
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 382

Product Lines’ Feature-Oriented Engineering for
Reuse: A Formal Approach

Marcel Fouda Ndjodo1, Amougou Ngoumou2

1 Department of Computer Science and Instructional Technology, University of Yaoundé I

P.O. Box 47 Yaoundé - Cameroon

2 Department of Computer Science, The University Institute of Technology, University of Douala
P.O. Box 8698 Douala - Cameroon

Abstract
The feature oriented method with business
component semantics (FORM/BCS) is an extension
of the feature oriented reuse method (FORM)
developed at Pohan University of Science and
Technology in South Korea. It consists of two
engineering processes: a horizontal engineering
process driven by the FORM domain engineering
process and a vertical engineering process driven
by the FORM application engineering process. This
paper investigates the horizontal engineering
process - which consists of analyzing a product line
and developing reusable architectures – and shows
that this process can be systematized through a set
of maps that describe how one can systematically
and rigorously derive the fundamental business
architectures of a product line from the feature
model of that domain. The main result of the paper
is therefore that the formalization of the assets of
FORM/BCS enables a clear definition of how an
activity of the horizontal engineering process
produces a target asset from an input one. This
result opens the door for the development of a tool
supporting the method.

Keywords: Product Line Engineering, Feature-
Orientation, Domain Analysis, Business
Components, Reuse, Formal Method.

1. Introduction

FORM with Business Component Semantics [1],
which is an extension of FORM [2, 3, 4, 5, and 14],
is a feature-oriented product line engineering
method. It has two processes: a horizontal
engineering process driven by the FORM domain
engineering process and a vertical engineering
process driven by the FORM application
engineering process. These two processes
correspond respectively to the “engineering for
reuse” and the “engineering by reuse” approaches
presented in [6, 7, and 8].

The FORM/BCS method is specific to other
product line engineering approaches [9, 10, 11, 12,
and 13] by the fact that its vertical engineering
process gives the possibility to successively derive
concrete business components of successive low
level application domains from abstract reusable
business components of a high level domain. Since
the vertical engineering process of FORM/BCS is
an “engineering by reuse” approach, it can be
applied only if the reusable business components of
the initial domain already exist. These assets are
produced by the horizontal engineering process of
FORM/BCS, which consists of analyzing a product
line domain and developing fundamental reusable
architectures of the domain. The horizontal process
is therefore the core process of FORM/BCS.
This work formalizes this process with a set of
maps which describe how to rigorously derive the
fundamental business architectures of a domain
from the feature model of that domain. Each map
specifies an activity of the horizontal engineering
process by defining how that activity produces a
target asset from an input one. It has been possible
to formalize the horizontal process of FORM/BCS
since one of its particularity is that its assets are
defined using the Z notation which provides a
framework for a rigorous analysis of the method.
This work is a significant contribution to the
development of FORM/BCS since it lays down the
theoretical foundation for the development of a tool
supporting this method. Beyond the development
of FORM/BCS, which is the main focus of the
paper, this work addresses some key open issues of
feature-oriented development. One of these issues
is the automation of feature-oriented development
processes. This work shows that formalization is an
important step toward this goal.
The rest of the paper is organized as follows:
Section 2 gives an overview of FORM/BCS.
Section 3 presents the assets of the method. Section
4, which is the main part of the paper, formalizes
the horizontal engineering process of FORM/BCS.
Section 5 presents related works and gives the end

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 383

result of this article through a consistency theorem.
Finally the conclusion presents possible further
research domains in the work continuation.

2. Overview of FORM with Business
Component Semantics.

2.1 The Horizontal Engineering process

The aim of the horizontal Engineering process is to
analyze a domain in order to produce the reusable
business components of that domain which consist
of (i) a feature business component, (ii) a
subsystem business component, (iii) a set of process
business components and, (iv)a set of module
business components.
The horizontal engineering process has four
independent activities: the domain analysis activity,
the subsystem architecture business component
design activity, the process architecture business
component design activity and the module
architecture business component design activity.
1) Given a domain, the domain analysis activity,

which is intuitive, produces a reusable feature
business component for that domain. This
feature model, defined in section 3.2, is stored
in a database of reusable feature business
components.

2) Given a reusable feature business component
selected in the database of reusable feature
business components, the subsystem
architecture business component design activity
produces a reusable subsystem architecture
business component, defined in section 3.3,
which is stored in a database of reusable
subsystem architecture business components.

3) Given a reusable subsystem architecture
business component, the process architecture
business component design activity produces a
set of reusable process architecture business
components, defined in section 3.4. These
components are stored in a database of reusable
process architecture business components.

4) Given a reusable process architecture business
component, the module architecture business
component design activity produces a set of
reusable module architecture business
components, defined in section 3.5. These
components are stored in a database of reusable
module architecture business components.

The following properties of the FORM/BCS
Domain Analysis process described above can be
considered as the main improvements of the
original FORM Domain Analysis process:
- Reusable assets integrate context: information

about assets reuse in the form of context is
integrated in assets.

- The implementation of the activities in the new
method is not linear; that is, they can be
performed in any order. The assets produced by
activities of the method are stored in a database
of reusable assets which can be requested using
the operators for reuse developed by Ramadour
[10]: search operators, selection operators,
adaptation operators and composition operators.

- A database of business components is added:
this database enables engineering for reuse
through the storage of assets and engineering by
reuse through requests which can be submitted
to it using the Ramadour’s operators for reuse
listed above.

2.2 The Vertical Engineering process

The aim of the Vertical Engineering process is to
derive a database of reusable components of an
application domain of a domain which already has a
database of reusable domain components. The
Vertical Engineering process has four independent
activities: the specific requirements analysis, the
specific subsystem architecture design, the specific
process architecture design and the specific module
architecture design.
1) Given an application domain A of a domain D

and a feature business component F of D, the
aim of the specific requirements analysis of the
domain A is to derive a feature business
component F' of A from F. For this, the activity
operates choices in F to reduce the number of
optional features or groups of alternative
features contained in the decomposition of its
solution. The derived feature business
component F' is stored in a feature business
component database of A.

