
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 360

Quantum Multiplexer Designing and Optimization
applying Genetic Algorithm

Debarka Mukhopadhyay1, Amalendu Si2

1Dept of CSE ,Bengal Institute of Technology and Management, Santiniketan, West Bengal, India

2Dept of IT, Mallabhum Institute of Technology, Bankura, West Bengal, India

 Abstract:
 This paper shows how to design efficient quantum
multiplexer circuit borrowed from classical computer design.
The design will show that it is composed of some Toffole gates
or C2NOT gate and some two input CNOT gates. Every
C2NOT gate is synthesized and optimized by applying the
genetic algorithm to get the best possible combination for the
design of these gate circuits.

Keywords:
Qubit, Toffole gate, Quantum Multiplexer Circuit, Circuit
Synthesis, Quantum Half adder Circuit,Genetic Algorithm.

1. INTRODUCTION

Introduction: As the ever-shrinking transistor
approaches atomic proportions, Moore’s law must
confront the small-scale granularity of the world: we
can’t build wires thinner than atoms. Theoretically,
quantum computers could outperform their classical
counterparts when solving certain discrete problems [15,
8].

The logical properties of qubits also differ significantly
from those of classical bits[2]. Bits and their
manipulation can be described using two constants (0
and 1) and the tools of Boolean algebra. Qubits [13], on
the other hand, must be discussed in terms of vectors,
matrices, and other linear algebraic constructions.
Quantum logic circuits [1,4,5,6,14], from a high level
perspective, exhibit many similarities with their classical
counterparts. They consist of quantum gates, connected
by quantum wires which carry quantum bits. Moreover,
logic synthesis for quantum circuits is as important as
the classical case.
In this work, we focus on identifying useful quantum
circuit blocks. we analyze quantum conditions and
designing quantum multiplexor that engage CNOT[3]
and Toffole gates. Here we synthesize and optimize each
and every Toffole gate by applying genetic algorithm [7,
10, 11, 12].

2. Controlled Quantum Gate Operations:
Here we have engaged two controlled quantum gates i.e.
C2NOT and CNOT. C2NOT is also known as Toffole

gate. It is a three input gate. The first two inputs are the
controlled inputs and the third one is the target input.
This gate has a 3-bit input and output. If the first two
bits are set, it flips the third bit. Following is a table over
the input and output bits:

Input 1 Input

2
Input
3

Output
1

Output
2

Output 3

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

Fig1: C2NOT gate and i/o table

3. Quantum Half Adder:
In order to construct an efficient Quantum multiplexer
circuit we’ll need the quantum equivalent to the classical
“half adder”. This is a 2-input, 2-output device with the
following truth table:
Classical Half Adder.

Input Output

A B Sum Cout
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

The sum output is the XOR of the two inputs, and the
carry output is the AND of the same two inputs. The
quantum equivalent is a 3-input, 3-output device with
the following truth table and equations:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 361

Quantum Half Adder

Input Output
C B A K S A

0 0 0 0 0 0
0 0 1 0 1 1
0 1 0 0 1 0
0 1 1 1 0 1
1 0 0 1 0 0
1 0 1 1 1 1
1 1 0 1 1 0
1 1 1 0 0 1

S = XOR (A, B) (EQ 1)
K = XOR(C, AND (A, B)) (EQ 2)
S is the sum output of the quantum half adder, and K is
the carry out xored with the ancillary input C. This can
be implemented with one CNOT and one Toffole gates
as follows:

Fig 2:

4. Proposed Design of 4*1 Quantum
multiplexer circuit:
Our design as in fig 3 below engages the quantum
circuit like quantum half adder and two controlled not
gate like C2NOT and CNOT gate. The half adder [16]
output is giving 3 output lines. The output line A is
shorted from the input. The 2nd output line, S is given by
the expression S = XOR (A, B) and third output line, K
is given by the expression K = XOR(C, AND (A, B)).
In a classical multiplexer circuit, depending on the
selection line, only one input will move to the output.
Based on this classical logic we have designed the
quantum multiplexer circuit.
The first two inputs of every half adder should be treated
as the two selection lines and the third line is one out of
four inputs of 4 * 1 multiplexer.
When S00=0 and S01=0, ket I0 will be selected, this input
will move to the third output line of the first QHA and
finally will move to the final QMUL output.
 When S10=0 and S11=1, ket I1 will be selected, this input
will move to the third output line of the second QHA
and finally will move to the final QMUL output.
When S20=1 and S21=0, ket I2 will be selected, this input
will move to the third output line of the third QHA and
finally will move to the final QMUL output.

