
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

63

SbSAD: An Integrated Service-based Software Design
Framework

Mohamed Dbouk1, Hamid Mcheick2, Ihab Sbeity1

1Faculty of Sciences-I, Lebanese University

Beirut, Lebanon

2Dep. of Computer Science, University of Chicoutimi
Quebec, Canada

Abstract
Phased software engineering process continues to be the most
popular paradigm leading to devise and drawing-up all system
architectural designs. In this paper we trying to explore and
examine the most significant software engineering activity:
Software architectural design.

In this paper we discuss and evaluate an integrated service-based
(the common and modern architectural styles upon which many
systems are currently based) software architectural design
framework called SbSAD. SbSAD is, mainly, built on top a
proprietary micro-phased design process. In this paper, we first
reconsider and refine such process in order to become more
flexible. We, then, trying to evaluate this process by providing
one devoted CASE-like prototype built using java technologies.

Our approach consists of building overall software architectures
while being based on the concept of business front-end services.
The experiments show that: applying such strategy may cause
some confliction with the so known SOA and may disorient both
readers and designers. However, at the end, we testify that our
service-based process should not have any direct connection with
the SOA style. Working on some re-drawing and mapping rules
leading to transcript SbSAD into SOA could characterize our
future works.

Keywords: Software architecture, Front-end services,
SDLC, SOA, CASE tools, Data exchange, Dataflow.

1. Introduction

Software architectural design and modeling persists and
remains a crucial discipline, new and additional researches
are reported each day. Researchers are incited and
encouraged by the newest computer-related technologies
and engineering policies.

The most recent associated researches are concerned by
topics like: ontological-based software architectural
design, meta-modeling design and system distribution
policies and strategies.

Rather than the so known client/server software
architectural style, SOA (Services Oriented Architecture)
plays a factual and useful software engineering
implantation strategy.

However, by coming back to the most popular phased
software development life cycle (SDLC), we observe that
many efforts could also be deployed not only at software
detailed design and modeling levels, but also at top
software architectural design level.

The challenge is, in fact: could new software engineering
approaches benefit from accurate and fundamental
concepts, techniques and technologies like software
service-based global architectural design [11] and or like
service-oriented architectural style.

In other words, the software engineering experiments
show that, in addition to spread out SDLC classical
activities, an analytical concentration on software front-
end services could perfectly help in producing an accurate
software overall architecture.

For this purpose, we started by concretizing such software
architectural design philosophy with our service-based
architectural design approach [11].

In this paper, we start by reviewing and reformulating the
advocated above approach. We focus, then, on providing
an empirical framework prototyping such approach. The
framework consists of a CASE tool built on top of Java
facilities and putting to gather: one devoted graphical user
interface and one meta-modeled repository. By
incorporating such meta-data, the tool forms an open and
integrated CASE framework; towards multi-platforms
code generator.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

64

On the other hand, the experiments show that, when we
approach the popular software element “Service”, an
amalgam so arises between: the concept that we have
introduced “Service-based Architectural Design SbSAD”
and the so known SOA (Service-Oriented Architecture)
style.

Briefly, the SbSAD that we propose and we
demonstrate/prototype seems as an integrated framework
intended to help in software architectural design activities.

Section 2 of this paper draws-up the associated concepts
and basis. We, then, outline the related works. Principals
that differentiate our approach from other approaches are
also discussed in this section. Section 3 devises and
reconsiders the foundations of our service-based approach.
A devoted prototype (with experiments) is also outlined in
this section. Section 4 tries to depict the differences
between Service-based and Service-oriented
terminologies.

Finally, the conclusion and the future directions are
outlined and drawn in section 5.

2. Background and Related works

A computer system exists within an environment and has
characteristics such as Boundaries and Front-End
Interfaces. Building high-quality software is not an easy
task; a wide range of software engineering paradigms have
been proposed (e.g. object-orientation [3], design patterns
[13] and software architectures [5]) either to make the
engineering process easier or more flexible.

System development methodologies evolved [14], we
depict the following progression: SDLC - Systems
Development Life Cycle [17], Structured Analysis and
Design (SA&D) using data-flow diagrams, Data-Oriented
Methodology using Entity-Relationship diagrams and
Object-Oriented Methodology using UML facilities.
Where the current trend is to use Object-Oriented Systems
Analysis and Design, but many organizations are still
using SA&D.

