
World Wide Web, 2002, pp. 77–88.

[26] S. Chandrasekaran, J. A. Miller, G. A. Silver, I. B. Arpinar,
and A. P. Sheth, "Performance Analysis and Simulation of
Composite Web Services", Electronic Markets, Vol. 13, No.
2, 2003.

[27] E. Mancini, U. Villano, M. Rak, and R. Torella, "A
Simulation-based Framework for Autonomic Web Services",
in Proceedings of ICPADS '05: IEEE International
Conference on Parallel and Distributed Systems, 2005, pp.
433–437.

[28] M. Nikolaidou, and D. Angnostopoulos, "An Application-
oriented Approach for Distributed System Modeling and
Simulation", in Proceedings of ICDCS '01: International
Conference on Distributed Computing Systems, 2001, pp.
165.

[29] M. Driss, Y. Jamoussi, and H. Hajjami Ben Ghézala, "QoS
Testing of Service-Based Applications”, in Proceedings of
IDT '08: IEEE International Design and Test Workshop,
2008, pp. 45-50.

[30] S. Chen, B. Yan, J. Zic, R. Liu, and A. Ng, "Evaluation and
Modeling of Web Services Performances", in Proceedings of
ICWS '06: IEEE International Conference on Web Services,
2006, pp. 437-444.

[31] Business Process Execution Language for Web Services 2.0,
http://www.oasisopen.org/committees/tc_home.php?wg_abbr
ev=wsbpel

[32] D. Bertsekas, and R. Gallager, "Data Networks", Prentice
Hall (Eds.), ISBN: 978-0-132-00916-4, 1992.

[33] M. Keidl, and A. Kemper, "Towards Context-Aware
Adaptable Web Services", in Proceedings of WWW '04:
International Conference on World Wide Web, 2004, pp. 55–
65.

[34] M. Driss, Y. Jamoussi, J. M. Jézéquel, H. Hajjami Ben
Ghézala, "A Discrete-Events Simulation Approach for
Evaluation of Service-Based Applications", in Proceedings
of ECOWS '08 : IEEE European Conference on Web
Services, 2008, pp.73-78.

[35] L. Zeng, B. Benatallah, A. Ngu, M. Dumas, J. Kalagnanam,
and H. Chang, "Qos-Aware Middleware for Web Services
Composition", IEEE Transactions on Software Engineering,
Vol. 30, No. 5, pp. 311–327.

[36] The ns manual, http://www.isi.edu/nsnam/ns/doc/index.html
[37] C. Rolland, and N. Prakash, "Bridging the Gap between

Organizational Needs and ERP Functionality", Requirements
Engineering, Vol. 5, No. 3, 2000, pp. 180-193.

Y. Jamoussi received the Engineering degree from the
Computer Engineering Faculty of the University of Tunisia, Tunis,
in1989, and the Ph.D. degree from the same Faculty, in 1998. He
is currently an Assistant Professor at the National School of
Information Sciences, University of Manouba, Manouba, Tunisia.
His current research interests focus on the enactment, guidance
and the monitoring of strategic process. He is a co-author of a
book on Method Engineering. He is an MVP on Biztalk. Recently,
his research interests include web services composition.

M. Driss received an engineer degree in computer science in
2006 with distinction (Major of promotion) and master degree in
software engineering in 2007 from the National School of
Computer Science (ENSI), University of Manouba, Tunisia. She is
currently a permanent researcher in the laboratory RIADI-GDL,
ENSI, University of Manouba, Tunisia, and in the INRIA team-
project Triskell, University of Rennes I, France. Her research
interests include Web services composition, QoS of Web services,
and QoS assurance techniques.

J-M.Jézéquel received an engineering degree in
Telecommunications from the ENSTB in 1986, and a Ph.D. degree
in Computer Science from the University of Rennes, France, in
1989. He first worked in Telecom industry (at Transpac) before
joining the CNRS (Centre National de la Recherche Scientifique) in
1991. Since October 2000, he is a Professor at the University of
Rennes, leading the INRIA research team Triskell. His interests
include model driven software engineering based on object
oriented technologies for telecommunications and distributed
systems.

H. Hajjami Ben Ghézala received Ph.D. degree from the
Computer Engineering Faculty of the University of Tunisia, Tunis,
in 1987. She is a Professor of Software Engineering at the
National School of Information Sciences, University of Manouba,
Manouba, Tunisia, leading the RIADI laboratory. Since the
beginning of 2009, she is the rector of the University of Manouba.
Her interests include Service Oriented Architecture.

