
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 19

An Efficient Software Engineering Ontology Tool for
Knowledge Sharing

 Polala Niranjan Reddy, Kukatlapalli Pradeep Kumar

 HOD, Dept.of CSE, Kakatiya Institute of Technology and Science,
 Warangal, A.P, India, 506015

 Asst. Professor, Dept. of ECM, Narayana Engineering College,
 Nellore, A.P, India, 524004

Abstract

Ontology is an important concept in Computer Science to
formally represent knowledge in a way software can
process the knowledge and reason about it. The software
engineering ontology assists in defining information for
the exchange of semantic project information framework.
It intends to clear up the ambiguities that occur in the
knowledge sharing between the software engineers. This
paper presents the basic ontological representations for a
given software project that which is well developed using
the rudimentary software engineering principles. It draws
a bead on an ontology model of software engineering to
represent its knowledge. This paper also elicits about the
analysis of SE Ontology and its advantages/applications
with the example scenarios. Finally, a practical
implementation of the in-depth ontological
representation is elicited at the terminal of the paper with
appropriate illustrations.

Keywords: Software Engineering, Ontology
development, Multisite software development,
Knowledge Sharing and Knowledge Engineering.

1. Introduction

With the invent of the Internet, the development of
the software in various fields, have become more
cushy and comfortable. Realizing the pros of
multisite software development, major MNC’s and
the corporate sectors have moved their business to
the countries where the employees work for curtail
and pare salaries. Software development has
increasingly focused on the Internet, which enables
a multisite environment that allows multiple teams
residing across cities, regions, or countries to work
together in a networked distributed fashion to

develop the software. However, the effective
communication and coordination across multiple
sites is extremely important for the global software
development. Team members, team leaders and the
managers who carry out, control, manage different
tasks and activities respectively may not be located
at the same site in a multisite environment.
Consider a scenario of a software development
process where the team members work in a
particular site and the person who manage them,
their team leader is at different site who controls
them and collects, integrates the completed
modules for further enhancement of the software
project. As the team completes their respective
module and send the same to the team leader. They
draft in their own form of representations for
conclusions on the completed module with respect
to their culture, customs and tradition which they
follow in their day to day life. It is obvious that
they might have not come face to face and never
met as they work online. So, strict software
engineering principles should be followed, to have
a better communication among the teams and the
team members. The incongruity in analysis, design,
documentation, presentation, and diagrams could
prevent proper access by other stake holders in a
particular software project. Seldom issues of this
kind are kept enigmatic. In reference to the above
discussed problems, the software engineering has a
commonly understood body of knowledge and is an
easily learnt subject that includes some of the latest
technology and methodology that is easily adopted.
As the teams at different sites refer to various texts
in the same software engineering domain, each
individual have a personal guide and when they

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 20

communicate with each other their terminology
could be quite startling and unusual. This leads to
inconsistency and equivocation among the teams.
Communication is the real challenge that everyone
face in their daily life and the
affective communication is an important part of a
successful business. Ontology is an important part
of developing a shared understanding across a
project to lessen the problems.
This paper is organized in five sections. The next
Section describes software engineering and
knowledge engineering as a part of related work.
Section 3 presents proposed work. Section 4 deals
with experimentation and results of a case study.
Finally section 5 presents conclusions and future
scope of the proposed work.

 2. Related Work

Software engineering is the “application of a
systematic, disciplined, and quantifiable approach
to the development, operation, and maintenance of
software”. Although the claim of software
development being an engineering discipline is
subject to ongoing discussions, there is no doubt
that it has undergone fundamental changes during
the last three decades. This assertion holds true
both for emergence of new technology and
sophistication of methodology.
In order to cope up with the complexity in the
software, there has been a constant drive to raise
the level of abstraction through modeling and
higher-level programming languages. For example,
the paradigm of model-driven development
proposes that the modeling artifacts are
“executable”, i.e. through automated validation and
code generation as being addressed by the OMG
Model Driven Architecture (MDA). However,
many problems have only partially been solved
including component reuse, composition,
validation, information and application integration,
software testing and quality. Such fundamental
issues are the motivation for new approaches
affecting every single aspect in Software
Engineering.
The engineering of knowledge-based systems is a
discipline which is closely related with Software
Engineering. The term Knowledge Engineering is
often associated with the development of expert-
systems, involving methodologies as well as
knowledge representation techniques. Since its
early days the notion of “ontology” in computer