When S30=1 and S31=1, ket I3 will be selected, this input
will move to the third output line of the fourth QHA and
finally will move to the final QMUL output.

Fig 2: Fourth QHA section and its equivalent circuit

5. QUANTUM CIRCUIT SYNTHESIS

The C2NOT Gate or Toffole Gate is a well known three
input quantum gate circuit .This circuit is made up of
three two input fundamental quantum logic Gate, that
are CNOT, control square root of NOT Gate and
conjugate control square root of NOT Gate. But if there
is any overlap in this circuit, then using the SWAP gate
we simplify the overlap. So this circuit is made up of
four fundamental quantum gates.

After modification of the previous circuit, we are getting
the form below,

Decomposing the above circuit into seven stages, each
stage is made up of a two input fundamental gate.

 S0 S1 S2 S3 S4 S5 S6
In the above decomposition, each circuit stage (actually
four types stage present) has a fundamental gate that is
two inputs but the circuit is of three inputs, then other
single input is replaced by using a unitary identity gate.

V V V
+

V V V

VV V

V V V

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 362

 S0 S1 S2 S3 S4 S5 S6

In the above circuit there are four different stages.
These four different stages are,

S0 & S2

At this stage a square root of not gate is operated with a
unitary identity gate and produces the state matrix.

S1 & S3

At this stage a swap gate is operated with a unitary
identity gate and produces the state matrix.

S4 & S6

At those particular stages CNOT is operated with
unitary identity gate and produces the state matrix.

 S5

Here conjugate control square root of not gate is
operated with unitary identity gate and produces the
state matrix.

In case of square root of not gate and conjugate control
square root of not gate, in their gate matrix, we are using
a 9 in place of i, which is a complex number. Whenever
a multiplication operation between two 9 happens, we
will just replace it by -1.

The three input fundamental quantum Gate will be
constructed by the two input fundamental quantum Gate.
Every two input quantum gate is transformed into three
input dummy quantum gate, using kroneckar product[9]
with 2*2 unit matrix. This dummy three input gate is
called stage. A number of stages are cascading one by
one and creating a circuit that performs an operation,
that is same operation of a three input quantum
fundamental gate. When the stages are in cascade, there
becomes a particular sequence, otherwise the required
gate matrix are not same.

 In three input gate generation, using two input gate, we
generate all possible three input dummy gates of two
input gates using kroneckar product. Each three input
dummy gate assigns an index. Using this index we can
access a particular matrix. The number of stage, required
to construct a gate, was previously defined.
We are denoting those state matrixes by the index 0 to 6.
Whenever we are generating a chromosome, we are
using these seven numbers in different combinations and
multiplying these state matrices according to this
combination.

Input/output relation using the state matrix

The figure above shows a state of a quantum
circuit. The input/output mapping can be done

V

I

I V

I

I I V

I

I

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

10000000
01000000
00001000
00000100
00100000
00010000
00000010
00000001 I

1 0
0 1

I 1 0

0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0-9

10000000
01000000
00100000
000-90000
00001000
00000100
00000010
0000000-9

V V V+

1 0
0 1

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

10000000
01000000
00100000
00010000
00000010
00000001
00001000
00000100

I

10000000
01000000
00100000
00090000
00001000
00000100
00000010
00000009

10000000
01000000
00001000
00000100
00100000
00010000
00000010

10000000
01000000
00100000
00090000
00001000
00000100
00000010

10000000
01000000
00001000
00000100
00100000
00010000

10000000
01000000
00100000
00010000
00000010
00000001

10000000
01000000
00100000
000-90000
00001000
00000100
00000010

10000000
01000000
00100000
00010000
00000010
00000001
00001000

v

I
1 0
0 1

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 9

10000000
01000000
00100000
00090000
00001000
00000100
00000010
00000009

1 0

0 1

10000000
01000000
00100000
00010000
00000010
00000001
00001000
00000100

I

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 363

using the state matrix. Here a CNOT gate is operated
with unitary identity matrix and generate a state matrix.

 Input State Output

Here we are getting the output from this particular state
input. It can be shown by operating the state matrix with
the input.The equivalent decimal value of the input is
represented by placing a 1 at that particular postion in
the input matrix. The position of 1 in the output matrix
below, represents the equivalent decimal value of the
output of the state.

