
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010 
ISSN (Online): 1694-0814 
www.IJCSI.org 

 

12

A Modified Algorithm of Bare Bones Particle Swarm 
Optimization 

Horng-I Hsieh1 and Tian-Shyug Lee2* 
 

1 Graduate Institute of Business Administration, Fu-Jen Catholic University 
Hsin-Chuang, Taipei County 24205, Taiwan, ROC 

 
 

2 Department of Business Administration, Fu-Jen Catholic University 
Hsin-Chuang, Taipei County 24205, Taiwan, ROC 

 
 

 
Abstract 

Bare bones particle swarm optimization (PSO) greatly simplifies 
the particles swarm by stripping away the velocity rule, but 
performance seems not good as canonical one in some test 
problems. Some studies try to replace the sampling distribution 
to improve the performance, but there are some problems in the 
algorithm itself. This paper proposes a modified algorithm to 
solve these problems. In addition to some benchmark test 
functions, we also conducted an application of real-world time 
series forecasting with support vector regression to evaluate the 
performance of the proposed PSO algorithm. The results indicate 
that the modified bare bones particle swarm optimization can be 
an efficient alternative due to the smaller confidence intervals 
and fast convergence characteristics. 
Keywords: Heuristic Optimization, Particle Swarm 
Optimization, Bare Bones PSO, Support Vector Regression, Time 
Series Forecasting. 
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1. Introduction 

Particle swarm optimization (PSO) is a population-based 
heuristic method developed by Kennedy and Eberhart in 
1995 [1]. The PSO algorithm is inspired by the collective 
motion of biological organisms, such as bird flocking and 
fish schooling, to simulate the seeking behavior to a food 
source. A PSO algorithm is initialized with a population of 
random particles treated as a point in D-dimensional 
search space. To find the optimum solution, each particle 
adjusts the direction through the best experience which it 
has found (pbest) and the best experience been found by 
all other members (gbest). Therefore, the particles fly 
around in a multidimensional space towards the better area 
over the search process. 
 
The PSO system initially has a population of random 
solutions and then searches for optimum solution by 
updating process. Each particle consists of three vectors: 

the position for ith individual particle xi = (xi1, xi2, ... , xiD), 
the best previous position that the ith particle has found pi 
= (pi1, pi2 , ... , piD), and its velocity vi = (vi1, vi2 , ... , viD). 
The performance of each particle is measured using a 
fitness function varying from problem in hand. During the 
iterative procedure, the particle’s velocity and position are 
updated by 
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where c1 and c2 are two positive acceleration constants, χ 
is a constriction factor, piD is the pbest of ith particle and 
pgD is the gbest of the group, and rnd() and Rnd() are two 
random numbers uniformly generated from [0,1]. In a PSO 
system, particles change their positions at each time step 
until a relatively unchanging position has been 
encountered or a maximum number of iterations has been 
met. 
 
Kennedy [2] proposed a new PSO where the usual 
velocity formula is removed and replaced with samples 
from a Gaussian distribution. The velocity-free bare bones 
(BB) PSO was inspired by the observation that histogram 
sampled by the canonical particle swarm is appeared to be 
normally distributed around (piD + pgD) / 2, with a standard 
deviation of | piD – pgD|. Many factors have been found to 
determine how successful the problem-solving process are 
often problem dependent. The bare bones PSO using 
information drew from a Gaussian distribution greatly 
simplifies the particles swarm algorithm, but the 
performance in Gaussian version is not as good as 
canonical PSO [3][4]. Some researchers [3][5]  try to 
examine the bell shape distribution and replace the 
Gaussian random number generator by the appropriate one 
to reproduce the behavior of canonical algorithm, and 
improvements have been observed. However, the problem 
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of bare bones PSO might not be the replaced distribution, 
but the algorithm itself. The bare bones PSO might suffer 
from premature convergence or converge to a point neither 
global nor local optimum. 
 
