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Abstract 
In today’s emerging world, the role of data mining is increasing 
day by day with the new aspect of business. Data mining has 
been proved as a very basic tool in knowledge discovery and 
decision making process. Data mining technologies are very 
frequently used in a variety of applications. Frequent itemsets 
play an essential role in many data mining tasks that try to find 
interesting patterns from databases, such as association rules, 
correlations, sequences, episodes, classifiers, clusters. Frequent 
patterns are the itemsets that are frequently visited in database 
transactions at least for the user defined number of times which 
is known as support threshold. Presently a number of algorithms 
have been proposed in literature to enhance the performance of 
Apriori Algorithm, for the purpose of determining the frequent 
pattern. The main issue for any algorithm is to reduce the 
processing time. Present paper proposes a new record filtering 
based approach which takes very less time for performing 
computations during mining process. Experiments have been 
performed on synthetic datasets and the results have been 
presented. The results show that proposed approach performs 
well in terms of execution time and ultimately enhances 
efficiency as compared to traditional Apriori approach. 
 
Keywords: Association Rule, Apriori, Frequent Patterns, Record 
Filtering 
 

1. Introduction 
 
Data mining is the process of finding interesting trends or 
patterns in large datasets to steer decision about future 
activities. It is the analysis of dataset to find unsuspected 
relationship and to summarize the data in new ways which 
are both understandable and useful. Evolutionary progress 
in digital data acquisition and storage technology has 
resulted in huge and voluminous databases. Data is often 
noisy and incomplete, and therefore it is likely that many 

interesting patterns will be missed and reliability of 
detected patterns will be low. This is where, Knowledge  
 
 
Discovery in Databases (KDD) and Data Mining (DM) 
helps to extract useful information from raw data. 
Frequent patterns are those that occur at least a user-given 
number of times (referred as minimum support threshold) 
in the dataset. Frequent itemsets play an essential role in 
many data mining tasks that try to find interesting patterns 
from databases, such as association rules, correlations, 
sequences, episodes, classifiers, clusters. Frequent pattern 
mining is one of the most important and well researched 
techniques of data mining. The mining of association rules 
is one of the most popular research domain. The original 
motivation for searching association rules came from the 
need to analyze so called supermarket transaction data, 
that is, to examine customer behavior in terms of the 
purchased products. Association rules describe how often 
items are purchased together. Such rules can be useful for 
decisions concerning product pricing, promotions, store 
layout and many others.  
 
2. Problem 
  
The problem of mining association rules is to generate all 
rules that have support and confidence greater than or 
equal to some user specified minimum support and 
minimum confidence threshold respectively. A formal 
statement of the association rule problem is given in [1], 
[9], [10], [11]. 
 
Let   = { i1, i2,  i3, i4……….   im } be a set  of m distinct 
literals called items, D is a set of transactions (variable 
length) over . Each transaction contains a set of items i1, 
i2,  i3, i4………..   ik   . Each transaction is associated with 
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an identifier, called TID.  An association rule is an 
implication of the form X  Y, where X, Y   and X   
Y = 0. Here X is called the antecedent and Y is called the 
consequent of the rule. The rule X   Y holds in the 
transaction set D with confidence  if among those 
transactions that contain X  % of them also contain Y. 
The rule X  Y has support S in the transaction set D if 
S% of transactions in D contains X  Y. The selection of 
association rules is based on these two values (some 
additional constraints may also apply). These are two 
important measures of rule interestingness. They 
respectively reflect usefulness and certainty of a 
discovered rule. They can be described by the following 
equations: 
 
Support (X   Y) = Frequency (X  Y) / /D/ 
Confidence (X   Y) = Frequency (X  Y) / Frequency 
(X)  
where /D/ represents the total number of transactions 
(tuples) in D. 
  
A frequent itemset is an itemset whose number of 
occurrences is above a minimum support threshold. An 
itemset of length k is called k-itemset and a frequent 
itemset of length k as  k-frequent itemset. An association 
rule is considered strong if it satisfies a minimum support 
threshold and minimum confidence threshold.  
 