science has emerged from that discipline, giving
rise to Ontology Engineering, which we focus on in
this paper. In computer science, the concept
“ontology” is interpreted in many different ways
and concrete ontologies can vary in several
dimensions, such as degree of formality,
authoritativeness or quality. As proposed by
Oberle, different kinds of ontologies can be
classified according to purpose, specificity and
expressiveness. The first dimension ranges from
application ontologies to reference ontologies that
are primarily used to reduce terminological
ambiguity among members of a community. In the
specificity dimension, Oberle distinguishes generic
(upper level), core and domain ontologies. Domain
ontologies are specific to a universe of discourse,
whereas generic and core ontologies meet a higher
level of generality.
Due to the emergence of the “semantic web” vision
ontologies have been attracting much attention
recently. Along with this vision, new technologies
and tools have been developed for ontology
representation, machine-processing, and ontology
sharing. This makes their adoption in real-world
applications much easier, while ontologies are
about to enter mainstream. Hence, we therefore try
to alleviate some of the confusion by providing a
framework for categorizing potential uses of

ontologies in Software Engineering.

2.1 Ontology in Software Engineering

Ontology is the philosophical study of the nature
of being, existence or reality in general, as well as
the basic categories of being and their relations.
Traditionally listed as a part of the major branch of
philosophy known as metaphysics, ontology deals
with questions concerning what entities exist or can
be said to exist, and how such entities can be
grouped, related within a hierarchy, and subdivided
according to similarities and differences. In
computer science and information science the
ontology has a key role to play with the formal
representation of the knowledge by a set of
concepts within a domain and the relationships
between those concepts.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 21

Figure1: The abstract view of Knowledge Engineering

It is used to reason about the properties of that
domain, and may be used to describe the domain.
Ontology provides a shared vocabulary, which can
be used to model a domain — that is, the type of
objects and/or concepts that exist, and their
properties and relations. An Ontology in the field
of Artificial Intelligence (AI) is an “Explicit
Specification of a Conceptualization” [1][2].
Ontologies are used in artificial intelligence,
the Semantic Web, Systems engineering, Software
engineering, Biomedical informatics, Library
science, Enterprise bookmarking, and Information
architecture as a form of the knowledge
representation about the world or some part of it.
The basic abstract view of the knowledge
engineering with all its outcomes is shown in fig 1.
The creation of domain ontologies is also
fundamental to the definition and use of
an enterprise architecture framework. The actual
content and the domain are represented in the fig 2
with Semantic and the Pragmatic representations
respectively. The content in the semantics (Actual
meanings) area can be Stuff, Things, and
Relationships.
The Domains in the pragmatic (Dealing or
concerned with facts or actual occurrences) area
can be Knowledge domain, Applications domain,
and Functional domain. Combining both the
Content and the Domain knowledge forms the basis
for the Ontology. A simple and very regular
ontological representation can be a standard library
in a programming language environment which has
all the methods, attributes, classes and packages
that gives the answer for the preliminary question
of “What Exists” in a programming language.
However, some Representations may be poor due
lack quality in design, implementation and so forth.
So, a more specialized schema must be created to

make the information useful, and for this, we
utilize ontology.

Figure2: Ontology with its ‘Content’ and the ‘Domain’

Concepts

An abstract view of representing the software
engineering knowledge is shown in fig.3. The
whole set of software engineering concepts
representing software engineering domain
knowledge is captured in ontology. Based on a
particular problem domain, a project or a particular
software development probably uses only part of
the whole set of software engineering concepts.
The specific software engineering concepts used
for the particular software development project
representing software engineering sub domain
knowledge are captured in ontology.
Ontology in the area of computer science
represents the effort to formulate an exhaustive and
rigorous conceptual schema within a given domain
[3]. The generic software engineering knowledge
represents all software engineering concepts, while
specific software engineering knowledge represents
some concepts of software engineering for the
particular problem domain. If a project uses purely
object-oriented methodology, then the concept of a
data flow diagram may not necessarily be included
in specific concepts. Instead, it includes concepts
like class diagram, activity diagram, and so on.
However, for each project in the developmental
domain, there exists project information or actual
data including project agreements and project
understanding. The project information especially
meets a particular project need and is needed with
the software engineering knowledge to define
instance knowledge in ontology.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 22

Figure 3: Schematic overview of the Software Engineering

Ontology

Note that the domain knowledge is separate from
instance knowledge. The domain knowledge is
quite definite, while the instance knowledge is
particular to the problem domain and
developmental domain in a project. Once all
domain knowledge, sub domain knowledge, and
instance knowledge are captured in ontology, it is
available for sharing among software engineers
through the Internet.
The main purpose of the software engineering
ontology is to enable communication between
computer systems or software engineers in order to
understand common software engineering
knowledge and to perform certain types of
computations; it also enables knowledge sharing
and reuse.