2) Given a feature business component F' of an
application domain A derived from a feature
business component F of a domain D, and a
subsystem architecture business component S
produced from D, the aim of the specific
subsystem architecture design activity is to
derive a subsystem architecture business
component S' of A from F' and S. For this
reason, the activity eliminates features
contained in sub systems of the subsystem
architecture business component S, which are
absent in the basic feature business component
F'.

3) Given a subsystem architecture business
component S' of an application domain A
derived from a subsystem architecture business
component S of a domain D, and a process
architecture business component P produced
from D, the aim of the specific process
architecture design activity is to derive a process
architecture business component P' of A from S'
and P. For this, basing on S' the activity adapts
the process architecture business component P.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 384

4) Given a process architecture business

component P' of an application domain A
derived from a process architecture business
component P of a domain D, and a module
architecture business component M produced
from P, the aim of the specific module
architecture design activity is to derive a module
architecture business component M' of A from
P' and M. Here, basing on P', the activity adapts
the module architecture business component M.

The possibility of successive refinements of
reusable business components of a domain to more
concrete components (vertical engineering) is the
main improvement of the Application Engineering
process of the original FORM.
The FORM/BCS engineering process is pictured as
follows:

Specific
module

architecture
business

component

Specific
feature

business
component

Specific
Process

architecture
business

component

Specific
requirements

analysis

Specific
subsystem
architecture

 design

Specific
module

architecture
design

Domain Component Database

Reusable feature
business component

database

Reusable process
architecture business
component database

Reusable subsystem
architecture business
component database

Module
Architecture

Business
Component

Feature
Business

Component

Process
Architecture

Business
Component

Domain
Analysis

Subsystem
Architecture

Business
Component

Design

Module
Business

Component
Development

Selected
Feature

Business
Component

Selected Subsystem
Architecture Business

Component

Selected Module
Architecture

Business
Component

Horizontal Engineering Process

V
e

rtical E
n

gine
ering P

rocess

Database

Activity

Component storage

Component reuse

Legend:

Domain refinement

Reusable module
architecture business
component database

Process
Architecture

Business
Component

Design

Subsystem
Architecture

Business
Component

Specific Domain Component Database

Reusable specifique feature
business component database

Reusable specific process
architecture business
component database

Reusable specific
subsystem architecture
business component

database

Reusable specific
module architecture

business
component
database

Specific
process

architecture
 design

Specific
Subsystem
architecture

business
component

Selected Process
Architecture Business

Component

Domain

Application
Domain

3. The Assets of FORM/BCS.

This section describes the four main assets of
FORM/BCS: feature business components (section
3.2), subsystem architecture business components
(section 3.3), process architecture business
components (section 3.4) and module business
components (section 3.5). Since all the assets of
FORM/BCS are reusable components, section 3.1
presents the conceptual modeling of reusable
business components which is used to define the
FORM/BCS assets as reusable business
components.

3.1 The formal model of FORM/BCS assets.

The assets of FORM/BCS are reusable business
components which are stored in a database. Each
reusable business component has a name, a
descriptor and a realization. The descriptor
presents the conceptual modeling problem to be

solved in a particular context. This problem can be
the decomposition of a system, an activity
organization or an object description. Goals,
activities and objects concerned are carried on an
application field and/or an engineering method. The
realization section of a reusable component
provides a solution to the modeling problem
expressed in the descriptor section of the
component. This solution may have adaptation
points with values are fixed at the reuse moment.
Adaptation points enable the introduction of
parameters in the solutions provided by reusable
components. The following Z schema formalizes
reusable business components:

ReusableBusinessComponent = =

 [name: Text;
 descriptor:Descriptor
 realization: Realization]

3.1.1 Descriptors

The descriptor of a reusable business component
gives an answer to the following question: “when
and why use this component?”. A descriptor has an
intention and a context. The intention is the
expression of the generic modeling problem; the
term “generic” here means that this problem does
not refer to the context in which it is supposed to be
solved. The context of a reusable business
component is the knowledge which explains the
choice of one alternative and not the other.
Formally, descriptors are defined by the following
schemas:

Descriptor = = [intention : Intention ;
 context : Context]

Intention = = [action: EnginneeringActivity;
 target: Interest]

Context = = [domain :Domain ;
 process : Context]

EngineeringActivity = = AnalysisActivity
DesignActivity

AnalysisActivity = {analyze, …}

DesignActivity = {design, decompose, describe,
specify ,…}

The detailed specification is given in [1]. For the
intelligibility of this paper, we give below an
important type used in the above specification:
Interest.
The engineering activity defined in the intention
(hereafter referred to as the action of the intention)
of a reusable business component acts on a “target”
which can be a business domain or a set of business
objects. Here are two examples of intentions
formalized in FORM/BCS :

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 385

‐ (analyze)ACTION(civil servant management

system)TARGET

- (describe)ACTION(civil servant recruitment
application)TARGET

Interests of engineering activities are specified by
the following schemas in which A denotes the set
of finite subsets of A.

Interest = Domain  BusinessObjects

Domain = = [action: BusinessActivity;
target : BusinessObjects ;
 precision : Precision]

BusinessObjects = = Class

Class = = [name: Name;
attributs : Attribut;
operations : BusinessActivity|]

Precision

Name

Attribut

A business activity is a set of (sub) business
activities divided into three disjoint categories: the
set of common (sub) business activities of the
activity which indicate reuse opportunity (the
commonality of the business activity), the set of
optional (sub) business activities of the activity (the
options of the business activity) and, the set of
groups of alternate (sub) business activities of the
activity (the variability of the business activity).

BusinessActivity == [common:
BusinessActivity ;
optional: BusinessActivity;
variabilities: BusinessActivity ]

3.1.2 Realizations

The realization section of a reusable component
provides a solution to the modeling problem
expressed in the descriptor section of the
component. It is a conceptual diagram or a
fragment of an engineering method expressed in the
form of a system decomposition, an activity
organization or an object description. The goals, the
activities and the objects figuring in the realization
section concern the application field (product
fragment) or the engineering process (process
fragment).
The solution, which is the reusable part of the
component, provides a product or a process
fragment. The types of solutions depend on the type
of reusable business component i.e a solution of a
feature business component (respectively a
reference business component) is a feature
(respectively a reference business architecture).

This solution may have adaptation points with
values fixed at the reuse moment. Adaptation points
enable the introduction of parameters in the
solutions provided by reusable components. Those
parameters are values or domains of values of
elements of the solution.

