
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 8, July 2010
ISSN (Online): 1694-0784
ISSN (Print): 1694-0814 27

Automatic Test Case Generation of C Program
Using CFG

 Sangeeta Tanwer and Dr. Dharmender Kumar

Computer Science & Engineering, Guru Jambheshwar University of Science& Technology

Hisar, Haryana, India

Abstract

Software quality and assurance in a software company

is the only way to gain the customer confidence by

removing all possible errors. It can be done by

automatic test case generation. Taking popularly C

programs as tests object, this paper explores how to

create CFG of a C program and generate automatic

Test Cases. It explores the feasibility and non-

feasibility of path basis upon no. of iteration. First C is

code converted to instrumented code. Then test cases

are generated by using Symbolic Testing and random

Testing. System is developed by using C#.net in

Visual Studio 2008. In addition some future research

directions are also explored.

 Keywords: software testing; random testing;

symbolic testing; test case generation; Path feasibility.

1. Introduction

In the industry, test cases are generated manually.

This is a very slow process and the human

involvement in this process leads to the

involvement of human biases. Ultimately, the

result is the generation of ineffective and

inadequate test cases. Finally, the quality of the

software is affected [5].

Automatic Test Case Generation Tool is the

answer to all the issues discussed earlier [9].

This test case generation tool develops test cases

for a ‘C’ language program. It automates the unit

testing of the software by generating test cases

for a program / unit. This automatic test case

generation tool use the structural testing [11, 12]

and symbolic testing to generate the test cases.

The random testing is also be used in this tool to

randomly generate values that would be used for

identifying the test cases.

2. System Process

This automatic test case generation is developed

using C#.net framework on window platform.

Various steps for test case are given as: (1)

Automatic test case generation tool would be an

automated test case generation system that

allows the tester/user to input a ‘C’ program. It

will parse through the program. Based on the

internal structure of the program, CFG (Control

Flow Graph) for the input program is generated.

This will provide a graphical view of the logic of

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 8, July 2010 28
www.IJCSI.org

the program. (2) The automatic test case

generation tool will use this CFG generated to

generate the CFG matrix. Using this CFG matrix,

various possible paths through the program will

be identified. (3) First, the automatic test case

generation tool will be implemented using

random testing based technique, then it will

allow up to some extent to get the information

about the feasibility or infeasibility of a path /

difficulty in solving the path. Finally, this tool

will generate the test cases for input program. (4)

The automatic test case generation tool will

develop test cases based on best available testing

criteria that will provide the assurance of

complete possible testing and also provide the

information about the termination of the testing

process. Unit testing is used for this research by

analysis of all testing strategies [14].

3. Path Testing

Path Testing is a testing technique in which a set

of paths are selected from the domain of all

possible paths through the program [3].

Consider one example:

if(abc<0)

{

In this part, there is no definition of any variable.

}

 And the else part does not exist.

It is analyzed to use path testing for the test case

generation [8].

Next issue is about testing criteria.

Suitable test criteria can be the way to divide the

program input domain into a path. The path

coverage is the strongest criteria in the path

testing family [1, 14].

4. Automatic Test Case Generation

Tool

 For automatic test case generation, Computer

Based Testing technique - Symbolic Execution is

used. Symbolic Execution is performed using

Random Testing Based Automatic Test Data

Generation technique, for this Automatic Test

Case Generation Tool.

5. CFG

CFG stands for Control Flow Graph. It describes

the logical structure of the program. It consists of

nodes and edges. Actually it is a directed graph

which shows the all possible ways [2,6] for the

flow of control through the program beginning

from the start node to the exit node of the

program. These various possible flows of control

through the program are the various possible

paths through the program. A CFG function is

created which is having a class field collate and

resources field resource Culture and resource

Man. It has a function put Braces InIfElse to put

braces in if else structure in proper format for

CFG. Other function loop To IfFormat is used to

convert loop in if statement for creating graph.

loopConversionResult to convert in return

conversion for loop.

Consider one simple example to better
understand the concept of CFG.

1- #include<stdio.h>

2- void main()

3- {

4- int a,b,c,flag;

5-printf("enter three sides of a

triangle");

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 8, July 2010 29
www.IJCSI.org

6-scanf("%d%d%d",&a,&b,&c);

7- printf(“Side A is : %d”, a);

8- printf(“Side B is : %d”, b);

9- printf(“Side C is : %d”, c);

10-if((a<b+c) && (b<a+c) &&

(c<a+b))

11- flag=1;

12- else

13- flag=0;

14-if(flag)

15-

16-if((a==b) && (b==c))

17-printf(“equilateral

triangle”);

18-else

19-if ((a! =b) && (a!=c) &&

(b!=c))

20-printf(“scalene”);

21-else

22-printf(“isosceles”);

23-}

24-else

25-printf (“not triangle”);

26-printf (“end of program”);

Refer Fig. 1 for the CFG of program mentioned

above.

In Fig 1, Node with label 5-9 represents the

accumulation of statements no 5, 6, 7, 8, 9 at a

single node as they all are sequential. The non-

executable statements like variables and type

declarations are not considered in CFG. All the

decision making statements and looping

statements are shown by separate nodes.

As shown in the figure, labels T & F at the

decision making nodes outgoing edges

represents the flow control from one node to the

other node in the graph based on the fact whether

the condition on decision making node is true or

false.

5.1 Instrument

It is used to convert the c language code in the

instrumented code. In this instrument Source

Code function is used to avoid all comments [4]

and avoiding initial statements & storing #

define values in array List. Defined symbolic

constant replaced with corresponding values.