3. Classical Frequent Pattern Mining 
Algorithms 
 
There are different algorithms and approaches for frequent 
pattern discovery. Techniques to discover the association 
among data, such as AIS [1], SETM [2], and Apriori 
[1][3] have been widely studied. 
Apriori is a great achievement in history of association 
rule mining, Apriori algorithm was first proposed by 
Agrawal et al. The AIS is just a straightforward approach 
that requires many passes over the database, generating 
many candidate itemsets and storing counters of each 
candidate while most of them turn out to be not frequent. 
Apriori is more efficient during the candidate generation 
process for two reasons, Apriori employs a different 
candidates generation method and a new pruning 
technique. 
There are two processes to find out all the large itemsets 
from the database in Apriori algorithm. First the candidate 
itemsets are generated, then the database is scanned to 
check the actual support count of the corresponding 
itemsets. During the first scanning of the database the 
support count of each item is calculated and the large 1-
itemsets are generated by pruning those itemsets, whose 
supports are below the predefined threshold. In each pass 

only those candidate itemsets that include the same 
specified number of items are generated and checked. The 
candidate k-itemsets are generated after the k-1th  passes 
over the database by joining the frequent K-1 itemsets. All 
the candidate, k-itemsets are pruned by checking their sub 
(k-1) –itemsets, this k-itemsets candidate is pruned out 
because it has no hope to be frequent according to the 
apriori property. The Apriori property says that every sub 
(k-1) –itemsets of the frequent k-itemsets must be 
frequent. 
An analysis of Apriori algorithm has let the authors to 
identify the following limitations-  
 

I. The first issue in Apriori is that it generates a large 
number of candidate itemsets.  

II. The second lacuna is that it takes a large number of 
database scans in order to discover frequent 
patterns. 

 
4. The Apriori Algorithm 
 
The Apriori algorithm [4],[5],[6],[7],[8] is also called the 
level-wise algorithm and was proposed by Agrawal and 
Srikanth in 1994. It is the most popular algorithm to find 
all the frequent sets which use the downward closure 
property. The advantage of the algorithm is that before 
reading the database at every level, it prunes many of the 
sets which are unlikely to be frequent sets by using the 
Apriori property, which states that all nonempty subsets of 
frequent sets must also be frequent. This property belongs 
to a special category of properties called anti-monotone in 
the sense that if a set cannot pass a test, all of its supersets 
will fail the same test as well. 
Using the downward closure property and the Apriori 
property, this algorithm works as follows. The first pass of 
the algorithm counts the number of single item 
occurrences to determine the L1 or single member frequent 
itemsets. Each subsequent pass, K, consists of two phases. 
First, the frequent itemsets Lk-1 found in the (k-1)th pass 
are used to generate the candidate itemsets Ck, using the 
Apriori candidate generation algorithm. Next, the database 
is scanned and the support of the candidates in Ck is 
determined to ensure that Ck itemsets are frequent 
itemsets. 

4.1 Steps of Algorithm 

Initialize: k := 1, C1 = all the 1- item sets; 
read the database to count the support of C1 to determine 
L1. 
L1 := {frequent 1- item sets}; 
k:=2; //k represents the pass number// 
while (Lk-1 ≠ ) do 
begin 
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Ck := gen_candidate_itemsets with the given Lk-1 
prune(Ck) 
for all transactions t  T do 
increment the count of all candidates in CK that are 
contained in t; 
Lk := All candidates in Ck with minimum support ; 
k := k + 1; 
end 
Answer := k Lk ;  

4.2 Working Example of Apriori 

To understand the functioning of classical Apriori algorithm, we 
consider a database of 15 transactions containing an item set I = 
{I1,I2,I3,I4,I5} of five items. 
 

Table 1: Database (D) 
 

TID Items 

T1 I1, I3, I5 

T2 I1, I4 

T3 I4, I5 

T4 I2, I3, I4 

T5 I1, I2, I3 

T6 I2, I4, I5 

T7 I2, I5 

T8 I2, I3, I4, I5 

T9 I4 

T10 I2, I3, I4, I5 

T11 I3, I4 

T12 I1 

T13 I2, I4, I5 

T14 I4, I5 

T15 I1, I2, I3, I4, I5 

 
Before starting the Apriori we assume absolute support 
count of 3. 
 
In the first step of classical Apriori we take the candidate 
set of one item and scan the database to count the support 
of each member of candidate set   

 
Table2 
 

Scan D to 
count the 
support of 

each 
candidate 

Itemse
t 

Sup. 
coun

t 
Compare 
candidate 

support with 
minimum 

support count to 
get frequent set 

Itemse
t 

Sup.
coun

t 
I1 5 I1 5 
I2 8 I2 8 
I3 7 I3 7 
I4 11 I4 11 
I5 9 I5 9 

 

               Candidate   Frequent  
              set of 1 item               set of 1 item 

After determining the frequent set of 1 item, we generate 
the candidate set of 2 items by merging the frequent set of 
1 item. After that we again scan the database D to count 
the support of each element of candidate set and generate 
the frequent set of 2 items by comparing support count 
with minimum support count.     
                                       Table3 