Realization = = [solution: Solution ;
adaptationpoints :
AdaptationPoints ]

Solution = = Feature 
SubsystemArchitecture 
ProcessArchitecture 

 Module

AdapatationPoints = = FeatureAdaptationPoints 
SubsystemArchitecture AdaptationPoints 
ProcessArchitecture AdaptationPoints 
Module AdaptationPoints

Solutions and adaptation points of the different
types of reusable components (feature business
components, subsystem architecture business
components, process architecture business
components, module business components) are
defined in the corresponding subsections below.

3.2 Feature business components

In FORM, a feature model of a domain gives the
“intention” of that domain in terms of generic
features which literally marks a distinct service,
operation or function visible by users and
application developers of the domain. FORM/BCS
specifies a feature model of a domain as a business
reusable component of that domain which captures
the commonalities and differences of applications
in that domain in terms of features. Feature
business components are used to support both the
engineering of reusable domain artifacts and the
development of applications using domain artifacts.

FeatureBusinessComponent = = [name :Name ;
descriptor:Descriptor;
realization: Realization 

 fbc:FeatureBusinessComponent,
(solution(realization(fbc))  Feature 
Adaptationpoints(realization(fbc))  (Feature ×

 Feature)]

Feature = =[activity: BusinessActivity ;
objects: BusinessObjectst ;

decomposition:[common: Feature; optional:
Feature; variabilities: Feature]

generalization: Feature]

In the above schemas, the type Feature specifies
business activities. A business activity is caused by

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 386

an event which is applied to a target set of objects.
Features have a generalization (in the sense of
object-oriented analysis) and decomposition. A
feature’s decomposition gives the set of its common
(sub) features which indicate reuse opportunity, the
set of its optional (sub) features and the set of its
groups of alternate (sub) features.
A reusable feature business component fbc is well
formed if it satisfies the following four
characteristic properties which require that the
realization section of a feature business component
corresponds to the intention of that business
component:

(fbc1) The solution given in the realization section
of fbc is a solution of the intended contextual
business activity of fbc:
action(domain(context(descriptor(fbc)))) =
activity(solution(realization(fbc)))

 (fbc2) The target of the intended contextual
business activity of fbc is exactly the set of
objects collaborating in the business activity
of the solution given in the realization
section of fbc:
target(domain(context(descriptor(fbc)))) =
objects(solution(realization(fbc)))

(fbc3) Any requirement expressed in the form of a
business process in the intended contextual
business activity of fbc has a unique solution
in the realization section of fbc:
 p process(context(descriptor(fbc))),

  g 
decomposition(solution(realization(fbc))) 
activity(g) = action(domain(p))  objects(g)
= target(domain(p))

(fbc4) Any solution in the decomposition of the
solution of the realization of fbc expressed in
the form of a feature resolves a unique
requirement expressed in the form of a
business process in the intended contextual
business activity of fbc:
 g  decomposition(solution(realization(fbc))),

  p process(context(descriptor(fbc)))
 activity(g) = action(domain(p)) 
objects(g) = target(domain(p))

3.3 Subsystem architecture business
components

A subsystem architecture business component is a
reusable business component which describes a
system in terms of abstract high level subsystems
and the relationships between them.

SubSystemBusinessComponent = =
[name: Name;
descriptor: Descriptor;
realization: Realization

 ssbc: SubSystemBusinessComponent ,

(solution(realization(ssbc)) 
SubsystemArchitecture 
adapationpoints(realization(ssbc)) 
(SubSystem× SubSystem)]

SubsystemArchitecture = =
[subsystems: SubSystem ;
Links: (Subsystem  SubSystem) ]

SubSystem = Feature

A reusable subsystem business component sbc is
well formed if it satisfies the following two
characteristic properties which require that the
realization section of a subsystem business
component corresponds to the intention of that
business component:
(sbc1) Any requirement expressed in the form of a

business process in the intended contextual
business activity of sbc has a unique solution
in the realization section of sbc:
 p  process(context(descriptor(sbc))),
   ss subsystems(solution(realization(sbc))),
   f  ss, 
 activity(f) = action(domain(p)) 
 objects(f) = target(domain(p))

(sbc2) Any link in the solution of the realization
section of sbc resolves requirements
expressed as collaborations between business
processes in the intended contextual business
activity of sbc:
 (ss1, ss2) links(solution(realization(sbc))),

  (f1, f2) ss1  ss2  decomposition(f1) 
 decomposition(f2) ≠

Graphically, the solution of a subsystem
architecture business component is represented as a
symmetric boolean matrix in which rows and
columns represent the different subsystems of the
business component and the values of the matrix
indicate the existence of links between these
subsystems.

3.4 Process architecture business
components

A process architecture business component is a
reusable business component which represents a
concurrency structure in terms of concurrent
business activities to which functional elements are
allocated; the deployment architecture shows an
allocation of business activities to resources.

ProcessBusinessComponent = = [name: Name;
descriptor:Descriptor;
realization: Realization 

 pbc:ProcessBusinessComponent,
(solution(realization(pbc)) 

ProcessArchitecture 
 adaptationpoints(realization(pbc)) 

 (BusinessActivity× BusinessActivity)]

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 387

ProcessArchitecture = =
 [tasks: BusinessActivity ;
 datas : Class;
 dataaccess: [name: Name
 access: BusinessActivity×Class ]
 messages: [name: Name;
 call: (BusinessActivity U

{null}) ×
(BusinessActivity U
{null})]

 ]

In the above schemas, the type ProcessArchitecture
specifies process architectures. A process
architecture is a set of business activities and
objects (data). The business activities operate on
data and exchange messages between them (in the
form of actions call) or with the environment (null).
A reusable process architecture business component
pbc is well formed if it satisfies the following three
characteristic properties which require that the
realization section of a process business component
corresponds to the intention of that business
component:
 (pbc1) Any requirement expressed as a business

process in the intended contextual business
activity of pbc has a unique solution in the
realization section of pbc:
 p  process(context(descriptor(pbc))),
 a  decomposition(action(domain(p)))
 (  t tasks(solution(realization(pbc)))  t =
a)  (target(domain(p)) 
datas(solution(realization(pbc)))) (((a, d) 
dataaccess(solution(realisation(pbc))))  ((a 
decomposition(action(domain(p))) 
(decomposition(a)  operations(d)) ≠ )))
where decomposition(a) is written for common(a)
 optional(a)  ( variabilities(a))

