
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

394

Ternary Tree and Clustering Based Huffman Coding Algorithm

1Pushpa R. Suri and 2Madhu Goel

1Department of Computer Science and Applications,
Kurukshetra University, Haryana, India

2Department of Computer Science and Engineering,

Kurukshetra Institute of Technology and Management, KUK

Abstract

In this study, the focus was on the use of ternary tree over binary
tree. Here, a new two pass Algorithm for encoding Huffman
ternary tree codes was implemented. In this algorithm we tried to
find out the codeword length of the symbol. Here I used the
concept of Huffman encoding. Huffman encoding was a two pass
problem. Here the first pass was to collect the letter frequencies.
You need to use that information to create the Huffman tree. Note
that char values range from -128 to 127, so you will need to cast
them. I stored the data as unsigned chars to solve this problem,
and then the range is 0 to 255. Open the output file and write the
frequency table to it. Open the input file, read characters from it,
gets the codes, and writes the encoding into the output file. Once
a Huffman code has been generated, data may be encoded simply
by replacing each symbol with its code. To reduce the memory
size and fasten the process of finding the codeword length for a
symbol in a Huffman tree, we proposed a memory efficient data
structure to represent the codeword length of Huffman ternary
tree. In this algorithm we tried to find out the length of the code
of the symbols used in the tree.

Keywords: Ternary tree, Huffman’s algorithm,
Huffman encoding, prefix codes, code word length

1. Introduction

Ternary tree [12] or 3-ary tree is a tree in which each node
has either 0 or 3 children (labeled as LEFT child, MID
child, RIGHT child). Here for constructing codes for
ternary Huffman tree we use 00 for left child, 01 for mid
child and 10 for right child.
Generation of Huffman codes for a set of symbols is based
on the probability of occurrence of the source symbols.
Typically, the construction of a ternary tree, describes the
process this way:

 List all possible symbols with their probabilities;

 Find the three symbols with the smallest
probabilities;

 Replace these by a single set containing all three
symbols, whose probability is the sum of the
individual probabilities;

 Repeat until the list contains only one member.

This procedure produces a recursively structured set of
sets, each of which contains exactly three members. It,
therefore, may be represented as a ternary tree (“Huffman
Tree”) with the symbols as the “leaves.” Then to form the
code (“Huffman Code”) for any particular symbol:
traverse the ternary tree from the root to that symbol,
recording “00” for a left branch and “01” for a mid branch
and “10” for a right branch. One issue, however, for this
procedure is that the resultant Huffman tree is not unique.

One example of an application of such codes is text
compression, such as GZIP. GZIP is a text compression
utility, developed under the GNU (Gnu's Not Unix)
project, a project with a goal of developing a “free” or
freely available UNIX-like operation system, for replacing
the “compress” text compression utility on a UNIX
operation system.

As is well-known, the resulting Huffman codes are prefix
codes and the more frequently appearing symbols are
assigned a smaller number of bits to form the variable
length Huffman code. As a result, the average code length
is ultimately reduced from taking advantage of the
frequency of occurrence of the symbols

Huffman encoding [13] of numerical data, or more broadly
variable bit length encoding of numerical data, is an
important part of many data compression algorithms in the
field of video processing. Huffman encoding is effective
to compress numerical data by taking advantage of the fact
that most data sets contain non-uniform probability
distributions of data values. When using the Huffman
method the data values are encoded using codes of
different bit lengths. The more frequently occurring data
values are assigned shorter codes and the less frequently
occurring data values are assigned longer codes. Thus, the
average code length for the data values in the data set is
minimized. For typically skewed probability distributions

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

395

of data values the use of Huffman encoding may achieve a
compression factor of between one and one-half and two
times.

In Huffman Coding [6] the main work is to label the
edges. Huffman Coding uses a specific method for
choosing the representation for each symbol, resulting in a
prefix - free code (some times called "Prefix Codes") i.e.
the bit string representing some particular symbol is never
a prefix of the bit string representing any other symbol that
expresses the most common characters using shorter
strings of bits that are used for less common source
symbols. The assignment entails labeling the edge from
each parent to its left child with the digit 00, and the edge
to the mid child with 01 and edge to the right child with
11. The code word for each source letter is the sequence
of labels among the path from the root to the leaf node
representing that letter. Only Huffman Coding is able to
design efficient compression method of this type.
Huffman Coding is such a widespread method for creating
prefix-free codes that the term "Huffman Code" is widely
used as synonym for "Prefix Free Code".

Now, for example, we will give a coding using variable
length strings that is based on the Huffman Tree for
weighted data item as follows: -

 The Huffman Code for Ternary Tree
assigns to each external node the sequence of bits from the
root to the node. Thus the above Tree determines the code
for the external nodes: -

G: 00 I: 0100 C: 0101

F: 0111 D: 1101 A: 1111

E: 110000 B: 110001 H: 110011

This code has "Prefix Property" i.e. the code of any item is
not an initial sub string of the code of any other item. This

means that there cannot be any ambiguity in decoding any
message using a Huffman Code.