 

Scan D to 
count the 
support of 

each 
Candidate 

Itemse
t 

Sup.
coun

t 

Compare 
candidate 

support with 
minimum 

support count to 
get frequent set 

Itemse
t 

Sup.
coun

t 
I1, I2 2 I1, I3 3 
I1, I3 3 I2, I3 5 
I1, I4 2 I2, I4 6 
I1, I5 2 I2, I5 5 
I2, I3 5 I3, I4 5 
I2, I4 6 I3, I5 5 
I2, I5 6 I4, I5 7 
I3, I4 5   
I3, I5 4   
I4, I5 7   

 
               Candidate   Frequent  
              set of 2 items             set of 2 items 

Further we generate a candidate set of 3 items by using 
frequent 2 item sets and pruning technique. After that we 
again scan all the transactions in database D to count the 
support of each element of candidate set in order to get the 
frequent set by comparing them with the minimum support 
count.   
                                       Table4 

 

Scan D to 
count the 
support of 

each 
candidate 

Itemset
Sup.
coun

t 

Compare 
candidate 

support with 
minimum 
support 

count to get 
frequent set 

Itemset 
Sup. 
count

I2, I3, I4 4 I2, I3, I4 4 
I2, I3, I5 3 I2, I3, I5 3 
I2, I4, I5 5 I2, I4, I5 5 
I3, I4, I5 3 I3, I4, I5 3 

                       Candidate   Frequent  
              set of 3 items             set of 3 items 

 
In the next step we generate candidate set of 4 items by 
using frequent 3 item sets and pruning technique and 
determine the support of candidate set by scanning all the 
transactions available in the database in order to get 
frequent set of 4 items.  
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                                        Table5 
 

Scan D to 
 

 count the 
support of 

each 
candidate 

Itemset 
Sup. 

Count 
Compare 
candidate 
support 

with 
minimum 
support 

count to get 
frequent set 

Itemset
Sup. 
count

I2, I3,  
I4, I5 

3 I2, I3,  
I4, I5 

3 

 
               Candidate   Frequent  
              set of 4 items             set of 4 items 

 
In this way classical Apriori discover all frequent item set 
by scanning all the transactions in each repetitive scan and 
thus takes a lot of time.   
  
5. Proposed Record Filter Approach  
 
The author has critically analyzed the apriori algorithm 
and observed that we have to count the support of itemsets 
many times during mining process. Since counting the 
occurrences of itemsets is a time-consuming process 
hence, the  present paper proposes a novel approach for 
mining frequent patterns that takes less time as compared 
to Apriori algorithm.  In case of Apriori algorithm when 
we count the support of candidate set of length k, we also 
check its occurrence in transaction whose length may be 
greater than, less than or equal to the k. But in the 
proposed approach support count of candidate sets only in 
the transaction records whose length is greater than or 
equal to the length of candidate set is checked, because 
candidate set of length k, can not exist in the transaction 
record of length k-1 , it may exist only in the transaction 
of length greater than or equal to k. 

5.1 Steps of Proposed Algorithm 

Initialize: k := 1, C1 = all the 1- item sets; 
read the database to count the support of C1 to determine 
L1. 
L1 := {frequent 1- item sets}; 
k:=2; //k represents the pass number// 
while (Lk-1 ≠ ) do 
begin 
Ck := gen_candidate_itemsets with the given Lk-1 
prune(Ck) 
for all transactions t whose length is greater than or 
equal to k  T do 
increment the count of all candidates in CK that are 
contained in t; 
Lk := All candidates in Ck with minimum support ; 
k := k + 1; 
end 

Answer := k Lk ;  

5.2 Working Example 

To illustrate the working of proposed approach, we use the 
above mentioned transactional database D Shown in 
Table1. The transactional database (Table 1) contains 15 
transactions with an  item set I = {I1, I2, I3, I4, I5} of five 
items and we consider the same minimum support count of 
3. 
Initially we consider the candidate set of size one and 
determine the support count as shown below  
                                          Table6 

 

Scan D to 
count the 
support of 

each 
candidate 

Itemse
t 

Sup.
coun

t 
Compare 
candidate 

support with 
minimum 

support count to 
get frequent set 

Itemse
t 

Sup.
coun

t 
I1 5 I1 5 
I2 8 I2 8 
I3 7 I3 7 
I4 11 I4 11 
I5 9 I5 9 

 
               Candidate   Frequent  
              set of 1 item               set of 1 item 
 

Next we generate candidate set of size-two and determine 
the support count only in the transactions which contain at 
least two items. Hence the transaction T12, that contains a 
single item will not be considered during this step.  
 