Software design modeling techniques, that span stages in
software lifecycle, are not standardized yet. The majority
of modern software architectural strategies institute so-
called decomposition methodologies. All these strategies
employ some restricted vocabulary such as component
(sub-system) and inter-components relationships.
Goodness and robustness of the outlined software
architectures are proportionally linked to the designers
experience and maturity.

Even so, computer system design is concerned about the
overall structure of the system [4]. How is it broken into
pieces? How do these pieces fit together? The best system
design is one where the interaction between the
subsystems is minimal. Data Management and designing
end-user interfaces are vital. These steps involve and
require robust software architecture and design knowledge.

The experience of the design team, availability of pre-
designed components, capabilities of design automation
tools, and the maturity of the process technology, all
influence the degree to which an intended computer
system must be decomposed. Good and modern designs do
not ignore the past [18].

On the other hand, as reported in [16], ontology can be
very useful in software engineering projects where
development is focused not just on one application, but on
a family of projects from the same domain. Ontology must
be developed in a new taxonomy framework to describe
the new concepts, properties, and relationships of the new
project domains.

In summary, the experience and maturity of system
designers play a crucial and major role in system analysis
and design process. An analysis by analogy could support
most system decomposition activities.

However, the decomposition process is typically
conducted by designers based on their intuition and past
experiences.

The decomposition approach proposed by [20] tries to
apply the clustering technique to support decomposition
based on requirements and attributes. The approach
supports the architectural design process by grouping
closely related requirements to form a subsystem or
module. Obtained decomposition and architectural styles
or patterns are useful for developing a “conceptual
architecture” as a representation of high-level design with
critical components and connectors.

On the other hand, [12][9] propose an approach using
Ontology. The idea is to close the gap between
requirements and components; they use semantic models a
common language ODL (Ontology Design Language) for
describing product requirements and component
capabilities and constraints.

Y. Cai and S. Huynh, From Drexel University in
Philadelphia-USA, develop a Logic-Based Software
Project Decomposition design representation called an
Augmented Constraint Network (ACN) [6][7][8], they use
the prototype tool “Simon” [1] to automatically

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

65

Engineering
Requirements

SbSAD

Detailed Design

Traditional SDLC

Rest of the
SDLC

System Design

Overall Software
Architecture

decompose a big ACN into a number of smaller sub-
ACNs.

Closely, P. Koopman proposed an elegant taxonomy of
decomposition strategies [18]. The approach uses three
attribute categories: Structures typically answer the
question of "what", Behavior typically answers the
questions of "how" and "when", and Goals as emergent
design properties that satisfy the intended needs.

To summarize, a common theme in this discussion and our
approach is a fundamental coalition between requirements,
attributes and clustering techniques.

Many people have explored auto-clustering approaches to
decompose an enormous dependent model into modules,
such as Mancoridis’s Bunch tool [21], which is based on
heuristic fitness function.

There are more works done in the same context as our
approach, such as the feature-oriented research led by [2],
[10] and [15].

The theoretical decomposition strategies, shown before,
draw some interesting and useful decomposition
methodologies when they refer to requirements. These
strategies, also suffer from overcrowding, from the
beginning, of the deployed information (attributes).

Based on requirements and attributes, [20] applies the
clustering technique to one huge and complex
requirement/attribute matrix. The complexity is due to the
early exploitation of information details! Otherwise, in
spite of seniority and high abstraction level, the
decomposition strategies drawn in [18] stay so elegant and
plausible, but unfortunately, there is no pursuit.

In addition to the above talk, the recent approach ([12] and
[9]) using ontology represents an innovative direction
using semantic models to describe both requirements and
component. By contrast, the approach predicts a
component specification, things that are not plausible in
our case, because depicting components is a final goal for
any design process.

Lane [19] is similar to the logic-based approach [6][7][8]
that models the structure of software systems as design
spaces, they focus on functional choices. The logic-based
approach works at abstract design level and applies formal
modeling same as our approach. By contrast it applies an
automatic analysis.

