
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814

38

Frequent Pattern Mining Using Record Filter Approach

D. N. Goswami1, Anshu Chaturvedi2 and C.S. Raghuvanshi3

 1 SOS in Comp. Appl., Jiwaji University
Gwalior, M.P. 474001, India

2 Dept. of Comp. Appl., MITS College of Enggineering
Gwalior, M.P. 474001, India

3 Dept. of Comp. Appl., GICTS College of Professional Education
Gwalior, M.P. 474001, India

Abstract
In today’s emerging world, the role of data mining is increasing
day by day with the new aspect of business. Data mining has
been proved as a very basic tool in knowledge discovery and
decision making process. Data mining technologies are very
frequently used in a variety of applications. Frequent itemsets
play an essential role in many data mining tasks that try to find
interesting patterns from databases, such as association rules,
correlations, sequences, episodes, classifiers, clusters. Frequent
patterns are the itemsets that are frequently visited in database
transactions at least for the user defined number of times which
is known as support threshold. Presently a number of algorithms
have been proposed in literature to enhance the performance of
Apriori Algorithm, for the purpose of determining the frequent
pattern. The main issue for any algorithm is to reduce the
processing time. Present paper proposes a new record filtering
based approach which takes very less time for performing
computations during mining process. Experiments have been
performed on synthetic datasets and the results have been
presented. The results show that proposed approach performs
well in terms of execution time and ultimately enhances
efficiency as compared to traditional Apriori approach.

Keywords: Association Rule, Apriori, Frequent Patterns, Record
Filtering

1. Introduction

Data mining is the process of finding interesting trends or
patterns in large datasets to steer decision about future
activities. It is the analysis of dataset to find unsuspected
relationship and to summarize the data in new ways which
are both understandable and useful. Evolutionary progress
in digital data acquisition and storage technology has
resulted in huge and voluminous databases. Data is often
noisy and incomplete, and therefore it is likely that many

interesting patterns will be missed and reliability of
detected patterns will be low. This is where, Knowledge

Discovery in Databases (KDD) and Data Mining (DM)
helps to extract useful information from raw data.
Frequent patterns are those that occur at least a user-given
number of times (referred as minimum support threshold)
in the dataset. Frequent itemsets play an essential role in
many data mining tasks that try to find interesting patterns
from databases, such as association rules, correlations,
sequences, episodes, classifiers, clusters. Frequent pattern
mining is one of the most important and well researched
techniques of data mining. The mining of association rules
is one of the most popular research domain. The original
motivation for searching association rules came from the
need to analyze so called supermarket transaction data,
that is, to examine customer behavior in terms of the
purchased products. Association rules describe how often
items are purchased together. Such rules can be useful for
decisions concerning product pricing, promotions, store
layout and many others.

2. Problem

The problem of mining association rules is to generate all
rules that have support and confidence greater than or
equal to some user specified minimum support and
minimum confidence threshold respectively. A formal
statement of the association rule problem is given in [1],
[9], [10], [11].

Let  = { i1, i2, i3, i4………. im } be a set of m distinct
literals called items, D is a set of transactions (variable
length) over . Each transaction contains a set of items i1,
i2, i3, i4……….. ik  . Each transaction is associated with

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
www.IJCSI.org

39

an identifier, called TID. An association rule is an
implication of the form X  Y, where X, Y   and X 
Y = 0. Here X is called the antecedent and Y is called the
consequent of the rule. The rule X  Y holds in the
transaction set D with confidence  if among those
transactions that contain X % of them also contain Y.
The rule X  Y has support S in the transaction set D if
S% of transactions in D contains X  Y. The selection of
association rules is based on these two values (some
additional constraints may also apply). These are two
important measures of rule interestingness. They
respectively reflect usefulness and certainty of a
discovered rule. They can be described by the following
equations:

Support (X  Y) = Frequency (X  Y) / /D/
Confidence (X  Y) = Frequency (X  Y) / Frequency
(X)
where /D/ represents the total number of transactions
(tuples) in D.