The key ingredients that make up the software
engineering ontology are a vocabulary of basic
software engineering terms and a precise
specification of what those terms mean. For
software engineers or computer systems, different
interpretations in different contexts can make the
meaning of terms confusing and ambiguous, but a
coherent terminology adds clarity and facilitates a
better understanding. Software engineering
ontology has specific instances for the
corresponding software engineering concepts.

2.2 Developing Ontology

In the domain of knowledge engineering
methodology for developing ontology, there are
some fundamental rules in ontology design. These

rules may seem rather dogmatic. However, these
rules can often help in making design decisions.
- There is no one correct way to model a domain
- There are always viable alternatives. The
best solution almost always depends on the
application that you have in mind and the
extensions that you anticipate.
- Ontology development is necessarily an iterative
process.
- Concepts in the ontology should be close to
objects (physical or logical) and relationships in
your domain of interest. These are most likely to be
nouns (objects) or verbs (relationships) in
sentences that describe your domain.
Deciding what we are going to use the ontology
for, and how detailed or general the ontology is
going to be, will guide many of the modeling
decisions down the road.

Pros of developing Ontologies:

- Share common understanding of information

among people or agents
- Reuse of domain knowledge
- Make domain assumptions explicit
- Separate domain knowledge from operational

knowledge
- Analyze domain knowledge

After we define an initial version of the ontology,
we can evaluate and debug it by using it in
applications or problem-solving methods or by
discussing it with experts in the field, or both. As a
result, we will almost certainly need to revise the
initial ontology.

Then we can create a knowledge base by defining
individual instances of these classes filling in
specific slot value information and additional slot
restrictions. However, the concept of the
‘Ontology’ exists in each and every domain and
about all the phases of the software development
process. As ‘class’ represent a real world entity,
everything explained with the classes and their
relationships. Various software engineering
ontology modeling are elicited in the next sections
with a case study for deeper evaluations.

3. Proposed Work

Many different modeling ontologies have been
developed. Mostly used are the Knowledge
Interchange Format (KIF) [4] and knowledge
representation languages designed from KL-ONE

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 23

[5]. However, these representations have had little
success outside. AI research laboratories and
require a steep learning curve. KIF provides a Lisp-
like syntax to express sentences of first order
predicate logic and descendants of KL-ONE
include description logics or terminological logics
that provide a formal characterization of the
representation Traditionally, AI knowledge
representation has a linear syntax. The recent
papers documented in the literature, to use the
Unified Modeling Language for the ontology
modeling [6][7][8]. In Unified Modeling Language
ontology information is modeled in class diagrams
and Object Constraint Language (OCL) [8].
However, there is controversy, regarding whether
or not ontology goes beyond the standard UML
modeling. However, the standard UML cannot
express advanced ontology features such as
constraints or restrictions. Therefore, additional
notations need to be defined in order to leverage
expressiveness in the ontology.
Note that the models underlying ontology should
be distinguished from its use in software
development to model the application domain
model. This kind of agile modeling method for

ontology design has some benefits derived
from using the same paradigm for modeling

ontology and knowledge. In this paper, graphical
notations of modeling software engineering
ontology are presented. The main aim is not only to
create a graphical representation to make it easier
to understand, but also, this model should be able
to capture the semantic richness of the defined
software engineering ontology.

4. Experimentation and Results

This part of the section deals with a case study of
the practical implementations with respect to the
ontology basics. It is elicited with appropriate
screen shots explaining the each and every module
clearly. The main application works as follows.
This project is developed as a windows application
on the Visual Studio framework version 3.5. This
concentrates on the pictorial representation of the

applications developed on the same domain. The

application takes other software projects as input,
i.e., by browsing from the current location. The
appropriate compiled .exe file should only be
selected as an input. After selecting the .exe file,
the corresponding textboxes shows the selected

folder details, .exe files etc. Loading the same;
would provide the namespaces, number of classes,
number of methods, number of parameters to it that
are used in writing the code at the implementation
phase of the project. The classes, methods,
parameters are shown separately in the respective
fields shown under.