Finally, the architectural design approach that we propose
and reconsider defers from the above approaches by many
things. We introduce the concept of software design

contextual dimensions (business features): profiles,
services, data and rules that should characterize any front-
end services. We, especially, focus on software services
because they, legally, represent the only visual and
interactive software entry-points. We, also, consider non-
atomic data; the experiments demonstrate that there are no
real needs to know details about data from the beginning.

Moreover, we continue to materialize the software
engineering design scope of our approach by providing an
emergent, integrated and open CASE-like framework
SbSAD.

3. Service-based Design approach

The approach, also called SbSAD (Service-based Software
Architectural Design), which we are going to reconsider,
occupies the first and crucial design stage in any
traditional SDLC (fig. 1).

This approach is a micro-phased process; it is constituted
around five successive analytical and modeling micro-
phases. The process takes, as input, a well written
(requirements) document, and produces an “Overall
Software Architecture” [11].

Fig. 1 SbSAD within a traditional SDLC

The approach mainly focuses on computer business front-
end services, the unique visible entry-points from any
software system.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

66

1BP

Rule 1

Computer System

iBP nBP

i
1BS i

jBS i
nBS

ij
1BD

i
jBD

ij
kBD ij

nBD

Rule 2

Rule 3

i
jBS

Composition Rules: 1, 2, 3
Sharing Rules: 4, 5
Services grouping Rules: 6

Rule 5

BModuleRule 6

3.1. Formal and algebraic definitions

This approach deals with three fundamental design
features (called business/contextual dimensions) that
characterize computer business services; business profiles,
business data-items and business rules.

Software engineering vocabulary - the process uses the
following business features:
- System (the target); computer or information system

under design.

- BService (BS); front-end business related software
service, materializing an entry-point.

- BProfile (BP); business domain materializing coherent
set of computing activities.

- BData (BD); data sets required by the computing
activities.

- BRule (BR): implicit and/or explicit business and
constitutional rule, pre or post depicted against the
engineering activities.

Fig. 2 Computer system structural form in SbSAD

Basically, the SbSAD process leans, indeed, on some basic
constitutional architectural rules. These rules are qualified
as algebraic:

Structural rules:

Rule 1- ni1
contains BP ,...,BP ,...,BPSystem   (1)

Rule 2- i
n

i
j

i
1

contains
i BS ,...,BS ,...,BSBP   (2)

Rule 3- ij
n

ij
k

ij
1

 containsi
j BD ,...,BD ,...,BDBS   (3)

Engineering rule:
Rule 4- BProfiles may share BServices, formally:




BS.BPBS.BP

BSBSwhereBS,BS

ji

jiji


 (4)

Benefits: Engineering reusability of services

Behavioral rule:

Rule 5- BProfiles may share BData. Sharing issue may
be direct or indirect, by similarity (same data) or by
aggregation (ETL like method), formally:





BD.BS.BPBD.BS.BP

BDBDwhereBD,BD
j

j
i

i

jiji


 (5)

Benefits: Business workflow depiction.

Extra-Structural rule:

Rule 6. BServices for one BP may be regrouped by
sub-BProfiles in order to form the so called Business
Modules BM (BModules).

Benefits: incremental system engineering building.

3.2. The SbSAD functional process

By revising the process, we observe, that there is no real
need, to suddenly depict SbSAD’s huge amount of
conceptual features from the beginning. Instead, it will be
more efficient to proceed incrementally, feature by feature.

The experiment indeed, shows that the micro-phases of
this process may be applied freely; activities must be
reiterated until exhausting all features.

The experiment also shows that the identified service-
clusters (subsystems/components) would be reexamined in
terms of modules; a module regroups one named
homogenous set of front-end services and shares the same
data-items with other modules inside one named business
profile (Services’ cluster).

The system requirements “R” represent the main source of
information; the following engineering design activities
might stimulate the above process:

a. read/analyze R, depict/identify one or more Business

Profiles BP.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

67

B. Profile
depiction

B. Service
depiction

B.Data
Expanding

B.Data
depiction

System
Requirements

Business
Profiles

Business Data

Business Data
details (BDexp)

B. Module
depiction

Business
Services

Business
Modules

BP Inter-
relationships

System
Overall Architecture

Dataflow
depiction

System
Architecture

building

Process workflow
Process reiterations

Features articulation and refinement

b. read/analyze R, depict/identify one or more Business
services BS.

c. read/analyze R, depict/identify one or more Business
Data BD.

d. explore BS, attach the BS to BP.
e. explore BD, attach the BD to BS.
f. read/analyze R, expand BD, depict/identify BDexp
g. explore BP/BD, BDexp, depict/identify BP inter-

relationships, associate BProfiles mutually.
h. explore BP/BS, depict/identify Business modules BM,

de-attach BS from BP, attach BS to BM and BM to BP.

