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Abstract 
To assist the judgment of human operators, a computer-aided 
drug delivery system with adaptive predictive control is 
suggested. The assisting system can predict future responses of a 
patient to drug infusions, calculate optimal inputs, and present 
those values on a monitor. Regardless of sudden disturbance such 
as bleeding, human operators of the computer-aided system were 
able to control arterial blood pressure. To improve the computer-
aided system, future studies will be required to consider the 
method for emergency warning or correspondence to multiple 
drug infusions. 
Keywords: Adaptive Predictive Control, Computer-aided 
System, Neural Networks, Arterial Blood Pressure, System 
Evaluation 

 1. Introduction 

Shortage of anesthesiologists is a serious social problem 
especially in local areas of Japan [1]. Under such a 
condition, a constant effect of medical treatment is desired, 
regardless of degree of advancement in system operators. 
As a possible solution, the effects of automated therapy 
systems without human operations have been expected [2]. 
However, to make these practicable, further improvement 
is needed. To widely advance automated systems, many 
issues such as their approval as medical instruments and 
responsibility for medical accidents must be resolved. 
Accordingly, a computer-aided system to assist in 
decision-making by an operator rather than by automated 
systems may become effective. 
 
As an effective method for automatic control of biological 
information, the application of intelligent control systems 
has been studied. For instance, automated drug infusion 
systems with neural networks (NN) and fuzzy theory for 
blood pressure control have been developed and evaluated 
[3]-[7]. In particular, the significant differences exist 
between the abilities of residents and those of 

accomplished physicians. For example, it is difficult for 
beginners to appropriately grasp the characteristics of drug 
responses reflecting the history of past inputs and outputs 
or to correspond to an acute emergency such as bleeding. 
Therefore, the effectiveness of intelligent control systems 
may be applied to the quick decision making of 
inexperienced beginners. 
 
A computer-aided drug delivery system using adaptive 
predictive control with NN was suggested in this study; 
effectiveness was evaluated in human operators. 1) In 
blood pressure control using a single drug, the learning 
effect of the assistant system on beginners without 
pharmacological knowledge was investigated. 2) The 
accuracy of correspondence to an unknown and acute 
emergency was assessed using the assistant system. 

2. Control System 

2.1 Adaptive Predictive Control with NN 

Figure 1A shows a block diagram of an adaptive predictive 
control with NN (APC-NN) and a human operator. 
Predicted future outputs to drug inputs were displayed (Fig. 
1B), by using the APC-NN to emulate arterial blood 
pressure (BP) response. A system operator can determine 
the appropriate inputs, referencing the predicted values 
(green circles in Fig. 1B) calculated by a computer as well 
as personal experience in arterial pressure control. 
 
The APC-NN is a control system where the NN 
recursively learns the characteristics of mean BP responses 
and determines predicted future outputs. In the closed loop 
controls, the NN initially learned about BP response every 
10 s (“Learning Loop”). The learned BPNN response was 
used for the prediction of future outputs by the NN 
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(“Prediction Loop”). A human operator determined final 
infusion rates, referencing the predicted outputs. 
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Fig. 1 Drug delivery system with APC-NN. A: Block diagram of a 
controller. B: Example of a control display. 

2.2 NN Output 

To assess the BP response, a multilayer feed-forward NN 
with two hidden layers was used. The NN structure was a 
nonlinear autoregressive moving average model [8] as 
follows: ΔBPNN(t) is the BP change estimated by the NN. 
 

ΔBPNN(t) = f (ΔBP(t-1), u(t-1), …, u(t-6)) (1) 
 
The input layer in the NN is composed of past input and 
output. ΔBP(t-1) is the actual BP change induced by 
norepinephrine (NE) infusion before one sampling interval. 
The duration of past infusion rates determined by a human 
operator (u) was set to 1 min. The input values were sent 
through the first and second hidden layers and the output 
layer. When the NN calculated output, the hyperbolic 
tangent function was applied 14 times (seven times in each 
hidden layer). 