 (pbc2) Messages are sent only between tasks having
common actions:
 p  process (context(descriptor(pbc))), (((t1,
t2)  decomposition (action(domain(p))) ×
decomposition (action(domain(p))))
 (decomposition(t1)  decomposition(t2) ≠ ))
 ((t1, t2) messages
(solution(realisation(pbc))))

3.5 Module business components

Module business architecture components are
refinements of process business architecture
components. A module may be associated with a
set of relevant features. Also, alternative features
may be implemented as a template module or a
higher level module with an interface that could
hide all the different alternatives. The following
schemas formally define module business
components:

ModuleBusinessComponent = = [name: Name ;
descriptor:Descriptor;
realization: Realization 

 mbc:ModuleBusinessComponent,
 (solution(realization(mbc))  Module 
 adaptationpoints(realization(mbc)) 

(Module× Module)]

Module = = [pseudonym : Name ;

parameters: Parameter;
description: [task: BusinessActivity;
 included: Module;
 external: Module]

 specification: PseudoCode]

Parameter
PseudoCode

In the above schemas, a module has a name, a list
of parameters, a code in a pseudo language and a
description which defines the task done by the
module and the modules required for its execution,
some of them are included in the module and some
others are external. A module business component
mbc is well formed if it satisfies the following
characteristic property of module business
components, that is:
(mbc1) The set of requirements expressed as a

business process in the intended contextual
business activity of mbc is a singleton and
has a solution in the realization section of
mbc.

(# process(context(descriptor(mbc)) = 1) 
((p  process(context(descriptor(mbc))) 
(action(domain(p)) =
task(description(solution(realization(mbc))))))

4. The formalization of FORM with the
Business Component Semantics
horizontal engineering process.

The formalization of the horizontal engineering
process of FORM/BCS is done through four total
functions, called constructors: (i) SSA, the
subsystem architecture constructor, (ii) PA, the
process architecture constructor and, (iii) MA, the
module architecture constructor. Each constructor
specifies an activity of the horizontal engineering
process by defining how that activity produces a
target asset from an input one.

4.1 The subsystem architecture
constructor.

The subsystem architecture constructor SSA
corresponds to the subsystem architecture design
activity of the horizontal process. It defines how
that activity produces a reusable subsystem

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 388

business architecture component from a reusable
feature business component. The reusable
subsystem business component architecture
SSA(fbc) constructed by SSA from an input feature
business component fbc is defined as:
SSA (fbc) = (SSA.name(fbc), SSA.descriptor(fbc),
SSA.realization(fbc)) where:
(a) SSA.name(fbc) is a text used by the designer to

name the reusable subsystem business
component.

(b) SSA.descriptor(fbc) = (SSA.intention(fbc),
SSA.context(fbc)) with:
 SSA.intention(fbc) = <(decompose)ACTION

(domain(descriptor(fbc))TARGET)>, whose
meaning is that the intention of SSA(fbc) is
to decompose the business domain of fbc.

 SSA.context(fbc) = context(descriptor(fbc))
which says that the context of SSA (fbc) is
the same as the context of fbc.

(c) SSA.realization(fbc) = (SSA.solution(fbc),
SSA.adaptation_points(fbc)) where:
 SSA.solution(fbc) = (SSA.subsystems(fbc),

SSA.links(fbc)) where:
- SSA.subsystems(fbc) is the partition of the

solution of the realization of fbc defined
as follows:
(i) SSA.subsystems(fbc)  Feature
(ii) (F  SSA.subsystems(fbc)) =

decomposition(solution(realization(fbc)))
(iii)  F1, F2  SSA.subsystems(fbc) , F1 

F2  F1 F2 = ))
(iv)  F SSA.subsystems(fbc),  f

Feature , g Feature,
((f  F  g  F) 
( h  F  (objects(f)  objects(h) 
)  (objects(g)  objects(h)  ))).

- SSA.links(fbc)= {(F,G)
SSA.subsystems(fbc)× SSA.subsystems(fbc)/
(f,g)F×G  decomposition(f) 
decomposition(g) ≠ }

- SSA.adaptation_points(fbc) =
{(ss,subsystemrealizations(ss))  ss
SSA.subsystems(fbc)  ss 
adaptation_points(realization(fbc)) ≠ }
where subsystemrealizations(ss) =
{ss’:Subsystem   f ss,g ss’ / g 
featurerealizations(f) 
 g ss’, f  ss / g 
featurerealizations(f)} and

 featurerealizations(f) = { g:Feature 
common(f)  common(g) V 
variabilities(f), (  h  common(g)  h 
V)  optional(g)  optional(f)}

Lemma 1: if fbc is a well formed feature business
component, then SSA(fbc) is a well formed
subsystem business component.

Proof: It suffices to show that SSA(fbc) verifies the
subsystem business components’ characteristics
defined in section 3.3:
sbc1) Suppose p process(SSA.context(fbc)), we

must show that  ss SSA.subsystems(fbc))
and  f ss such that activity(f) =
action(domain(p))  objects(f) =
target(domain(p)).
Since SSA.context(fbc) =
context(descriptor(fbc)) and fbc is a well
formed feature, then  f 
decomposition(solution(realization(fbc))) such
that activity(f) = action(domain(p)) 
objects(f) = target(domain(p)) (property fbc3).
By definition SSA.subsystems(fbc is a partition
of decomposition(solution(realization(fbc))),
hence  ss SSA.subsystems(fbc)) such that
f ss.

sbc2) Suppose (ss1, ss2)  SSA.links(fbc), we must
show that  (f1, f2) ss1  ss2 such that
decomposition(f1)  decomposition(f2) ≠ .
This property is trivially true by the definition
of ssa.links.

Proposition 1: Let fbc be a well formed feature
business component, all the requirements expressed
in fbc have a solution in SSA(fbc) ie:
i) If p process(context(fbc)) then  ss

SSA.subsystems(fbc) such that
 f ss and activity(f) = action(domain(p))

ii) If f decomposition(solution(realization(fbc)))
and f adaptation_points(fbc) then  ss
SSA.subsystems(fbc) such that f  ss and ss 
SSA.adaptation_points(fbc)

Proof: The proof of (i) is obvious since SSA(fbc)
has the same context as fbc and SSA(fbc) is a well
formed subsystem business component if fbc is a
well formed feature business component (lemma1).
The proof of (ii) is also obvious by the definition of
SSA.adaptation_points.