Fig. 3 SbSAD process pictogram

If we examine the above activities, we can predict that the
order is insignificant, most of them may be permuted;
swaps are permitted with respect to the dependability
criteria, they could be performed individually.

For example, designer may perform a (non complete)
sequence like this: “a, b, d, c, g, e” or this: “b, a, d, c, b, e,
g”, etc. We observe that activity numbered “d” depends on
“a” and “b”, etc.

However, the best way to represent such engineering
design activities is by using an overall pictogram (fig. 3).

Designers can, then, build the overall architecture
incrementally same as the case if we use an appropriate
editing-tool (software overall architectural builder). At the
end, the required SbSAD’s features should be situated and
totally explored.

Designers, charged to elaborate a system design, start by
reading the requirements document. They depict
conceptual features one by one. Each time they identify
one feature (business profile, and/or business service as
well as business data), they could articulate/associate it to
the adequate partner (structural rules). Designers could
refer to the requirements document each time they try to
perform one design activity (ovals in fig. 3).

Finally, the above pictogram materializes, transparently,
all SbSAD predicted architectural rules, and produces, at
the end, the intended architectural structure/design (fig. 2).

3.3. Prototyping and validation

Practically, SbSAB is in the course of prototyping. The
validation of the above functional process is divided over
tree stages:
- a GUI (as a CASE tool) materializing the operational

process,
- building the related and required metadata,
- and validation via real use case.

The intended tool tends to integrate engineering
technologies such as platforms related code generation.

SbSAD as a CASE tool: The issue is to provide a user
friendly (fig. 4) graphical user interface materializing the
different system design engineering functionalities.

The question now, is: How does such tool operate? A brief
abstraction of the operational process is given in fig. 5.

However, the main purpose of this tool is to provide a
useful interactive framework building and producing the
overall system architecture.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

68

0..*

0..*

1..1

1..1

1..1

1..1

0..1

1..*
0..1

1..*

0..1

0..*

0..*

0..*

0..*

1..*

0..1

0..*

BProfile

BModuleDataLink BService

BDataBDataExp

SbSAD-System

Fig. 4 The SbSAD’s interactive graphical interface

The tool incorporates one crucial (integrated) piece that
supports the implementation software engineering phase; it
refers also to one devoted back-end meta-model.

Fig. 5 SbSAD’s CASE tool operational process

Back-end Meta model: The SbSAD’s operational process
refs to some devoted meta-data (fig. 6), a crucial piece that
consists of a collection of back-end related data (enclosed
class diagram).

However, the data model incorporates all SbSAD related
features and concepts. In addition to information
cataloging the system required data, the data-model,

especially, includes the overall system structural and
dataflow behavioral features.

Fig. 6 Repository UML class diagram

Finally, this information forms an editable repository that
could be strongly used by the tool.

Use case and validation: The first and empirical version
of SbSAD is now operational; it is built on top of Java
technology. Many improvements and enhancements are
planed.

The enclosed figure (fig. 7) draws a typical case:
Sale/Purchase-Management Information System (S/P-
MIS). The given sample illustrates and shows the
following (SbSAD) features:

- Business Profiles (SubSystems): Stock-Manager

(StkMg), Point-Of-Sale (PoS), OLAP-Manager
(OlapMg), etc.

- StkMg may incorporate: Produts-Nomination
(PdNames) and Inventories (InvMg) etc. as modules.

- Intiate-PoS and Close-PoS are data-links relating
StkMg to PoS considered subsystems and vice versa.

Those links could be infected by the chosen strategy to
materialize the data sharing issue; online or offline
(differed) mapping. A crucial data link (ETL-like)
should exist between StkMg and OlapMg.

Finally, many kinds of data items could characterize the
“S/P-MIS”; products, commands, customers (if
considered), suppliers, cashers, etc.