The vivacious module that is developed is to draw
the same concepts in a pictorial representation. It
gives the hierarchical structure of the whole
concepts that are used in the project. It also depicts
the relation between the classes with the other
classes. At last the schema representing the
ontology can be saved as a JPEG, GIF, BMP or any
other format.

This paves way for the basics of the Ontological
representation in the software engineering. The
main use of this application is that there is no need
to walk through the entire thousands of lines code
to analyze the project.

Project input:

Figure 4: Project input module with the folder details and
contents

However, it is always preferred to assay and
explore the concepts which are in a diagrammatic
representation. The same was elicited in the current
project. The screen shots of the application are
shown in the further sections.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 24

Fig 4 is the project input module, the user is asked
to provide the corresponding input to the
application. The input may be any other
application/project (the debug file). The project
should posses a ‘.exe’ file; which in turn mean that
it should be a complete project or application that is
in use. After giving the input, three text boxes are
displayed, namely;

‘Folder contents’,
 ‘.exe files’ and
 ‘Folder details’.

These are shown clearly within their respective text
boxes. However, the ‘folder details’ field contains
the creation time, full name, last access time, last
write time of the folder where the actual
application is installed.
This paves way for the basis of the ontology in the
software projects. The first step of the ontological
representations of the concepts of software
engineering starts here. However, as mentioned
earlier, the project/application selection process
takes on, as shown in the figure 5.

Figure 5: Application/ project selection process

It is developed with the help of the ‘tree view
control’ in Visual Studio C# .Net. The Windows
Forms Tree View Control helps to display the
hierarchy of nodes that can be used to represent the

organization structure, file system or any other
system which includes hierarchical representation.

For each node added in the hierarchy, user can add
a child node to it or a sibling node to it provided
there is a parent node for the selected node present,
as depicted in the fig5.

As this project is a windows application, the
project/application selection is done by searching
in the local drives. The three buttons namely;
Select, Exit, Cancel can basically serve the user to
navigate through the application. The same concept
can be scaled to a web site application or can be
inserted in a network (typical LAN).

Project classification:

Loading the corresponding application, the
following are displayed with respect to the data
available in the project, which is shown in the fig6
above.
Namespaces,
Class Names,
Methods,
Parameters.

The Namespace that is used over here is the
‘project_diagrams’.

Some of the Classes are
‘Jclassview’,
‘form2’,
‘classdiagram’,
‘AssociationDrawer’,
’ClassDrawercontainerpanel’.

Some of the Parameters that were used are
‘nClassId’, ‘drData’, ‘value’, ‘strFilePath’.

Some of the Methods are

‘ExtractDllMethod’,
‘RetriveMethodandParameterInfo’,
‘RetiveClassInfo’,
‘MakeDataSet’,
‘CheckIsProprtyMethod’,
‘CollectPropertyMethod’,
‘GetClassInfo_DataRowIndex’.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 25

Figure 6: Detecting the classes, methods and parameters

The respective count i.e., number of Namespaces,
Class names, Methods, Parameters are also
depicted in the summery information text box.
This module is developed using the ‘Grid View
control’ in the Visual Studio in with c# language.
These concepts refer directly to the ontology
definition where as ontology is an “Explicit
Specification of a Conceptualization”. However,
the concepts that are in the application are
explicitly specified over here without referring or
going again to the implementation phase (coding)
in the software development process.

Ontology Type 1:

Figure 7 is a window which has the menu options
such as the ‘File’, ‘Settings’, this in turn contains
the ‘open file’, ‘draw diagram’, ‘select the root
node’, ‘exit’. This developed using the ‘Tree View
Control’, shows all methods, classes, parameters in
a hierarchical representation. It depicts the
hierarchical representation in a pictorial enactment
of the concepts. It also shows the relationship,
mainly the inheritance between the classes which
reside in the same. The concepts in the class are
disclosed and are shown when they are desired by
the user to view the whole concepts.
The same diagram can be saved as JPEG, GIF,
BMP, TIFF as desired by the user for reference.

The diagram fig 7 shows the clear picture of the
concepts that are used to develop the project and is
very easy to analyze the things; this refers to the
basics of the ontology in the multisite software
development process. This is aimed to canvass or
dissect the conceptions of the project before it is
delivered to the customer/client.