Table7 
 

Scan D to 
count the 
support of 

each 
candidate 

Itemse
t 

Sup.
coun

t 

Compare 
candidate 

support with 
minimum 

support count to 
get frequent set 

Itemse
t 

Sup.
coun

t 
I1, I2 2 I1, I3 3 
I1, I3 3 I2, I3 5 
I1, I4 2 I2, I4 6 
I1, I5 2 I2, I5 5 
I2, I3 5 I3, I4 5 
I2, I4 6 I3, I5 5 
I2, I5 6 I4, I5 7 
I3, I4 5   
I3, I5 4   
I4, I5 7   

 
               Candidate   Frequent  
              set of 2 items             set of 2 items 
 

Further we generate a candidate set of size-3 and 
determine the support count by considering only those 
transactions which contain at least 3 items. Hence the 
transaction containing only one or two items will not be 
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scanned throughout the database (i.e. T2, T3, T7, T9, T11, 
T12, T14) 

Table8 
 

Scan D to 
count the 
support of 

each 
candidate 

Itemset 
Sup. 
coun

t 

Compare 
candidate 

support with 
minimum 
support 

count to get 
frequent set 

Itemset 
Sup. 
count

I2, I3, I4 4 I2, I3, I4 4 
I2, I3, I5 3 I2, I3, I5 3 
I2, I4, I5 5 I2, I4, I5 5 
I3, I4, I5 3 I3, I4, I5 3 

 
               Candidate   Frequent  
              set of 3 items             set of 3 items 

 
In next step, we generate the candidate set of size-4 and 
determine the support count by considering only those 
transactions which contains at least 4 items. In this process 
we ignore those transactions that contain 1, 2 or 3 items.  
 

Table9 
 

Scan D to 
count the 
support of 

each 
candidate 

Itemset 
Sup. 

Count 
Compare 
candidate 
support 

with 
minimum 
support 

count to get 
frequent set 

Itemset
Sup. 
count

I2, I3,  
I4, I5 

3 I2, I3,  
I4, I5 

3 

 
               Candidate   Frequent  
              set of 4 items             set of 4 items 

 
In this way proposed approach discovers the frequent 
itemsets of all size by saving considerable amount of 
processing time.  
 
 
6. Performance Evaluation 
To explore the performance of proposed algorithm, 
synthetic dataset is used and all the experiments are 
performed on  Pentium IV 2.93 GHz PC machine with 512 
MB RAM, running Microsoft Windows 2000. This 
algorithm is implemented in Java and used hash-set to 
calculate the candidate itemsets. All the runtime reports 
include both CPU time and I/O time. 
For the comparative study of classical Apriori and 
proposed approach, we have taken a database of 5000 
transactions containing 50 unique items.  
During this analytical process we have considered 1000 
transactions to generate the frequent pattern with the 
support count of 10% and the process is repeated by 
increasing the transaction gradually. Table below (Table 
10) shows the execution time corresponding to different 
transaction sizes.  

Table 10: Execution time in seconds for different 
transaction size 
 

 

 

 

 

Finally as a result of critical analysis, we can see that 
proposed approach (Record filtering based approach) 
takes only 90% time in comparison to classical Apriori. 
Hence, we save approx 10 % time  in the of proposed 
approach. 

7. Conclusion 

       Present paper proposes a new record filter based 
algorithm which is a variation of the Apriori 
algorithm and performs fewer database scans than 
Apriori and utilizes only transaction of specific sizes 
for the generation of frequent itemsets. As observed 
by many researchers counting the occurrences of 
itemsets is a time consuming activity, this paper 
introduces a new strategy of considering only those 
transactions whose length is greater than or equal to 
the length of  candidate set is checked, because 
candidate set of length k , can not exist in the 
transaction record of length k-1 , it may exist only in 
the transaction of length greater than or equal to k. 
Due to this, proposed approach takes very less time 
for performing computations during mining process. 
Experiments have been performed on synthetic 
datasets and the results have been presented. The 
results show that proposed approach performs well in 
terms of execution time and ultimately enhances 
efficiency as compared to traditional Apriori 
approach. 

Transaction 
Size 

Execution time  
(seconds) 
Apriori 

Execution time  
(seconds) 

Record Filtering 
Based Approach 

500 42 37 

1000 92 82 

1500 167 149 

2000 392 348 
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