The aim of this paper is to propose a new algorithm to 
avoid the problem mentioned above. Furthermore, the 
performance of the proposed algorithm in some 
benchmark functions and a real-world application are 
investigated. The remainder of the paper is organized as 
follows: An overview and a closer examination on 
convergence behavior of bare bones PSO is given in 
Section 2. Section 3 provides the modified algorithm of 
bare bones particle swarm optimization. Benchmark 
functions to measure the performance of the different 
approaches are provided in Section 4. Section 5 presents 
the results of a real-world application and conclusions are 
drawn in Section 6. 

2. Bare Bones PSO 

There are several problems appear in the bare bones PSO. 
Firstly, the best particle in bare bones acts different from 
the canonical one. In a canonical particle swarm, particles 
change their positions at each time step. On the other hand, 
the best particle of the neighborhood in bare bones PSO 
simply stands in its best previous position due to the 
random number generator definition. If the other particles 
move too close to the best one in their neighborhood, the 
particles may converge on a point that is neither the global 
nor the local optimum. Consider a simplified situation 
shown in Figure 1, which with only two particles and one 
dimension. Since particle A is the best one, it will always 
stand in the same position as particle B moves to the right 
side without finding out any better result. If particle B flies 
into [PA, PB] or [0, PA] but too close to particle A, the PSO 
system will become inactive. The particles will move very 
slowly in future iterations; even converge on a wrong 
position. Fortunately, as the number of particles grows, the 
probability that system becomes ineffective decreases. 
However, if the problem becomes complicated, 
determining an appropriate number of particles might be a 
difficult task because the growing size of swarm also 
increases the time of computation.  

 
Fig. 1  A simplified particle swarm system. 

Additionally, bare bones particle swarm might suffer from 
premature convergence. When the best particle locates in 
suboptimal position, it tends to mislead all the other 
particles to get stuck in this local optimum. Each particle 
in the neighborhood can fast approach to the best area 
within few iterations by making large step sizes even if the 
particles whose personal previous best position are far 
away from the global best position. Consider the simple 
situation depicted in Figure 2. All the particles move fast 
toward to the pg inside a local optimum area. If each of the 
particles fails to hit the region of the global optimum, the 
whole system might lose exploration capability as the 
standard deviation cannot be back to large value. 
 

 

Fig. 2  All of particles are prematurely converging to local optimum. 

3. A Modified Bare Bones PSO 

As mentioned in the preceding section, the best particle 
without momentum might harm the performance of the 
whole system. Our strategy is to modify formula of 
standard deviation by adding a new parameter. If the 
particle is the best one in its neighborhood, the new 
standard deviation is computed as 

 | δ × piD – pgD | = | δ × pgD – pgD |, (3) 

 
where δ is a constant, which may be a number either larger 
or small than 1. The offset of the best position behaves 
similar to the momentum term in velocity update rule of 
canonical PSO. Table 1 shows the results of the proposed 
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standard deviation computing strategy with δ = 1.2. As the 
results reveal, the new strategy can efficiently solve the 
above-mentioned problem. 
 

Table 1: Mean results of De Jong after 50 trials of 3000 iterations 

Dimensions / 
Methods 

Number of particles 
2 3 4 5 

2 original 7372.01 4113.35 2016.80 299.57 

 modified 2.6E-117 8.86E-226 0 0 

5 original 19663.9 11706.5 5383.8 1324.67 

 modified 4.93E-55 6.91E-103 5E-151 9.1E-189 

Numbers that are less than 4.9407E-324 are rounded to 0. 

 
Since the best particle might mislead all the other particles 
into local optimum very fast, one thought is to slow down 
the speed of the movement. Because of forcing the 
particles to reach the region close to the global optimum 
might reduce the chance of getting stuck in local optimum; 
a slower convergence by using a smaller step size in the 
earlier stage might be beneficial. On the other hand, if the 
particle inside one of a local optimum leading by the best 
particle also has the capability to reach the region near the 
global optimum, it is likely to escape from the inferior 
suboptimal. Thus, there are two strategies can deal with 
the premature convergence situation: 
 
1. Offset the mean to force the particle not being very 

close to the best particle during the early stage. 
2. Slow down the biased exploration by constraining the 

standard deviation and offsetting the mean together 
during the early stage. 