 Figure 1

5.2 CFG Matrix

CFG Matrix is the adjacency matrix of the

Control Flow Graph (directed graph).

What are feasible paths?

Feasible paths are the paths for which some input

data is available to execute them and for

infeasible paths vice-versa.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 8, July 2010 30
www.IJCSI.org

6. Symbolic Execution

This technique can be used to test a program by

computing full symbolic output values or it can

also be used to generate test cases for a program.

During the symbolic execution of a program, the

actual data values are replaced by symbolic

values. In symbolic execution, the input

variables of a program are assigned symbolic

values. These symbolic values are fixed and

unknown. Symbolic execution basically

distinguishes between two types of statements,

one is the assignment statement and the other is

decision making / branching statement.

Refer Fig. 2 to have a clear understanding. At

node 1, the condition for decision making/

branching is (A>0 & B>0 & C>0). If (A>0 &

B>0 & C>0) yields true then, the control flow of

the program will move from node 1 to node 3

and if (A>0 & B>0 & C>0) yields false then, the

control flow of the program will move from node

1 to node 2.

So, during symbolic execution, the predicate

expression for case (when condition (A>0 &

B>0 & C>0) is true) is expressed as (A>0 & B>0

& C>0) and in other case (when condition (A>0

& B>0 & C>0) is false), the predicate expression

will be !(A>0 & B>0 & C>0).

Similarly, it will be done for each decision

making / branching statement.

Finally, for a particular path, all the predicates

expressions are conjunctively joined to form path

predicate expression. This path predicate

expression will contain the input and internal

variables in terms of symbolic values.

Suppose if path: Node1-> Node3-> Node4 -

>Node14 is considered. Then, the symbolic

evaluation of this path yields the following path

predicate expression:

((A>0 && B>0 && C>0) AND !(A<B+C &&

B<A+C && C<A+B)).

 Figure 2

Now, using random testing the symbolic values

are placed by randomly generated values and the

values which will satisfy this path predicate

expression, means those set of values can

execute the path and the set of values is one test

data for the program.

6.1 Random Testing Technique

Random Testing Technique is used in this

automatic test case generation tool to select

values randomly from the input domain of the

program input variables. These randomly

generated values are assigned to the symbolic

values and then the predicate expressions for all

decision making nodes in a path are joined using

logical AND to form a conjunctive clause for

that particular path. Then, randomly generated

values are used to satisfy the conjunctive clause.

The values which will be able to satisfy the

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 4, No 8, July 2010 31
www.IJCSI.org

conjunctive clause for a path become the test

data for that path to execute.

7. Conclusion and future work

During the Whole life cycle of software testing

plays an important role. There are various issues

related to the instrumentation of input program

and symbolic testing of the program in the

testing framework. Instrumentation of input

program and symbolic execution of the program

are necessary steps to generate test cases. In the

testing framework, this research identifies

various problems and issues and provides

solutions to overcome these problems and to

handle the related issues. In the future it is

possible to remove all errors and improve more

the quality of software by using Genetic

algorithm technique to use static technique for

test case generation.

Acknowledgement

This work was supported by Dr. Dharmender

Kumar. I would like to thanks to him for the

continual encouragement, help and guidance

throughout the work.

 References

[1]. Andreas S. Andreou “An automatic test data

generation scheme based on data flow criteria and

genetic algorithms ”Third International

Conference on natural Computation(ICNC) Vol

1, pp 2, 2007.

[2]. Bruce A. Cota “Control flow graph as

representation language” Winter Simulation

Conference, pp 556-559,1994.

[3]. Chao-Jung Hsu “Integrating path testing with

software reliability estimation using control flow

graph” Management of Innovation and

Technology Forth IEEE International Conference

CMIT pp. 1234-1239,2008.

[4]. Chengying Mao,Yansheng Lu “Cpp Test: A

Prototype Tool For Testing C++” Second

International Conference on Availability and

Security(ARES’07,2007.

[5]. Carlos Urias Munoz “An approach to software

Product testing” IEEE Transaction on Software

Engineering, Vol 14, NO I I , November 1988 .

[6]. Douglas G. Fritz “An overview of hierarchical

control flow graph models” Proceedings of the

1995 Winter Simulation Conference pp 1347-

1355, 1995.

[7]. DeMillo, R.A.anmd Offutt, A.J “Constraint-

Based Automatic Test Data Generation”, IEEE

Transaction on Software Engineering Vol17,No

9,September pp 900-910, 1991.

[8]. Howden,W.E. “Reliability of the Path Analysis

Testing Strategy”, IEEE

[9]. Jon Edvardsson “A Survey on automatic test data

generation”, Second Conference on Computer

science and Engineering in Linkoping, Vol 23 ,pp

21-281, 1999.

[10]. Miller, W. and Spooner, D.L. “Automatic

Generation of Floating-point Test data”, IEEE

Transactions on Software Engineering Vol. SE-

2,No.3 ,pp 223-226,1976 .

[11]. Nigel Tracey John Clark Keith Mander John

McDermid “An automatic framework for

structural test data generation” IEEE 2007.

[12]. Ntafos, S.C. “A Comparison of Some structural

Testing Strategies”, IEEE Transactions on

Software Engineering Vol 14 No. 6, pp 868-873,

1988.

[13]. Patricia Mouy “Generation Of All Path unit test

with functional calls ” International Conference

on Software Testing, Verification, and Validation

pp 32-41, 2008

[14]. Weyuker,E“Axoimatizing software test data

adequacy”, IEEE Transactions on Software Vol.

15 N0. 4 ,1989.