Example:Let us consider the following skeleton of
a feature business component, hereafter referred as
FM/IMCS.

Name : Functional Model of the Integrated Management of Civil Servants and Salaries in Cameroon

Intention : (Define)ACTION((manage)ACTION(civil servants and salaries)TARGET)TARGET
 Context :
 Domain : f = (manage)ACTION(carrers,payroll,training,network,mail,system)TARGET

 Business processes :
f1 = (manage)ACTION(careers)TARGET
f2 = (manage)ACTION(payroll)TARGET

f3 = (manage)ACTION(training)TARGET
f4 = (manage)ACTION(inter-ministerial network)TARGET
f5 = (administer)ACTION(the system)TARGET
f6 = (manage)ACTION(mail)TARGET
/* sub-processes of f1 */
f11 = (manage)ACTION(recruitment)TARGET
f12 = (manage)ACTION(promotion)TARGET
f13 = (transfer)ACTION(file)TARGET

/* sub-processes of f2 */
f21 = (transfer)ACTION(file)TARGET

f22 = (calculate)ACTION(salaries)TARGET

f23 = (manage)ACTION(users)TARGET
f24 = (manage)ACTION(profiles, users)TARGET
/* sub-processes of f4 */
f41 = (use)ACTION(optic fiber network)TARGET
f42 = (use)ACTION(radio network)TARGET
f43 = (use)ACTION(twisted pair network)TARGET
/* sub-processes of f5 */
f51 = (manage)ACTION(users)TARGET
f52 = (manage)ACTION(profiles, users)TARGET
f53 = (manage)ACTION(connexions, users)TARGET
f54 = (manage)ACTION(the audit track, users)TARGET

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 389

/* sub-processes of f11 */
f111 = (integrate)ACTION (civil servant)TARGET (if he has passed a competitive
examination
or he has a diploma giving right to integration)PRECISION

 f112 = (sign recruitment order)ACTION (civil servant)TARGET (if the prime minister office
has authorized)PRECISION

etc…
 Solution :

f

f1 f3 f5

f11 f12 f13
f51 f52 f53

f111 f112 f113

f2 f4

f41 f42 f43

f6

f54

Adaptation Points : {(f, realizations(f)), (f4, realizations(f4)), (f5, realizations(f5))}

End.

Due to limited space, the complete specification of
the components of this ongoing real case study
cannot be given. Only some relevant sections are
shown in order to give the intuition to the reader. A
skeleton of the sub-system architecture business
component SSAM/IMCS derived from FM/IMCS
is given below:

Name : Subsystem architecture of the Integrated Management of Civil
Servants and Salaries in Cameroon

Intention : (Decompose)ACTION((manage)ACTION(civil servants and
salaries)TARGET)TARGET

 …

Solution:
Subsystems:

SS1 = {f1}
SS2 = {f2}
SS3 = {f3}

SS4 = {f4}

SS5 = {f5}

SS6 = {f6}

Links: SS1  SS2 , SS2  SS5

Adaptation Points : {(SS4, …) , (SS5, …)}
End.

4.2 The process architecture constructor.

The process architecture constructor PA formalizes
the process architecture design activity of the
horizontal process. It defines how that activity
produces a set of process business architecture
components from a reusable subsystem business
component. The set of reusable process business
component architectures PA(sbc) constructed by PA
from an input subsystem business component sbc
is defined as follows:
PA(sbc) = {(PA.name(p), PA.descriptor(p),
PA.realization(p))  p  process(sbc)} where

(a) PA.name (p) is a text used by the designer to
designate the process business component.

(b) PA.descriptor(p) = (PA.intention(p),
PA.context(p)) where
 PA.intention(p) = (describe)ACTION (p)TARGET

whose meaning is that the intention of the
process architecture built from p 
process(sbc) is to describe p.

 PA.context(p) = (domain(sbc), {p})
This says that the domain of the context of
the process architecture constructed from
the process p process (sbc) is the same as

the domain of sbc. The set of his processes
has a single process equals to p..

(c) PA.realization(p) = (PA.solution(p),
PA.adaptation_points(p)) where
 PA.solution(p) = (PA.tasks(p),

PA.datas(p), PA.dataaccess(p),
PA.messages(p)) where
PA.tasks(p) =
decomposition(action(domain(p)));
That is tasks of the process architecture of
a process p in process(sbc) are tasks
obtained by decomposing
action(domain(p)).
PA.datas(p) = target(domain(p));
whose meaning is that the set of the
process architecture of a process p in
process(sbc) corresponds to the target of
the domain of p
PA.dataaccess(p) = {(t, c) 
decomposition(action(domain(p))) ×
target(domain(p)) / decomposition(t) 
operations(c) ≠}
That is data access of the process
architecture of a process p in process(sbc)
are pairs composed with tasks obtained by
decomposing p and class of target(p).
PA.messages(p) = {(t1, t2) 
(decomposition (action(domain(p)))) 2 /
decomposition (t1)  decomposition (t2)
≠}.
This means that messages of the process
architecture of a process p in process(sbc)
are pairs of tasks (t1, t2) obtained by
decomposing action(domain(p)) such that
decomposition (t1)  decomposition (t2)
≠.

 PA.adaptation_points(p)) = {(t1, A)  t1
PA.tasks(p) 
A = {t2 : BusinessActivity  common(t1) 
common(t2) 
( V  variabilities(t1),   g 
common(t2)  g  V) 
optional(t1)  optional(t2)}  #A > 1}.
That is, adaptation points of the process
architecture of a process p in process(sbc)
are tasks of the process architecture of p
for which we have more than one
realization.