 
Thus, the mean and standard deviation of the Gaussian 
distribution used to update the position in the early stage 
becomes 
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where ω1 and ω2 are two constriction parameters which 
can be either a fix or dynamic value over the early stage. 
A series of experiments were conducted by using eight 
benchmark functions to investigate these ideas. All the test 
functions were implemented in 30 dimensions except for 
the two-dimensional Schaffer’s f6 function. Their 
definitions and initial range are shown in Table 2. Twenty 
particles were used in the test presented here. Each 
experiment was implemented 100 times for 3000 iterations. 
All algorithms are initialized asymmetrically with the 
ranges as shown in Table 2. 
 
 

Table 2:  Benchmark functions 
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Table 3 summarizes the results. In this test, ω1 and ω2 
were set as constants with a large and a small value, and 
the constriction was only conducted before the 100th 
iteration. After the adjustment in the early stage, the ω1 
and ω2 were set back to 1 to ensure the convergence. Also, 
the position offset factor of the best particle δ was set to 
1.2. Each setting has good performance in some test 
problems are shown in bold. Due to the generalization 
ability consideration, the third setting which ω1 and ω2 are 
set to 0.7 will be used thereafter. For convenience, the rest 
of this paper will use the term BBM (modified bare bones) 
as the abbreviation. 

Table 3  Mean results of parameter test after 100 trials of 3000 iterations 

 
De Jong 

Schwefel 
1.2 

Schaffer’s 
f6 

Rosenbrock 

M 
0.7 

5.48E-58 
(3.15E-57) 

0.00258 
(0.00710) 

2.72E-03 
(4.38E-03) 

22.48945 
(0.39626) 

M 
0.4 

3.27E-112 
(2.33E-111) 

0.00450 
(0.01344) 

1.75E-03 
(3.75E-03) 

22.21035 
(0.32638) 

MS 
0.7 

7.23E-70 
(2.89E-69) 

0.00034 
(0.00056) 

0.00311 
(4.56E-03) 

22.08622 
(0.38908) 

MS 
0.4 

1.47E-118 
(1.10E-117) 

1.21E-06 
(4.35E-06) 

1.94E-04 
(1.37E-03) 

22.05447 
(0.28647) 

 Rastrigrin 
Schwefel 

 2.6 
Griewank Ackley 

M 
0.7 

0.74622 
(3.15704) 

-8358.08 
(585.55) 

0.00398 
(0.01227) 

1.70E-14 
(4.75E-15) 

M 
0.4 

0 
(0) 

-7923.94 
(1027.71) 

0 
(0) 

9.95E-16 
(6.09E-16) 

MS 
0.7 

7.03436 
(13.38337) 

-8693.92 
(428.13) 

0 
(0) 

1.48E-14 
(5.35E-15) 

MS 
0.4 

0 
(0) 

-7382.71 
(1396.69) 

0 
(0) 

1.53E-15 
(1.37E-15) 

Note that M means only mean offset method is used, and MS means constrict the 
mean and standard deviation in the same time. Standard deviations are shown in 
parentheses. Numbers that are less than 4.9407E-324 are rounded to 0. 
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4. Experimental Results 

This section compares the performance of BBM with BB 
and canonical PSO. The three coefficients of canonical 
PSO were set as χ = 0.7298 and c1 = c2 = 2.05 [6]. Eight 
benchmark functions shown in Table 2 were used to 
compare the performance of BBM with those of other 
algorithms. Gbest, Ring, and Square topologies were 
tested for all algorithms. A swarm size of 20 was used in 
all experiments, and each experiment was run 100 times 
for 3000 iterations. Also, the algorithms were initialized 
asymmetrically and the ranges did not contain global 
optimum, which can be found in Table 2. 
 