2.3 Backpropagation Algorithm 

To identify the BP response and determine the initial 
weights, NN was trained using the output of the model 
response to random inputs. The backpropagation algorithm 
was used in the online mode. All connection weights were 

adjusted to decrease the error function by the 
backpropagation learning rule based on the gradient 
descent method. 
 
The BPNN predicted by NN was compared with the 
observed BP; its error was calculated by the following 
function. 
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ε shows the difference between actual BP as a supervised 
signal and BPNN predicted by the NN before update of the 
connection weights. The error is back propagated through 
the network. The connection weight is updated by the 
gradient descent of E as a function of the weights. 
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w and w* are the weights of each connection before and 
after update, respectively. Δw is the modified weight and 
Kn is the learning rate. The backpropagation algorithm 
was performed in the following order: output, second 
hidden, and first hidden layers. The total number of 
weights was 120. 

2.4 Initial Weights in NN 

To determine the initial weights, the NN learned the BP 
model response. The weights before learning were 
randomly assigned between -1 and 1. The infusion rate of 
NE (-4 to 6 µg/kg/min) was randomly assigned; learning 
calls were replicated 300,000 times. Normalization was 
performed by dividing all outputs by 50. The learning rate, 
Kn, was 0.01. 
 
NN learning resulted in an absolute error of approximately 
0.9 mmHg compared with the model response. The trained 
NN was used in the system evaluation with the learning 
rate set to Kn = 0.1 to quickly converge target values. 

2.5 Cost Function 

The APC-NN calculated the optimal infusion rate that 
minimized the cost function: 
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Np is a prediction horizon, r(t+i) is a prescribed target 
value of BP control at time point t+i, and BPNN(t+i) is the 
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BP predicted by NN. Future output can be estimated by 
BPNN(t) derived from the backpropagation algorithm. Q 
contained the predicted output after Np steps to suppress 
sudden changes in infusion rate. Np was set to 5 in this 
study. The cost function was minimized by a downhill 
Simplex method for a quadratic function [7]. 

3. System Evaluation 

3.1 Participants 

Participants were fourteen healthy volunteers. They were 
divided into two groups: computer-aided group using 
APC-NN (assist group; n = 7, 27.4 ± 5.0 years) and non-
assist group (n = 7, 26.6 ± 3.4 years). All participants had 
no experience with drug delivery or specific 
pharmacological knowledge. The condition of the 
participants was verified before the experiment. Informed 
consent was obtained from all participants after a complete 
description of the experiment. 

3.2 Simulation Task 

(A) Modeling of blood pressure response 
To make a model for BP response to a drug infusion, the 
average step response changed from baseline during a 5-
min NE infusion (3 µg/kg/min) in anesthetized rabbits (n = 
3) was used (Fig. 2) [5]. NE is generally used for the 
increase in blood pressure. The BP response (10-Hz 
sampling rate) was averaged every 10 s. The step response 
of BP was approximated by the first-order delay system 
with a pure time delay: 
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K is a proportional gain [mmHg/(µg/kg/min)], T is a time 
constant (s), and L is a pure time delay (s). If t < L, then 
ΔBP(t) = 0. K = 20, T = 49, and L = 10 were derived from 
approximation of the averaged step response. 
 
The BP response as a model was calculated by the 
convolution integral in the discrete-time domain: 
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u is the infusion rate (µg/kg/min) and g is the unit impulse 
response (mmHg) calculated from the derivative values of 
the step response of Eq. (5). ΔT is a sampling rate; Nm is 
the finite number of terms in the model for the unit 
impulse response. K, T, and L are the same as in Eq. (5). 
Parameters were set to ΔT = 10, Nm = 30, K = 20/3, T = 49, 
and L = 10. Randomized noises (±1 mmHg) were added to 
outputs. 
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Fig. 2 The average step response changed from baseline during a 5-min 
NE infusion (a) and the unit impulse response (b). 