6. GENETIC ALGORITHM FOR
GETTING FITTEST QUANTUM

CIRCUIT:

1. Read the pre defined length of
chromosome(n)

2. Randomly initialize population
3. Determine fitness of population
4. repeat

i. select parents from population

ii. Generate crossover point within a
range varying with length of
chromosome.

iii. Perform crossover operation on
parents.

iv. Generate mutation points within a
range, varying with length of
chromosome.

v. Perform mutation operation

vi. New generation created

vii. Determine fitness of new generation
chromosome.

5. Until best individual is good enough.

7 . DESCRIPTION OF GENETIC
ALGORITHM WITH EXAMPLE

7.1 Creating a set of random chromosome like this
(taking here seven chromosomes)

 chromosome [0] S2 S3 S5 S6 S1 S0 S4

 chromosome [1] S4 S6 S1 S5 S2 S0 S3

 chromosome [2] S3 S5 S1 S0 S4 S2 S6

 chromosome [3] S6 S0 S3 S5 S1 S2 S4

 chromosome [4] S4 S0 S2 S6 S1 S5 S3

 chromosome [5] S3 S4 S6 S1 S0 S5 S2

 chromosome [6] S2 S3 S4 S5 S0 S1 S6

7.2 Now have to calculate the fitness value of each
chromosome.
Here, in our problem we shall calculate the fitness value
by the following procedure-

(a) Calculate the product of all the seven gene
matrices.

(b) Now the resultant state matrix of chromosome
is to be compared element by element with the
state matrix of required gate.

(c) Set a variable “count”. Now if any element of

the resultant state matrix of a randomly taken
chromosome matches with the corresponding
element of the state matrix of required gate,
then increase the variable count by 1.

Now fitness of a chromosome = count/ number of
elements in a state matrix.

I

1

0

0

1

1

0

* =

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0

0
0
0
0
1
0
0
0

0
0
0
0
0
0
1
0

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 364

Example:
The fitness value of the of the chromosome
[0] can be calculated as follows

 Resultant Matrix Required Matrix

Fitness value of chromosome [0]= 59/64=. 9218

7.3. Solution
 If fitness value of any of the seven chromosomes attains
a value which is equal to or greater than a certain value
that is set by the user previously, the program ends and
we get the required chromosome otherwise we have to
proceed to the next stage.

7.4. Crossover and mutation for new generation

 Crossover: We have to randomly generate a
crossover point for each chromosome, (varying with the
length of chromosome) in which the crossover should
take place and the value of the crossover points should
be less than the number of gene present in that
chromosome. Now the seven chromosomes after
crossover become,

The randomly generated seven crossover points are,

 2, 0, 3, 4, 5, 2, 4

chromosome [0] S2 S3 S4 S0 S1 S6 S5

chromosome [1] S4 S3 S0 S2 S5 S1 S6

chromosome [2] S3 S5 S1 S6 S2 S4 S0

chromosome [3] S6 S0 S3 S5 S4 S2 S1

chromosome [4] S4 S0 S2 S6 S1 S3 S5

chromosome [5] S3 S4 S2 S5 S0 S1 S6

chromosome [6] S2 S3 S4 S5 S6 S1 S0

Mutation: We have to randomly generate two mutation
points for each chromosome (varying with the length of
chromosome) in which the mutation should take place
and one value of the mutation point should be less than
the other point and the second point must be less than

the number of gene present in the chromosome. Now
the seven chromosomes after mutation become,

The randomly generated seven pair of mutation points
are

 (3 5) (2 6) (2 4) (3 5) (2 4) (0 5) (1 5)

chromosome [0] S6 S5 S0 S1 S4 S3 S2

chromosome [1] S6 S0 S2 S5 S1 S3 S4

chromosome [2] S2 S4 S0 S1 S6 S5 S3

chromosome [3] S2 S1 S5 S4 S3 S0 S6

chromosome [4] S1 S3 S5 S2 S6 S0 S4

chromosome [5] S1 S6 S0 S5 S2 S4 S3

chromosome [6] S1 S0 S3 S4 S5 S6 S2

We have to calculate the fitness values of the new
generation chromosomes which are generated after
crossover and mutation operation. If fitness value of any
of the seven chromosomes attains a value, which is
equal to or greater than a certain value, that is previously
set, then the program ends and we get the required
chromosome otherwise we have to proceed again to the
next stage.
If no new generation is generated after crossover and
mutation, the program terminates.