If we will represent the same data item with same weights
in Binary Tree as well as in Ternary Tree[11] then we can
easily point out the comparison between two
representation as follows: -

 In Ternary Tree: -

Memory used using Sequential Representation = 34

Memory used using Linked List Representation = 13

Number of Internal Nodes = 4

Path length = 199

Height of the tree = 4

Total Number of Nodes (Internal + External) = 13

Searching on Node is fast

Length of External Node (LE)= 2LI + 3n

Here Labeling the left edge by 00, mid edge by 01 and right edge
by 11 satisfies prefix Property

While In Binary Tree: -

Memory used using Sequential Representation = 51

Memory used using Linked List Representation = 17

Number of Internal Nodes = 8

Path length = 306

Height of the tree = 6

Total Number of Nodes (Internal + External) = 17

Searching on Node is slow

Length of External Node (LE)= = LI + 2n

Here Labeling the left edge by 0 and right edge by 1

satisfies prefix Property.

One may generate the length information for the Huffman
codes by constructing the corresponding Huffman tree.
However, as previously indicated, Huffman codes may not
be unique when generated in this fashion. Nonetheless, it
may be shown that by imposing two restrictions, the
Huffman code produced by employing the Huffman tree
may be assured of being unique. These restrictions are:

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

396

1. All codes of a given bit length have lexicographically
consecutive values, in the same order as the symbols they
represent; and

2. Shorter codes lexicographically precede longer codes.

2. Materials and Methods

Ordering and clustering based Huffman Coding groups the

code words (tree nodes) within specified codeword
lengths

Characteristics of the proposed coding scheme:

1. The search time for more frequent symbols (shorter

codes) is substantially reduced compare to less frequent
symbols, resulting in an overall faster response.

2. For long code words the search for the symbol is also
speed up. This is achieved through a specific
partitioning technique that groups the code bits in a
codeword, and the search for a symbol is conducted by
jumping over the groups of bits rather than going
through the bit individually.

3. The growth of the Huffman tree is directed toward one
side of the tree.

–Single side growing Huffman tree (SGH-tree)

Ex: H=(S, P)

S= {S1, S2,…, Sn}

P= {P1, P2,…, Pn}

Where p=No. of occurrence

Table I

For a given source listing H, the table of codeword length
uniquely groups the symbols into blocks, where each
block is specified by its codeword length (CL).

Each block of symbols, so defined, occupies one level in
the associated Huffman tree.

1. Order the symbols according to their probabilities
 Alphabet set: S1, S2, …, SN
 Prob. of occurrence: P1, P2, , PN
 The symbols are rearranged so that
 P1>=P2>=…>=PN

2. Apply a contraction process to the three symbols with
the smallest probabilities
Replace symbols SN-2, SN-1 and SN by a “hypothetical”
symbol, say HN-1 that has a `prob. of occurrence PN-2+PN-

1+PN
 The new set of symbols has N-2 members:
 S1, S2, …, SN-3, HN-2

3. Set
 SN-2+SN-1+SN=A1
Where A1 is inserted at proper location.

4. Repeat the steps 2 & 3 until we have last three symbols.
Table I shows the symbols used in Huffman tree.

5. Now construct the table of CL-Recording

6. First column of CL-Recording table is represented by Si
where
Si= (entries of last row of every column) 0

S1 48 S1 48 S1 48
S2 31 S2 31 S2 31
S3 7 A1 8 A2 21
S4 6 S3 7
S5 5 S4 6
S6 2
S7 1

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

397

Second row of CL-Recording is represented by Si-1 where
Si-1= (entries of second last row of every column)

Third row of CL-Recording table is represented by Si-2

where
Si-2= (entries of third lat row of every column)

Fourth row (last row) is used to calculate code word
length.

7. To calculate the entries of codeword length.

CL (last row) =2
This designates the codeword length for entire row.

Now increment the last row
CL (last row) +2=4

Repeat steps to find the codeword length for entire
symbols.

8. Therefore, table II (codeword length recording) indicate
that each original symbol in the table has its CL
(codeword length) specified.