A frequent itemset is an itemset whose number of
occurrences is above a minimum support threshold. An
itemset of length k is called k-itemset and a frequent
itemset of length k as k-frequent itemset. An association
rule is considered strong if it satisfies a minimum support
threshold and minimum confidence threshold.

3. Classical Frequent Pattern Mining
Algorithms

There are different algorithms and approaches for frequent
pattern discovery. Techniques to discover the association
among data, such as AIS [1], SETM [2], and Apriori
[1][3] have been widely studied.
Apriori is a great achievement in history of association
rule mining, Apriori algorithm was first proposed by
Agrawal et al. The AIS is just a straightforward approach
that requires many passes over the database, generating
many candidate itemsets and storing counters of each
candidate while most of them turn out to be not frequent.
Apriori is more efficient during the candidate generation
process for two reasons, Apriori employs a different
candidates generation method and a new pruning
technique.
There are two processes to find out all the large itemsets
from the database in Apriori algorithm. First the candidate
itemsets are generated, then the database is scanned to
check the actual support count of the corresponding
itemsets. During the first scanning of the database the
support count of each item is calculated and the large 1-
itemsets are generated by pruning those itemsets, whose
supports are below the predefined threshold. In each pass

only those candidate itemsets that include the same
specified number of items are generated and checked. The
candidate k-itemsets are generated after the k-1th passes
over the database by joining the frequent K-1 itemsets. All
the candidate, k-itemsets are pruned by checking their sub
(k-1) –itemsets, this k-itemsets candidate is pruned out
because it has no hope to be frequent according to the
apriori property. The Apriori property says that every sub
(k-1) –itemsets of the frequent k-itemsets must be
frequent.
An analysis of Apriori algorithm has let the authors to
identify the following limitations-

I. The first issue in Apriori is that it generates a large
number of candidate itemsets.

II. The second lacuna is that it takes a large number of
database scans in order to discover frequent
patterns.

4. The Apriori Algorithm

The Apriori algorithm [4],[5],[6],[7],[8] is also called the
level-wise algorithm and was proposed by Agrawal and
Srikanth in 1994. It is the most popular algorithm to find
all the frequent sets which use the downward closure
property. The advantage of the algorithm is that before
reading the database at every level, it prunes many of the
sets which are unlikely to be frequent sets by using the
Apriori property, which states that all nonempty subsets of
frequent sets must also be frequent. This property belongs
to a special category of properties called anti-monotone in
the sense that if a set cannot pass a test, all of its supersets
will fail the same test as well.
Using the downward closure property and the Apriori
property, this algorithm works as follows. The first pass of
the algorithm counts the number of single item
occurrences to determine the L1 or single member frequent
itemsets. Each subsequent pass, K, consists of two phases.
First, the frequent itemsets Lk-1 found in the (k-1)th pass
are used to generate the candidate itemsets Ck, using the
Apriori candidate generation algorithm. Next, the database
is scanned and the support of the candidates in Ck is
determined to ensure that Ck itemsets are frequent
itemsets.

4.1 Steps of Algorithm

Initialize: k := 1, C1 = all the 1- item sets;
read the database to count the support of C1 to determine
L1.
L1 := {frequent 1- item sets};
k:=2; //k represents the pass number//
while (Lk-1 ≠ ) do
begin

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
www.IJCSI.org

40

Ck := gen_candidate_itemsets with the given Lk-1
prune(Ck)
for all transactions t  T do
increment the count of all candidates in CK that are
contained in t;
Lk := All candidates in Ck with minimum support ;
k := k + 1;
end
Answer := k Lk ;

4.2 Working Example of Apriori

To understand the functioning of classical Apriori algorithm, we
consider a database of 15 transactions containing an item set I =
{I1,I2,I3,I4,I5} of five items.

Table 1: Database (D)

TID Items

T1 I1, I3, I5

T2 I1, I4

T3 I4, I5

T4 I2, I3, I4

T5 I1, I2, I3

T6 I2, I4, I5

T7 I2, I5

T8 I2, I3, I4, I5

T9 I4

T10 I2, I3, I4, I5

T11 I3, I4

T12 I1

T13 I2, I4, I5

T14 I4, I5

T15 I1, I2, I3, I4, I5

Before starting the Apriori we assume absolute support
count of 3.