Lemma 2: if sbc is a well formed subsystem
business component, then (PA.name(p),
PA.descriptor(p), PA.realization(p)) such that p 
process(sbc) is a well formed process business
component.
Proof: It is sufficient to show that (PA.name(p),
PA.descriptor(p), PA.realization(p)) verifies the
process business components’ characteristics
defined in section 3.4:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 390

pbc1) Suppose q  process (PA.context(p)), a 
decomposition(action(domain(q))) we must
show that
 t  PA.tasks(p)  t = a 

 target(domain(q))  PA.datas(p) 
((((a, d)  PA.dataaccess(p)  ((a 
decomposition(action(domain(q)))) 
((decomposition(a)  operations(d) ≠ )))
where decomposition(a) is written for common(a)
 optional(a)  ( variabilities(a)).
q  process (PA.context(p))  q = p (1)
basing on (1) a 
decomposition(action(domain(q)))  a 
decomposition(action(domain(p))).
By the definition of PA.tasks, PA.tasks(p) =
decomposition(action(domain(p))), hence 
t  PA.tasks(p)  t = a
According to the definition of PA.datas,
PA.datas(p) = target(domain(p)), and basing
on (1) we conclude that target(domain(q)) 
PA.datas(p)
By the definition of PA.dataaccess, ((((a, d) 
PA.dataaccess(p)  ((a 
decomposition(action(domain(q)))) 
((decomposition(a)  operations(d) ≠ )))

pbc2) Suppose q  process (PA.context(p)), we
must show that ((t1, t2)  decomposition
(action(domain(q))) × decomposition
(action(domain(q)))  (decomposition(t1) 
decomposition(t2) ≠ ))  ((t1, t2)
PA.messages(p))
q  process (PA.context(p))  q = p (1)
By the definition of PA.messages,
PA.messages(p) = {(t1, t2) 
(decomposition (action(domain(p)))) 2 /
decomposition (t1)  decomposition (t2)
≠} (2)
Basing on (1) and (2), we conclude that
((t1, t2)  decomposition
(action(domain(q))) × decomposition
(action(domain(q)))  (decomposition(t1) 
decomposition(t2) ≠ ))
(t1, t2) PA.messages(p)

Proposition 2: Let sbc be a well formed subsystem
business component, all the requirements expressed
in sbc have a solution in PA(sbc) ie:

i) If p process(sbc) then  pa  PA(sbc)
such that
pa = (PA.name(p), PA.descriptor(p),
PA.realization(p))

ii) If ss 
subsystems(solution(realization(sbc))), f
ss and g  decomposition(f) such that
decomposition(g)  common(g) then  t
PA.tasks(p) such that action(domain(p)) =
activity(f), t = activity(g) and t 
PA.adaptation_points(p) where p
process(sbc).

Proof: The proof of (i) is obvious since PA(sbc) =
{(PA.name(p), PA.descriptor(p), PA.realization(p))
 p  process(sbc)}. The proof of (ii) is also
obvious by the definition of PA.adaptation_points.

Example:
By applying the previous passage rule to the
process f1 = (manage = [{recruit, promote,
liquidate, transfer}, {}, {}]) ACTION (candidates,
requests, competitive examinations, civil servants,
deeds) TARGET of the previous subsystem business
component, we obtain the process business
component below named PAM/RM:

Name: Process architecture model of careers management.

Intention : (describe)ACTION((manage = [{recruit, promote, liquidate,
transfer}, {}, {}])ACTION(candidates, requests,
competitive examinations, civil servants,
deeds)TARGET)TARGET

 Context :
Domain : f =

(manage)ACTION(careers,payroll,training,network,m
ail,system)TARGET

Process : f1 = (manage = [{recruit, promote, liquidate,
transfer}, {}, {}])ACTION(candidates, requests,
competitive examinations, civil servants,
deeds)TARGET
/* sub process of the process f1 */
f11 = (recruit = [{initiate, validate, visa, sign},
{modify, delete, remove validation},
{}])ACTION(candidates, requests, competitive
examinations, civil servants, deeds)TARGET(If he has
succeeded to a competitive examination or he has a
diploma giving right to integration or the
presidency of the republic has gave
agreement)PRECISION
f12 = (promote = [{initiate, validate, visa, sign},
{modify, delete, remove validation}, {}]) ACTION (
requests, civil servants, deeds) TARGET
f13 = (liquidate = [{initiate, validate, visa, sign},
{modify, delete, remove validation}, {}]) ACTION (
requests, civil servants, deeds) TARGET
f14 = (transfer = [{initiate, validate, visa, sign},
{modify, delete, remove validation}, {}]) ACTION (
civil servants, deeds) TARGET

 …

 Solution :

tasks: decomposition(action(f1))
datas: target(f1)
dataaccess: {(t, c)  decomposition(action(f1)) × target(f1) /

decomposition(t)  operations(c) ≠}
messages: {(t1, t2)  decomposition (action(f1)) ×

decomposition (action(f1)) / decomposition (t1) 
decomposition (t2) ≠}

Adaptation points :
{(t1, A)  t1 pa.tasks(f1) 
A = {t2 : BusinessActivity  common(t1)  common(t2) 
( V  variabilities(t1),   g  common(t2)  g  V) 
optional(t1)  optional(t2)}  #A > 1}

End.

4.3 The module architecture constructor.

The module architecture constructor MA
corresponds to the module architecture design
activity of the horizontal process. It defines how
that activity produces a set of module business
architecture components from a reusable process
business component. The set of reusable module
business component architectures MA(pbc)
constructed by MA from an input process business
component pbc is defined as:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 391

MA(pbc) = {(MA.name(t), MA.descriptor(t),
MA.realization(t))  t  process(p), p
process(pbc)} where :

(a) MA.name (t) is a text used by the designer to
name the module business component.

(b) MA.descriptor(t) = (MA.intention(t),
MA.context(t)) where
 Ma.intention(t) = <(specify)ACTION (t)TARGET>

meaning that the intention of the module
architecture built from t is to specify t.

 MA.context(t) = (domain(pbc), {t})
This says that the domain of the context of
the module architecture constructed from
the task t is the same as the domain of pbc.
The set of these processes has a single
process equals to t..