8. CONCLUSION

Our work designing the model and optimizing a
Quantum circuit, which accepts the entry of any size of
3 input quantum circuit. The GA also incorporates the
means to process a given quantum circuit. Our future
work will incorporate the designing of register and CPU
and optimizing different section of those circuit by
applying GA.

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 365

Fig 3. (Proposed design of Quantum Multiplexer circuit)

|I0>

|I1>

|I2>

|I3>

|S1>

|S0>

|0> O/p

V V V

V V V

V V V

|K1>

|K0>

|K1>

|K0>

|K0>

|K1>

V V V

|K0>

|K1>

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 366

 9. REFERENCES

[1] P.W. Shor, “Quantum Computing”, Documenta

Mathematica - Extra Volume ICM, Start Page 1 (1998).
[2] H.Buhrman, R. Cleve and A. Wigderson. “Quantum vs.

Classical Communication and Computation,” Proceedings
of the 30th Annual ACM Symposium on the Theory of
Computation, ACM Press, El Paso, Start page. 63 (1998).

 [3] R.P. Feynman, “Quantum Mechanical Computers” ,

Foundations of Physics , Vol.16, Start Page.507 (1986).

[4] H.K.Lo, and S. Popescu and T. Spiller, “Introduction to
Quantum Computation and Information”, World Scientific,
Singapore (1999).

[5] J. Preskil, “Quantum Computing: Pro and Con”, Proc.

Royal Society, A454, London, Start Page 469 (1998).

[6] M.A.Nielsen, and I.L. Chuang, Quantum Computation and
Quantum Information, Cambridge University Press (2002).

[7] D.G.Cory, et al., “Quantum Simulations on a Quantum
Computer”, Physics Review Letters, start Page 5381 (1999).

 [8] Ashok Muthukrishnan, “Classical and Quantum Logic
Gates: An Introduction to Quantum Computing” Quantum
Information Seminar, Friday, Sep. 3, 1999, Rochester Center
for Quantum Information (RCQI)

[9] Alexander Graham. “Kronecker Products and Matrix
Calculus With Applications”. Halsted Press,John Wiley and
Sons, NY, 1981.

[10] Genetic Algorithms - Principles and Perspectives : A
Guide to GA Theory By: Reeves, Colin R.; University of
Birmingham), Jonathan Rowe (School of Computer
Science; CoventryUniversity), Colin R. Reeves (School of
Math and IS Published By: Springer

[11] Genetic Algorithms in Search, Optimization,
andMachine Learning by David E. Goldberg
ISBN-13: 9780201157673,Publisher: Addison-Wesley

[12] Practical Genetic Algorithms by Randy L. Haupt, Sue
Ellen Haupt, ISBN-13: 9780471455653, Wiley, John &
Sons.

[13] L. K. Grover. Quantum mechanics helps with searching
for a needle in a haystack. Phys. Rev. Let.,79:325, 1997.

[14] P. Shor. Polynomial-time algorithms for prime
factorization and discrete logarithm on a quantum computer.
SIAM Journal on Computing, 26(5):1484–1509, 1997.

[15] C. H. Bennett and G. Brassard. Quantum cryptography:
Public-key distribution and coin tossing. In Proceedings of
IEEE International Conference on Computers, Systems, and
Signal Processing, page 175179, Bangalore, India, 1984. IEEE
Press.

[16] Phil Gossett, “Quantum Carry-Save Arithmetic” Silicon
Graphics, Inc. 2011 N. Shoreline Blvd. Mountain View, CA
94043-1389, August 29, 1998

Mr. Debarka Mukhopadhyay passed graduation in Electronics
and Telecommunication Engineering (AMIETE) from IETE(New
Delhi), India in 2003 and M.Tech in Computer Science and
Engineering from Kalyani Government engineering College,
West Bengal, India in 2007.His interest includes Quantum
computing, VLSI,Image processing etc. He has published many
papers in national and international Journal and Conferences.
He is a life member of IETE.

Mr. Amalendu Si passed graduation in Information Technology
(B. Tech) BUIE, West Bengal,India in 2005 and M.Tech in
Computer Science and Engineering from Kalyani Government
engineering College, West Bengal, India in 2007. .His interest
includes Quantum computing, High performance computing,soft
computing. He has published many papers in national and
international Journal and Conferences.