In the first step of classical Apriori we take the candidate
set of one item and scan the database to count the support
of each member of candidate set

Table2

Scan D to
count the
support of

each
candidate

Itemse
t

Sup.
coun

t
Compare
candidate

support with
minimum

support count to
get frequent set

Itemse
t

Sup.
coun

t
I1 5 I1 5
I2 8 I2 8
I3 7 I3 7
I4 11 I4 11
I5 9 I5 9

 Candidate Frequent
 set of 1 item set of 1 item

After determining the frequent set of 1 item, we generate
the candidate set of 2 items by merging the frequent set of
1 item. After that we again scan the database D to count
the support of each element of candidate set and generate
the frequent set of 2 items by comparing support count
with minimum support count.
 Table3

Scan D to
count the
support of

each
Candidate

Itemse
t

Sup.
coun

t

Compare
candidate

support with
minimum

support count to
get frequent set

Itemse
t

Sup.
coun

t
I1, I2 2 I1, I3 3
I1, I3 3 I2, I3 5
I1, I4 2 I2, I4 6
I1, I5 2 I2, I5 5
I2, I3 5 I3, I4 5
I2, I4 6 I3, I5 5
I2, I5 6 I4, I5 7
I3, I4 5
I3, I5 4
I4, I5 7

 Candidate Frequent
 set of 2 items set of 2 items

Further we generate a candidate set of 3 items by using
frequent 2 item sets and pruning technique. After that we
again scan all the transactions in database D to count the
support of each element of candidate set in order to get the
frequent set by comparing them with the minimum support
count.
 Table4

Scan D to
count the
support of

each
candidate

Itemset
Sup.
coun

t

Compare
candidate

support with
minimum
support

count to get
frequent set

Itemset
Sup.
count

I2, I3, I4 4 I2, I3, I4 4
I2, I3, I5 3 I2, I3, I5 3
I2, I4, I5 5 I2, I4, I5 5
I3, I4, I5 3 I3, I4, I5 3

 Candidate Frequent
 set of 3 items set of 3 items

In the next step we generate candidate set of 4 items by
using frequent 3 item sets and pruning technique and
determine the support of candidate set by scanning all the
transactions available in the database in order to get
frequent set of 4 items.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
www.IJCSI.org

41

 Table5

Scan D to

 count the
support of

each
candidate

Itemset
Sup.

Count
Compare
candidate
support

with
minimum
support

count to get
frequent set

Itemset
Sup.
count

I2, I3,
I4, I5

3 I2, I3,
I4, I5

3

 Candidate Frequent
 set of 4 items set of 4 items

In this way classical Apriori discover all frequent item set
by scanning all the transactions in each repetitive scan and
thus takes a lot of time.

5. Proposed Record Filter Approach

The author has critically analyzed the apriori algorithm
and observed that we have to count the support of itemsets
many times during mining process. Since counting the
occurrences of itemsets is a time-consuming process
hence, the present paper proposes a novel approach for
mining frequent patterns that takes less time as compared
to Apriori algorithm. In case of Apriori algorithm when
we count the support of candidate set of length k, we also
check its occurrence in transaction whose length may be
greater than, less than or equal to the k. But in the
proposed approach support count of candidate sets only in
the transaction records whose length is greater than or
equal to the length of candidate set is checked, because
candidate set of length k, can not exist in the transaction
record of length k-1 , it may exist only in the transaction
of length greater than or equal to k.

5.1 Steps of Proposed Algorithm

Initialize: k := 1, C1 = all the 1- item sets;
read the database to count the support of C1 to determine
L1.
L1 := {frequent 1- item sets};
k:=2; //k represents the pass number//
while (Lk-1 ≠ ) do
begin
Ck := gen_candidate_itemsets with the given Lk-1
prune(Ck)
for all transactions t whose length is greater than or
equal to k  T do
increment the count of all candidates in CK that are
contained in t;
Lk := All candidates in Ck with minimum support ;
k := k + 1;
end

Answer := k Lk ;