(c) MA.realization(t) = (MA.solution(t),
MA.adaptation_points(t)) where
 MA.solution(p) = (MA. pseudonym (t),

MA.parameters(t), MA.task(t),
MA.included(t), MA.external(t),
MA.specification(t)) where
MA. pseudonym (t) is a text used by the
designer to name the solution;
MA.parameters(t) is a set of texts pointing
out business objects (or classes) in the
target of the domain of t;
Ma.task(t) = action(domain(t))
That is the task of the solution of the
module architecture constructed from the
context t is the action of the domain of t.
MA.included(t) = {m:Module  task(m) 
decomposition(action (domain(t))) 
specification(m)  ˝˝ };
Meaning that, modules included in the
module architecture constructed from the
context t are module for which the task is a
subtask of t and the specification is not
empty.
MA.external(t) = {m:Module  task(m) 
decomposition(action (domain(t))) 
specification(m) = ˝˝ };
Meaning that, external modules in the
module architecture constructed from the
context t are module for which the task is a
subtask of t and the specification is empty.
MA.specification(t) = {specification(m) 
m  MA.included(t)  MA.required(t)}.
That is the specification of the module
architecture constructed from the context t
is the set of specifications of subtasks of t.

 MA.adaptation_points(t)) = {(m1, A) 
m1 MA.included(t) 
 A = {m2 : Module  common(task(m1)) 
common(task(m2)) 
( V  variabilities(task(m1)),   g 
common(task(m2))  g  V) 
optional(task(m1))  optional(task(2))} 

#A > 1}. That is, adaptation points of the
module architecture of a context t are
modules included in the module architecture of
t for which we have more than one realization.

Lemma 3: if pbc is a well formed process business
component, then (MA.name(t), MA.descriptor(t),
MA.realization(t)) such that t  process(p) and p
process(pbc) is a well formed module business
component.
Proof: It suffices to show that (MA.name(t),
MA.descriptor(t), MA.realization(t)) verifies the
module business components’ characteristics
defined in section 3.5:
mbc1) Suppose p process(pbc) and t 

process(p), we must show that
(#MA.process(t) = 1) 

 ((p  MA.process(t))  (action(domain(p)) =
MA.task(t)).
This property is trivially true by the
definition of MA.process.

Proposition 3: Let pbc be a well formed process
business component, all the requirements expressed
in pbc have a solution in MA(pbc) ie:

i) If p process(pbc) and t  process(p)
then  ma  MA(pbc) such that ma =
(MA.name(t), MA.descriptor(t),
MA.realization(t))

ii) If t  tasks(solution(realization(pbc))) and
a  decomposition(t) such that
decomposition(a)  common(a) then 
m MA.adaptation_points(t) such that
task(m) = a.

Proof: The proof of (i) is obvious since MA(pbc) =
{(MA.name(t), MA.descriptor(t), MA.realization(t))
 t  process(p), p process(pbc)}. The proof of
(ii) is also obvious by the definition of
MA.adaptation_points.

Example:
By applying the previous passage rule to the task
integrate of the previous process business
component, we obtain the module business
component below named MAM/ICS:

Name: Module business architecture of the recruitment of a civil servant.

Intention : (specify) ACTION ((recruit = [{initiate, validate, visa, sign},
{modify, delete, remove validation},
{}])ACTION(candidates, requests, competitive examinations,
civil servants, deeds)TARGET(If he has succeeded to a
competitive examination or he has a diploma giving right
to integration or the presidency of the republic has gave
agreement)PRECISION) TARGET

Context :

Domain : f =
(manage)ACTION(careers,payroll,training,network,mail,system
)TARGET

Process: f11 = (recruit = [{initiate, validate, visa, sign}, {modify,
delete, remove validation}, {}])ACTION(candidates,
requests, competitive examinations, civil servants,
deeds)TARGET(If he has succeeded to a competitive
examination or he has a diploma giving right to
integration or the presidency of the republic has gave

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 392

agreement)PRECISION
/* sub process of the process f11 */
 (initiate)ACTION ({Deed, Servant })TARGET

(validate)ACTION ({Deed})TARGET
(visa)ACTION ({Deed})TARGET
(sign)ACTION ({Deed})TARGET

 (modify)ACTION ({Deed})TARGET
(delete)ACTION ({Deed})TARGET
(removevalidation)ACTION ({Deed})TARGET

Solution :
 pseudonym : recruit;
 parameters: {candidates, requests, competitive examinations, civil

servants, deeds};
 task: <{initiate, validate, visa, sign}, {modify, delete, remove

validation}, {}>;
 included: {m:Module  task(m)  decomposition(action

(domain(recruit)))  specification(m)  ˝˝ };
 external: {m:Module  task(m)  decomposition(action

(domain(recruit)))  specification(m) = ˝˝ };
 specification: {specification(m)  m  Ma.included(recruit) 

Ma.required(recruit)}
Adaptation Points :

{(m1, A)  m1 Ma.included(recruit) 
 A = {m2 : Module  common(task(m1))  common(task(m2)) 
( V  variabilities(task(m1)),   g  common(task(m2))  g  V)
 optional(task(m1))  optional(task(m2))}  #A > 1}

End.

5. Related works.

The scientific community has a lot of interest for
feature-oriented approaches in product line
engineering. A recent and exhaustive overview of
feature-oriented development done by Sven Apel
and Christian Kästner [15] points to connections
between different lines of research and identifies
open issues following the phases of the feature-
oriented development process: domain analysis,
domain design and specification, domain
implementation, product configuration and
generation, feature-oriented development theory.
The issues addressed in this paper mainly concern
domain analysis and domain design and
specification. Concerning domain analysis,
according to Sven Apel and Christian Kästner, the
main challenge is to reconcile the two field uses of
feature models, which are useful for the
communication between stakeholders on the one
hand and the automation of the development
process on the other hand. Concerning this issue,
the formalism used in this work has a simple and
intuitive syntax which enables modeling of
domains in a natural way. Nevertheless, the Z
notation which gives formal semantics to our
business feature models provides a framework for a
rigorous analysis of the method and opens the door,
through the given mapping rules, for a possible
automation of the development process.
Another major line of research is aimed at enriching
feature models with additional information which
can be used to guide the configuration and
generation process. But, the more information is
exposed to model, the more complex the model
becomes. To avoid this complexity, additional
information are not added to the feature model but,
a new model called feature business component
model is proposed. This new model has two parts:

the solution part which can be any classical feature
model and the contextual part whose aim is to
increase the understanding of the solution part,
during the product configuration and generation
process in order to rule out invalid or suboptimal
product variants.
Concerning the domain design and specification,
that is the product line architecture definition
process, remarkably, there has not been much work.
Researchers concentrated mainly on feature
modeling and feature implementation. This is in
stark contrast to non- feature-oriented approaches,
in which developers have to design product line
architecture first in order to define the granularity
of components or extension points in a common
framework. This work gives a set of mapping rules
which build product line architecture from its
feature model as in [16]
Concerning domain implementation, one key issue
is to establish a one-to-one mapping between
features that appear during the domain analysis and
feature that appear at the implementation level.
Although the Domain implementation is not
considered in this work, its importance is taken into
consideration since the main theorem of the work
given below, trivially proven from propositions 1,
2, and 3, shows that all the features that appear
during the domain analysis (i. e. in the feature
model) have a solution in the derived product line
architecture.