As seen in Table 4, BB shows comparable results with 
canonical PSO on some test functions, but has the worst 
result on Rosenbrock with all topologies. On the other 
hand, BBM shows the best results on 6 out of 8 functions 
across all topologies, and outperforms BB on 7 out of 8 
functions when using the Square topology. Note that BBM 
is the only one able to find the global minimum to the 
Rastrigrin, Griewank and Ackley functions, and the best 
results with the smallest standard deviations to 
Rosenbrock function. Figure 3 shows the mean 
performance best over time with the Gbest topology. As 
seen in Figure 3, BBM achieved a faster reduction than 
BB on all of the test functions. In summary, BBM 
provides better results with smaller confidence intervals 
compared to BB, thus can be a competitive optimizer on 
these test functions. 

5. Model Selections in Support Vector 
Regression 

Support vector machine (SVM) is a novel neural network 
algorithm based on statistical learning theory [7]. With 
introduction of Vapnik’s ε-insensitivity loss function, the 
regression model of SVMs, called support vector 
regression (SVR), has been receiving increasing attention 
to solve nonlinear regression problems. In the modeling of 
SVR, one of the key problems is how to select model 
parameters correctly, which plays an important role in 
good generalization performance. However, no general 
guidelines are available to choose the free parameters of 
an SVR model. This section demonstrates a financial time 
series forecasting problem by using PSO to search the 
optimal parameters of SVR model selections. In order to 
evaluate the performance of the proposed approach, the 
Nikkei 225 closing cash index is used as the illustrative 
example.  

Table 4: Mean results of eight test functions after 100 trials of 3000 
iterations 

De Jong 
Schwefel 

1.2 
Schaffer’

s f6 
Rosenbrock 

Canonical 
Gbest

2.09E-23 
(1.58E-22) 

3.71E-16 
(3.71E-15) 

3.98E-03 
(4.80E-03) 

33.40252 
(34.20939) 

 
Ring 

1.53E-23 
(2.62E-23) 

5.62E-30 
(3.19E-29) 

2.60E-03 
(4.30E-03) 

57.52692 
(51.60641) 

 
Square

7.06E-30 
(4.10E-29) 

1.19E-28 
(3.34E-28) 

1.55E-03 
(3.58E-03) 

48.23838 
(40.89987) 

BB   
Gbest

6.53E-23 
(6.53E-22) 

0.00655 
(0.01662) 

5.44E-03 
(4.85E-03) 

45.26925 
(38.83877) 

 
Ring 

1.52E-10 
(1.08E-09) 

0.00077 
(0.00245) 

1.30E-03 
(3.14E-03) 

93.73233 
(90.37186) 

 
Square

8.88E-20 
(5.72E-19) 

0.00381 
(0.01617) 

1.63E-03 
(3.63E-03) 

55.52461 
(45.11918) 

BBM   
Gbest

7.23E-70 
(2.89E-69) 

0.00034 
(0.00056) 

0.00311 
(4.56E-03) 

22.08622 
(0.38908) 

 
Ring 

9.62E-48 
(1.97E-47) 

3.72E-05 
(0.00017) 

2.14E-03 
(4.05E-03) 

24.15358 
(0.14746) 

 
Square

3.85E-53 
(1.36E-52) 

0.00010 
(0.00022) 

1.17E-03 
(3.17E-03) 

23.32601 
(0.18634) 

Rastrigrin 
Schwefel 

2.6 
Griewank Ackley 

Canonical 
Gbest

189.58859 
(43.01228) 

-8638.29 
(259.66) 

0.17473 
(0.63463) 

19.72528 
(0.29512) 

 
Ring 

173.49893 
(35.18645) 

-9068.70 
(195.36) 

0.00570 
(0.00847) 

19.75951 
(0.08589) 