5.2 Working Example

To illustrate the working of proposed approach, we use the
above mentioned transactional database D Shown in
Table1. The transactional database (Table 1) contains 15
transactions with an item set I = {I1, I2, I3, I4, I5} of five
items and we consider the same minimum support count of
3.
Initially we consider the candidate set of size one and
determine the support count as shown below
 Table6

Scan D to
count the
support of

each
candidate

Itemse
t

Sup.
coun

t
Compare
candidate

support with
minimum

support count to
get frequent set

Itemse
t

Sup.
coun

t
I1 5 I1 5
I2 8 I2 8
I3 7 I3 7
I4 11 I4 11
I5 9 I5 9

 Candidate Frequent
 set of 1 item set of 1 item

Next we generate candidate set of size-two and determine
the support count only in the transactions which contain at
least two items. Hence the transaction T12, that contains a
single item will not be considered during this step.

Table7

Scan D to
count the
support of

each
candidate

Itemse
t

Sup.
coun

t

Compare
candidate

support with
minimum

support count to
get frequent set

Itemse
t

Sup.
coun

t
I1, I2 2 I1, I3 3
I1, I3 3 I2, I3 5
I1, I4 2 I2, I4 6
I1, I5 2 I2, I5 5
I2, I3 5 I3, I4 5
I2, I4 6 I3, I5 5
I2, I5 6 I4, I5 7
I3, I4 5
I3, I5 4
I4, I5 7

 Candidate Frequent
 set of 2 items set of 2 items

Further we generate a candidate set of size-3 and
determine the support count by considering only those
transactions which contain at least 3 items. Hence the
transaction containing only one or two items will not be

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
www.IJCSI.org

42

0

100

200

300

400

500 1000 1500 2000

Apriori

Record
Filtering
Based
Approach

scanned throughout the database (i.e. T2, T3, T7, T9, T11,
T12, T14)

Table8

Scan D to
count the
support of

each
candidate

Itemset
Sup.
coun

t

Compare
candidate

support with
minimum
support

count to get
frequent set

Itemset
Sup.
count

I2, I3, I4 4 I2, I3, I4 4
I2, I3, I5 3 I2, I3, I5 3
I2, I4, I5 5 I2, I4, I5 5
I3, I4, I5 3 I3, I4, I5 3

 Candidate Frequent
 set of 3 items set of 3 items

In next step, we generate the candidate set of size-4 and
determine the support count by considering only those
transactions which contains at least 4 items. In this process
we ignore those transactions that contain 1, 2 or 3 items.

Table9

Scan D to
count the
support of

each
candidate

Itemset
Sup.

Count
Compare
candidate
support

with
minimum
support

count to get
frequent set

Itemset
Sup.
count

I2, I3,
I4, I5

3 I2, I3,
I4, I5

3

 Candidate Frequent
 set of 4 items set of 4 items

In this way proposed approach discovers the frequent
itemsets of all size by saving considerable amount of
processing time.

6. Performance Evaluation
To explore the performance of proposed algorithm,
synthetic dataset is used and all the experiments are
performed on Pentium IV 2.93 GHz PC machine with 512
MB RAM, running Microsoft Windows 2000. This
algorithm is implemented in Java and used hash-set to
calculate the candidate itemsets. All the runtime reports
include both CPU time and I/O time.
For the comparative study of classical Apriori and
proposed approach, we have taken a database of 5000
transactions containing 50 unique items.
During this analytical process we have considered 1000
transactions to generate the frequent pattern with the
support count of 10% and the process is repeated by
increasing the transaction gradually. Table below (Table
10) shows the execution time corresponding to different
transaction sizes.

Table 10: Execution time in seconds for different
transaction size

Finally as a result of critical analysis, we can see that
proposed approach (Record filtering based approach)
takes only 90% time in comparison to classical Apriori.
Hence, we save approx 10 % time in the of proposed
approach.