Figure 7: Pictorial contents of the concepts used in developing
the actual application

However, fig 8 shows the actual ontological
representations of the various concepts used in the
developing the application. Their relation and the
hierarchy are also shown with clear representations.
The same can be viewed, saved for further
enhancements and information processing of that
particular software application in the same domain.

Ontology Type 2:

The following depiction shown in the figure 9 is
another type of the ontology representations, as
explained above, this module also takes the .dll file
or the .exe file as the input. All the contents in the
application are shown in a tree format as like a
super class and sub class format, aside of the
window. After selecting the root node, the
dependency relation like diagram is shown with
respect to the namespaces, classes, and methods.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 26

If the namespace root node is selected, the
corresponding classes contained in it are depicted.

Figure 8: Class diagram with the relations among the classes

Figure 9: Class diagram with the relations among the classes

When a Class is selected as root node, then the
appropriate methods contained in it are represented
as a dependency diagram.

Thus the ontologies concept in the software
engineering domain can be illustrated. However,
this application can act as an efficient software
engineering ontology tool for common knowledge
sharing especially in the multisite software

development.

5. Conclusions

In this paper, we have analyzed the characteristics
of software engineering ontology. The alternative
formalism have been defined i.e., graphical
notations of modeling software engineering
ontology. The modeling notations are used to
design software engineering ontology. When the
knowledge of the software engineering domain is
represented in a declarative formalism, the set of
software engineering concepts, their relations, and
their constraints are reflected in the representation
that represents knowledge. Thus, the software
engineering ontology can be defined by using a set
of software engineering representational terms. The
software engineering ontology is organized by
concepts, not words. This is in order to recognize
and avoid potential logical ambiguities. A New
different software engineering ontology has been
developed for communication purposes. A case
study with the practical implementations were
implemented and deployed.

References

[1] T.R. Gruber, “A Translation Approach to Portable
Ontology Specification,” Knowledge Acquisition, 1993.

[2] T.R. Gruber, “Toward Principles for the Design of
Ontologies Used for Knowledge Sharing,” Proc. Int’l
Workshop Formal Ontology in Conceptual Analysis and
Knowledge Representation,
1993

[3] Wikipedia, “Ontology (Computer Science) from
Wikipedia, the Free Encyclopedia,”
http://en.wikipedia.org/wiki/Ontology_
%28computer_science%29, June 2006.

[4] M.R. Genesereth, “Knowledge Interchange Format—
Draft Proposed American National Standard,”
http://logic.stanford.edu/kif/dpans.html, 1998.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 27

[5] R.J. Brachman and J.G. Schmolze, “An Overview of
the KL-ONE Knowledge Representation System,”
Cognitive Science, pp. 171-216, 1985.

[6] D. Duric, “MDA-Based Ontology Infrastructure,”
Computer Science and Information Systems, vol. 1, no.
1, 2004.

[7] P. Kogut et al., “UML for Ontology Development,”
The Knowledge Eng. Rev., vol. 17, no. 1, pp. 61-64,
2002.

[8] J. Evermann, “A UML and OWL Description of
Bunge’s Upper-Level Ontology Model,” Software and
Systems Modeling, vol. 8, no. 2, pp. 235-249, Apr. 2009.

P.Niranjan Reddy received B.E. (Computer Technology)
from Nagpur University in 1992 and M.Tech (Computer
Science and Engineering) from NIT ,Warangal in 2001.
He has been working as a faculty member in the
department of CSE of KITS, Warangal, Since 1996.
Presently he is heading dept of CSE. He also a research
scholar pursuing his research in CSE in K.U., Warangal.
He authored two text books, Theory of computation and
Computer Graphics in the field of Computer Science. He
published 5 papers in international journals and 6 papers
international conferences. He is member of the ISTE and
CSI.

Pradeep Kumar, born in India 1985, obtained his M.Tech
in Software Engineering in 2010 from Kakatiya Institute of
Technology and Sciences, Warangal. He received his
B.Tech degree in Electronics and Computer Engineering
in 2007 from Narayana Engineering Collage, Nellore. He
was one of the toppers in his university in M.Tech and is
currently working as an Assistant Professor at Narayana
Engineering Collage, Nellore. His research interests
include Software Engineering Ontology, Knowledge
Sharing, Knowledge Management, and Genetic
Algorithms.