Theorem: All requirements expressed in a well
formed feature business component fbc have a
solution in MA (pbc) where pbc  PA(SSA(fbc))),
that is:

i) If p process(context(fbc)) and t 
process(p) then  ma  MA(pbc) with
pbc  PA (SSA (fbc))) such that ma =
(MA.name(t), MA.descriptor(t),
MA.realization(t)).

ii) If t  tasks(solution(realization(pbc)))
with pbc  PA (SSA (fbc))) , and a 
decomposition(t) such that
decomposition(a)  common(a) then 
m MA. adaptation_points (t) such that
task(m) = a.

6. Conclusion

The goal of this article was to formalize the
FORM/BCS horizontal engineering process. We
have shown that this process can be systematized
through a set of maps describing how one can
systematically and rigorously derive the
fundamental business architectures of a product line
from the feature model of that domain. This
derivation is currently done first at a high
abstraction level and the business architectures
obtained have to be refined to integrate more
operational details. Therefore, our next

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org 393

investigation field concerns the formalization of
FORM/BCS vertical engineering process which
deals with the refinement of business process
components.

References

[1] M. Fouda, Amougou Ngoumou, "The Feature
Oriented Reuse Method with Business Component
Semantics", International Journal of Computer
Science and Applications, Vol. 6, No. 4, 2009, pp
63-83.

[2] K. C. Kang, S. Kim, E. Shin, and M. Huh, "FORM:
A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures", Annals of
Software Engineering, Vol. 5, 1998, pp. 143-168.

[3] K.C. Kang, J. Lee, and P. Donohoe, “Feature-
Oriented Product Line Engineering,” IEEE
Software, Vol. 19, no. 4, July/Aug. 2002, pp. 58-65.

[4] K. Lee, K. C. Kang, W. Choi, "Feature-Based
Approach to Object-Oriented Engineering of
Applications for Reuse", Software-Practice and
Experience, 30, 2000, pp.1025-1046.

[5] K.C. Kang et al., “Feature-Oriented Product Line
Software Engineering: Principles and Guidelines,”
Domain Oriented Systems Development:
Perspectives and Practices, K. Itoh et al., eds.,
2003, pp. 29-46.

[6] V. Pujalte, P. Ramadour, C. Cauvet, "Recherche de
composants réutilisables : une approche centrée sur
l’assistance à l’utilisateur", in Actes du 22ème
congrès Inforsid, Biarritz, , 25-28 may 2004, pp.
211-227.

[7] P. Ramadour, C. Cauvet, “Approach and Model for
Business Components Specification”, Proceeding
of the 13th International Conference on Database
and Expert Systems Applications, Lecture Notes In
Computer Science; Vol. 2453, 2002, pp 628-637.

[8] F. Barbier, C. Cauvet, M. Oussalah, D. Rieu, S.
Bennasri, C. Souveyet, “Composants dans
l’Ingénierie des Systèmes d’Information: Concepts
clés et techniques de réutilisation ”, in Assises du
GDR I3, Nancy, Décembre 2002.

[9] W. B. Frakes, K. Kang, “Software Reuse Research :
Status and Future”, IEEE Transactions on Software
Engineering, Vol.. 31, N°.7, July 2005.

[10] D.M. Weiss and C.T. R. Lai, “Software Product-
Line Engineering: A Family-Based Software
Development Process”. Addison-Wesley, 1999.

[11] W. Frakes, R. Prieto-Diaz, and C. Fox, “DARE:
Domain Analysis and Reuse Environment”, Annals
of Software Engineering. vol. 5, 1998, pp. 125-141.

[12] C. Atkinson et al., “Component-Based Product Line
Engineering with UML”. Addison-Wesley, 2002.

[13] R. Ommering et al., “The Koala Component Model
for Consumer Electronics Software,” Computer,
vol. 33, no. 3, 2000, pp. 78-85.

[14] Y. Jia, Y. Gu, “The Representation of Component
Semantics: A Feature-Oriented Approach”, in
Proceedings of the 9th IEEE Conference and
Workshops on Engineering of Computer-Based
Systems, Lund University, Lund, Sweden, April 8-
11, 2002.

[15] Sven Apel, Christian Kästner, “An Overview of
Feature-Oriented Software Development”, Journal

of Object Technology, Vol. 8, no. 5, July-August
2009, pp. 49-84.

[16] C. Zhu, Y. Lee, W. Zhao, J. Zhang, “A feature
oriented approach to mapping from domain
requirements to product line architecture”,
Proceeding of 2006 International Conference of
Software Engineering Research & Practice
(SERP’06/ISBN#:1-932415-92-0/CSREA), Editor:
Hamid R. Arabnia and Hassan Reza, pp 219-225,
Las Vegas, USA, 2006.

Marcel Fouda Ndjodo received his MSc (1988), PhD
(1992) in Mathematics and Computer science from
Université of Aix-Marseille II (France). He is currently a
Senior Lecturer and Head of Department of Computer
Science and Instructional Technology at the Higher
Teachers’ Training College, University of Yaoundé I
(Cameroon). His research interests include Formal
Methods, Workflow Modeling, Domain Engineering and
Computer technology applied to education.

Amougou Ngoumou received his MSc (2001) in
Computer science from the Faculty of Science of the
University of Yaoundé I (Cameroon). He is currently a
Lecturer at the Institute of technology of the University of
Douala and a PhD student at the Faculty of Science of the
University of Yaoundé I. His main research interests
include Feature-oriented Domain Engineering and
Component-Based Software Development.