 
(B) BP control 
Using the model response and the suggested control 
system, the BP control tasks were performed. The 
objectives of the first and second tasks were to study the 
effect of initial learning of beginners on BP control. Target 
values were set to two steps: +20 mmHg (60-400 s) and 
+10 mmHg (410-720 s). Although the actual control time 
was 720 s, the single trial in this study was performed in 
an abridged form: 288 s (4 s × 72 times) meaning total 
thinking time for selection of drug infusion rates. 
 
The purpose of the third task was to study the accuracy of 
correspondence to an unexpected emergency (e.g., the 
sudden change induced by bleeding). Target values were 
the same as those in the first and second tasks. A large 
disturbance of -30 mmHg was added to the BP response in 
the last half of the task (360-720 s). 

3.3 Procedures 

Immediately before the control tests, all participants were 
instructed to regulate BP responses to the target values, 
controlling drug infusion rates as correctly as possible. 
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Although the experimenter also instructed that the drug 
infusion rate correlated with the BP increase, other 
instructions for properties of the drug response were not 
given. The participants were required to carefully maintain 
BP values within the limited values (-30 to +50 mmHg). 
When the time reached 4 s, the time limit for considering 
drug infusion rate, the BP response after 10 s to the 
determined input value was automatically output. Input 
values could be easily controlled by operation of two 
cursor keys: “←” and “→” indicating decrease and 
increase of drug infusion rate. The participants 
experienced the moving speed of input values using the 
cursor keys before the experiment. 
 
Each participant performed the following control tasks. 
 
1) First trial. For all participants of both groups, the 

ability to regulate BP as beginners was evaluated, 
using the model response. 

 
2) Second trial. In the non-assist group, the same task as 

the first was performed with no instructions; the 
learning effect of the experience of first trial was 
evaluated. In the assist group, computed optimal 
inputs and future BP responses were newly displayed. 
Before this trial, the experimenter instructed that the 
green circles on a screen meant predicted values and 
optimal inputs calculated by the computer. No other 
concrete instructions or practice was given. 

 
3) Third trial. In both groups, the ability of 

correspondence to a sudden emergency (disturbance 
of -30 mmHg) was evaluated. For all participants, the 
existence of the large disturbance was never instructed. 
Predictive responses and optimal inputs were 
continuously displayed in the assist group. 

3.4 Data Analysis 

Selected drug infusion rates and BP responses were 
recorded for later analysis. The average absolute value 
between actual BP and target values and the maximum 
negative response were calculated for each participant. 
The ground averages among all participants were then 
calculated. All data were presented as mean ± SD. 
Unpaired t tests were applied for comparison of intergroup 
differences. Statistical significance was assigned to 
differences with p < 0.05. 

4. Results 

The results for automatic control based on APC-NN are 
shown in Fig. 3. An overshoot was observed in an initial 
adjustment of BP to the target value of +20 mmHg; 
however, BP outputs totally converged on the target values, 

determining optimal drug inputs based on the predicted 
response by the NN. In correspondence to a sudden 
emergency, the automatic control was able to perform the 
appropriate BP regulation while neatly avoiding 
undershoot because of the online-learning of the NN. 
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Fig. 3 BP control based on APC-NN. The third trial had an acute and 
unknown disturbance of -30 mmHg. 
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Fig. 4 Typical example of BP control in the non-assist group. 



IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 5, September 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

49

 

An example of BP control in the non-assist group is shown 
in Figure 4. Because of the same task as the first one, the 
second trial showed sufficient learning effects; however, in 
the third trial, correspondence to an unexpected and 
sudden disturbance was delayed, resulting in induction of 
a great undershoot. 
 