 
Square

156.15821 
(39.14282) 

-8930.48 
(222.24) 

0.01568 
(0.02112) 

18.79553 
(4.06082) 

BB   
Gbest

147.89009 
(29.15393) 

-8982.94 
(336.97) 

0.04022 
(0.07372) 

18.22 
(4.29) 

 
Ring 

178.03970 
(30.28106) 

-9032.27 
(253.16) 

0.00955 
(0.01786) 

19.37 
(1.90) 

 
Square

151.97253 
(28.63182) 

-8987.26 
(268.43) 

0.01192 
(0.01435) 

17.53 
(5.28) 

BBM   
Gbest

7.03436 
(13.38337) 

-8693.91 
(428.13) 

0 
(0) 

1.48E-14 
(5.35E-15) 

 
Ring 

0 
(0) 

-8527.74 
(432.08) 

0 
(0) 

1.01E-14 
(3.03E-15) 

 
Square

0 
(0) 

-8745.25 
(356.85) 

0 
(0) 

9.81E-15 
(3.09E-15) 

 
Because the real optimum is unknown, a ‘grid-search’ 
method is applied to find the best combination of 
parameters. The searching space of the three parameters 
was set in [2-15,215] with a step size 0.5. The minimum root 
mean squared error (RMSE) 57.64 found by the gird-
search method is considered as optimum in forecasting the 
Nikkei closing cash index. The task of PSO here is to find 
a set of parameters with acceptable even better accuracy. 
The number of dimension is equal to 3 as there are three 
free parameters in SVR. Each trial was randomly 
initialized in [2-15,215]. Because modeling SVR is a time-
consuming task, 10 particles were used in this section, and 
each experiment was implemented 50 times for 200 
iterations. Any trial reaches the criterion equal to 58.2164 
was treated as a success case. Two constriction parameters 
in BBM were set to 0.7, and set back to 1 after 30 
iterations. 
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Fig. 3  Comparison between three algorithms with eight benchmark functions. 
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Table 5 shows the results obtained from three algorithms. 
All algorithms using the Ring topology return better 
results than the Gbest one. Canonical PSO with Ring 
topology is the best one with the smallest mean RMSE. In 
addition, BBM using Ring topology outperforms BB in 
lower RMSE and the smallest standard deviations. Figure 
4 shows that BBM converges very fast with both Gbest 
and Ring topologies. Furthermore, the strategy that a 
coarse grid followed by a finer grid using in SVM with 
two parameters might not be applicable here, because 
there are three parameters in SVR, the better solution is 
not necessarily nearby another good solution. Thus, the 
grid-search might not easily find any better solution. On 
the other hand, improvement is still possible because the 
early stop criterion with 200 iterations was used here. The 
minimum found by three algorithms shows in Table 5 also 
prove its potential. 

Table 5: SVR results of three algorithms 
 Canonical BB BBM
 Gbest Ring Gbest Ring Gbest Ring

Mean 57.79 
(0.54) 

57.47 
(0.34) 

57.71 
(0.85) 

57.61 
(0.35) 

57.86
(0.53) 

57.56
(0.23) 

Max 59.48 58.51 60.53 58.63 58.63 58.40
Min 55.99 56.42 54.48 56.74 55.99 57.27
Successful 
rate 

86.00% 96.00% 80.00% 92.00% 56.00% 94.00% 
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Fig. 4  SVR results of three algorithms. 

6. Conclusions 

This paper proposed a modified bare bones PSO by adding 
three extra parameters to correct the problems appears in 
original bare bones PSO. The modified algorithm shows 
advantages in better performance with smaller standard 
deviation and faster convergence characteristics. The 
restart strategy to deal with the problem converging to 
local optimum might harm than benefit the swarm. In 
Contrast, the offset strategy applied in early stage shows 
very good performance without harming the capability of 
convergence. Therefore the proposed algorithm can be a 
competitive optimizer. 
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