9. Ordering the symbols according to their CL values
gives table III (table of codeword length)

3. Result & discussion

If we will represent the same data item with same
weights in Binary Tree as well as in Ternary Tree then
we can easily point out the comparison between two
representation as follows: -

 In Ternary Tree: -

Number of Internal Nodes = 4

Path length = 199

Height of the tree = 4

Total Number of Nodes (Internal + External) = 13

Searching on Node is fast

Length of External Node (LE)= 2LI + 3n

While in Binary Tree: -

Number of Internal Nodes = 8

Path length = 306

Height of the tree = 6

Total Number of Nodes (Internal + External) = 17

Searching on Node is slow

Length of External Node (LE) =LI + 2n

4. Conclusions

 The main contribution of this study is exploiting
the property implied in the Huffman tree to simplify the
representation of the Huffman tree and the encoding
procedure. Moreover our algorithm can also be
parallelized easily. We already showed that representation
of Huffman Tree using Ternary tree is more beneficial
than representation of Huffman Tree using Binary tree in
terms of path length, height, number of internal & external
nodes and in error correcting & detecting codes

Acknowledgements

The author Madhu Goel would like to thank Kurukshetra
University Kurukshetra for providing me University
Research Scholarship & support of Kurukshetra Institute
of Technology & Management (KITM) .

References

[1] BENTLEY, J. L., SLEATOR, D. D., TARJAN, R. E.,

AND WEI, V. K. A locally adaptive data compression
scheme. Commun. ACM 29,4 (Apr. 1986), 320-330.

[2] DAVID A. HUFFMAN, Sept. 1991, profile
Background story: Scientific American, pp. 54-58

[3] ELIAS, P. Interval and regency-rank source coding:

Two online adaptive variable-length schemes. IEEE
Trans. InJ Theory. To be published.

[4] FALLER, N. An adaptive system for data

compression. In Record of the 7th Asilomar
Conference on Circuits, Systems, and Computers.
1913, pp. 593-591.

[5] GALLAGER, R. G. Variations on a theme by

Huffman. IEEE Trans. Inj Theory IT-24, 6 (Nov.1978),
668-674.

[6] Hashemain, “memory efficient and high-speed search

Huffman Coding” IEEE Trans. Communication
43(1995) pp. 2576-2581.

[7] Hu, Y.C. and Chang, C.C., “A new losseless

compression scheme based on Huffman coding scheme
for image compression”,

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010
ISSN (Online): 1694-0814
www.IJCSI.org

398

[8] KNUTH, D. E, 1997. The Art of Computer
Programming, Vol. 1: Fundamental Algorithms, 3rd
edition. Reading, MA: Addison-Wesley, pp. 402-406

[9] KNUTH, D. E. Dynamic Huffman coding. J.

Algorithms 6 (1985), 163-180.

[10] MacKay, D.J.C., Information Theory, Inference, and

Learning Algorithms, Cambridge University Press,
2003.

[11] MCMASTER, C. L. Documentation of the compact

command. In UNIX User’s Manual, 4.2 Berkeley
Software Distribution, Virtual VAX- I Version, Univ.
of California, Berkeley, Berkeley,
Calif., Mar. 1984. ,

[12] PUSHPA R. SURI & MADHU GOEL, Ternary Tree &

A Coding Technique, IJCSNS International Journal of
Computer Science and Network Security, VOL.8 No.9,
September 2008

[13] PUSHPA R. SURI & MADHU GOEL, Ternary Tree &

FGK Huffman Coding Technique, IJCSNS
International Journal of Computer Science and
Network Security, VOL.9 No.1, January 2009

[14] PUSHPA R. SURI & MADHU GOEL, A NEW

APPROACH TO HUFFMAN CODING, Journal of
Computer Science. VOL.4 ISSUE 4 Feb. 2010 .

[15] ROLF KLEIN, DERICK WOOD, 1987, on the path
length of Binary Trees, Albert-Lapwings University at
Freeburg.

[16] ROLF KLEIN, DERICK WOOD, 1988, On the
Maximum Path Length of AVL Trees, Proceedings of
the 13th Colloquium on the Trees in Algebra and
Programming, p. 16-27, March 21-24.

[17] SCHWARTZ, E. S. An Optimum Encoding with
Minimum Longest Code and Total Number of Digits.
If: Control 7, 1 (Mar. 1964), and 37-44.

[18] TATA MCGRAW HILL, 2002 theory and problems of
data structures, Seymour lipshutz, tata McGraw hill
edition, pp 249-255

[19] THOMAS H. CORMEN, 2001 Charles e. leiserson,
Ronald l. rivest, and clifford stein.

[20] Thomas H.Cormen Charles E. Leiserson, Ronald L.
Rivest, and Clifford Stein. Introduction to algorithms,
Second Edition. MIT Press and McGraw-Hill, 2001.
Section 16.3, pp. 385–392.

.
Dr. Pushpa Suri is a reader in the department of computer
science and applications at Kurukshetra University
Haryana India. She has supervised a number of Ph.D.

students. She has published a number of research papers in
national and international journals and conference
proceedings.

Mrs. Madhu Goel has
Master’s degree (University Topper) in Computer Science.
At present, she is pursuing her Ph.D. and working as
Lecturer in Kurukshetra Institute of Technology &
Management (KITM), Kurukshetra University
Kurukshetra. Her area of research is Algorithms and Data
Structure where she is working on Ternary tree structures.
. She has published a number of research papers in
national and international journals.