7. Conclusion

 Present paper proposes a new record filter based
algorithm which is a variation of the Apriori
algorithm and performs fewer database scans than
Apriori and utilizes only transaction of specific sizes
for the generation of frequent itemsets. As observed
by many researchers counting the occurrences of
itemsets is a time consuming activity, this paper
introduces a new strategy of considering only those
transactions whose length is greater than or equal to
the length of candidate set is checked, because
candidate set of length k , can not exist in the
transaction record of length k-1 , it may exist only in
the transaction of length greater than or equal to k.
Due to this, proposed approach takes very less time
for performing computations during mining process.
Experiments have been performed on synthetic
datasets and the results have been presented. The
results show that proposed approach performs well in
terms of execution time and ultimately enhances
efficiency as compared to traditional Apriori
approach.

Transaction
Size

Execution time
(seconds)
Apriori

Execution time
(seconds)

Record Filtering
Based Approach

500 42 37

1000 92 82

1500 167 149

2000 392 348

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 7, July 2010
www.IJCSI.org

43

 References
[1]Agrawal, R., Imielinski, T., and Swami, A. N. 1993.
Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM SIGMOD
International Conference on Management of Data, 207-216.
[2] Agrawal, R. and Srikant, R. 1994. Fast algorithms for mining
association rules. In Proc. 20th Int. Conf. Very Large Data
Bases, 487-499.
[3] Agarwal, R. Aggarwal, C. and Prasad V., A tree projection
algorithm for generation of frequent itemsets. In J. Parallel and
Distributed Computing, 2000.
[4] R. Agrawal and R. Srikant. Fast algorithms for mining
association rules. IBM Research Report RJ9839, IBM Almaden
Research Center, San Jose, California, June 1994.
[5] A. Amir, R. Feldman, and R. Kashi. A new and versatile
method for association generation. Information Systems, 2:333–
347, 1997.
[6] R.J. Bayardo, Jr. Efficiently mining long patterns from
databases. In L.M. Haas and A. Tiwary, editors, Proceedings of
the 1998 ACM SIGMOD International Conference on
Management of Data, volume 27(2) of SIGMOD Record, pages
85–93. ACM Press, 1998.
[7] S. Parthasarathy, M. J. Zaki, M. Ogihara, S. Dwarkadas;
Incremental and interactive sequence mining; Int'l Conf. on
Information and Knowledge Management; 1999.
[8] Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen,
Umeshwar Dayal; Multi-Dimensional Sequential Pattern Mining;
Int'l Conf. on Information and Knowledge Management; 2001.
[9] Richard Relue, Xindong Wu, Hao Huang; Efficient runtime
generation of association rules; Int'l Conf. on Information and
Knowledge Management; October 2001.
[10] Assaf Schuster, Ran Wolff, and Dan Trock; Distributed
Algorithm for Mining Association Rules; IEEE Int'l Conf. on
Data Mining; November 2003.
[11] Wei-Guang Teng, Ming-Syan Chen, and Philip S. Yu;
Resource-Aware Mining with Variable Granularities in Data
Streams; SIAM Int'l Conf. on Data Mining; 2004

Dr. D.N.Goswami

D.N. Goswami is Professor and Head in the School of Studies in
Computer Science, Jiwaji University, Gwalior. He has done Master
in Computer Applications and Ph.D. in Computer Science from
Jiwaji University. His Research interests includes Software Quality
and Reliability analysis, Adhoc Networks ,Relational Data base
Management Systems and Data Mining. He has guided Ph.D.
theses in Computer Science and Applications.

Dr.Anshu Chaturvedi

Anshu Chaturvedi Currently working as Lecturer in Department of
Computer Applications at Madhav Institute of Technology and
Sciences, Gwalior. She has obtained her Ph. D. in 2009. Her
research interests include Adhoc Networks, Data Mining.
Operating Systems and Security. She is a life member of
Computer Society of India She has seven years of experience in
the academic field. She has also won Young Scientist Award in
2009.

Mr. C.S.Raghuvanshi

C.S.Raghuvanshi is doing Ph.D in computer science from jiwaji
university Gwalior under the guidance of Dr. D.N.Goswami and
also working as lecturer in GICTS college of professional
education Gwalior. He has done M.sc (IT) from Jiwaji University
Gwalior and M.Tech(IT) From AAI Deemed University Allahabad.
His Research interests includes Data Mining, Adhoc
Network,Software Engineering.