An example of BP control in the assist group is shown in 
Figure 5. The second trial incorporated predicted outputs 
and optimal inputs as new information. A learning effect 
of the assistant system as well as experience from the first 
trial was indicated. In the assist group, the undershoot 
during the acute disturbance was inhibited, compared with 
the non-assist group. 
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Fig. 5 Typical example of BP control in the computer-aided group. 

 
Table 1 shows the average of absolute values between 
actual BP responses and targets in each control task. 
Especially, the third control trial in the assist group had the 
effectiveness of the assistant system: In the change of 
absolute values from the second trial to the third, the 
unpaired t test showed a significant difference between the 
non-assist and assist groups: 1.01 ± 0.77 versus -0.25 ± 
0.64 mmHg; p < 0.01 in the one-tailed test. In addition, the 
maximum negative responses from the target value in both 
groups were assessed. In the change of maximum negative 
response between the second and third trials, the unpaired t 
test showed a significant difference: -9.11 ± 2.63 versus -
5.50 ± 4.13 mmHg in the non-assist and assist groups; p < 
0.05 in the one-tailed test. 
 

Table 1: Average of the absolute value between actual BP responses and 
targets in each subject (mmHg). 

 

Subjects 

No. 
Non-assist group Assist group 

 1st 2nd 3rd 1st 2nd 3rd 

1 3.53 2.99 4.93  3.93  3.65 2.98 
2 3.88 2.34 4.02  4.47  2.39 3.38 
3 3.06 1.39 2.18  4.62  3.03 1.97 
4 4.79 4.09 3.71  2.15  2.69 2.60 
5 3.94 3.18 4.33  2.98  2.75 2.43 
6 2.32 2.45 3.10  2.06  3.30 2.83 
7 2.16 2.42 3.68 5.38  4.34 4.24 

Average 
(SD) 

3.38 
(0.94) 

2.70 
(0.84) 

3.71  
(0.88) 

3.66  
(1.29) 

3.17 
(0.67) 

2.92 
(0.73) 

5. Discussion 

The computer-aided drug delivery system in this study 
made it possible for beginners to work on blood pressure 
control. In particular, the effect of the assist system on 
unexpected or acute emergency is expected. During a long 
constant state, humans regulating drug infusion rates may 
take a long time to recognize the emergency and respond 
with the correct treatment. Such delayed therapy may 
induce serious problems. In contrast, computers can 
quickly detect acute response changes and correctly 
regulate drug infusion rates, referencing the history of 
inputs and responses. Accordingly, an assistant system that 
can quickly communicate with the operator will be 
required under such emergencies. Furthermore, by 
predicting the conditions that humans make mistakes, 
presentation of some answers and a warning may become 
effective. 
 
On the other hand, drug treatment based on a computer 
may induce a hunting phenomenon during acute and great 
changes in BP response; however, the system operator has 
a possibility of modifying the response changes well. For 
example, in the third trial of the assist group (Fig. 5), the 
operator was able to sufficiently converge to target values, 
avoiding the hunting phenomenon. Furthermore, compared 
with automated control (Fig. 3), system operators inhibited 
the initial overshoot. Accordingly, effective fusion in 
higher cognitive ability in humans as well as the merits of 
a computer will produce a better assistant system. 
 
Because of the repeated tasks (first and second trials), the 
non-assist group gained sufficient learning about BP 
control, based on their experience in the first trial. 
Regardless of the unfamiliar assist system and easy 
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instructions immediately before the second trial, the assist 
group also had effective results. Accordingly, it is 
expected that the suggested system can be used as an 
assistant tool for beginners to easily make decisions about 
drug therapy. 

6. Conclusion 

The effectiveness of a computer-aided drug delivery 
system based on APC-NN was assessed from the 
viewpoint of the cognitive and learning abilities of 
beginners. A positive effect of the computer-aided system 
was observed in the case of an acute disturbance. In future 
studies, the assistant system will need effective fusion of 
the ability of quick searching for optimal inputs in 
computers with careful and delicate control in humans. 
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