Main control area

Workspace - main area
(System-Design editor)

Zooming area:
Project’s related SbSAD-features

 Alerts’ area

Tree-
like

Project
Manager

Area

Open Project

System design editing

Design verification

Generated Code

Destination
Platform

Architecture
code-generation

Repository
Meta data

Platform’s
Meta data

System
Architecture

Editor

Integrated peace

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

69

Engineering
Requirements

Devoted
SbSAD-SOA

SDLC

Rest of the
SDLC

System Design

SOA is here

Implementation

SbSAD / SOA
mapping space

Detailed Design

SbSAD

Fig. 7 The SbSAD’s prototype; integral graphical user interface view.

4. SbSAD vs. SOA

As mentioned before, the SbSAD process is concerned by
providing the overall system/software architecture. The
process represents one of two major design phases (figures
1 & 8). At this stage, the designer doesn’t have to worry
about the manner, according to which the target system
could be implemented and deployed. Such task, strictly,
comes after.

The, so known, SOA (Service Oriented Architecture)
policy and strategy is, practically, especially concerned
with the implementation and system deployment issues.

So, the question that arises is: How could we qualify the
connection/relationship between SbSAD and SOA?

First of all, the SbSAB approach is intended to be a design
process while SOA is seen as an implementation related
architectural style (fig. 8).

Fig. 8 SbSAD / SOA Space

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

70

Practically, a close mapping of SbSAD’s outcomes into
SOA methods and techniques should produce one devoted
and powerful software design and implementation process.
Such mapping process could include one dedicated set of
rules that drawing out one regular SbSAD-SOA software
engineering policy.

5. Conclusion and Future work

We started this work by establishing the main software
architectural design features, context and background.

We devised, in this paper, one dedicated software
engineering framework (SbSAD), it consists of an
integrated CASE-like tool. The tool is prototyped using
Java technology, the first version gives good results,
additional features and improvements are planed.

However, we, in this paper, reconsidered and reevaluated
the service-based software architectural design process.
We talked, especially, about the formal definition as well
as the operational modalities of the process.

In addition to the above talk, the experiments show, that
the process might, easily, be extended. It could incorporate
new design facilities; detailed design, multi-platform
related design, etc.

To conclude, as future work, we plan to work on the
mapping issues between SbSAD outcomes and SOA style.

References
[1] Baldwin, C.Y. and Clark, K.B., “Design Rules”, Vol. 1:

The Power of Modularity. Publisher: The MIT Press, 2000-
03-15, 483 Pages, ISBN: 0262024667

[2] Batory, D., Singhal, V., Thomas, J., Dasari, S., Geraci, B.
and Sirkin, M., “The genvoca model of software-system
generators”, IEEE Software, 11(5):89–94, Sept. 1994.

[3] Booch, G., “Object-oriented analysis and design with
applications”, 1994, Addison Wesley.

[4] Bruegge, B. and Dutoit, A.H., “Object Oriented Software
Engineering Using UML, Patterns and Java", Second
Edition. Pearson Education International, 2004

[5] Buschmann, F., Meunier R., Rohnert, H., Sommerlad, P.
and Stahl, M., “A System of Patterns”, 1998, Wiley.

[6] Cai, Y., “Modularity in Design: Formal Modeling and
Automated Analysis”. PhD thesis, Univ. of Virginia. 2006.

[7] Cai, Y. and Sullivan, K., “Modularity analysis of logical
design models”. In 21th IEEE/ACM Int. Conf. on
Automated Software Engineering, Tokyo, JAPAN, 2006.

[8] Cai, Y. and Simon, K.S., “A tool for logical design space
modeling and analysis”. In 20th IEEE/ACM Inter. Conf. on
Automated Software Engineering, Long Beach, California,
USA, Nov 2005.

[9] Cardei, I., "An Approach for Component-based Design
Automation", Whitepaper, Florida Atlantic University
press 2006

[10] Czarnecki, K. and Eisenecker, U., “Generative
Programming: Methods, Tools, and Applications’.
Addison-Wesley Professional, 1st edition, Jun 2000.

[11] Dbouk, M., Sbeity, I. and Mcheik, H., ‘Towards Service-
Based Approach; Building Huge Software Architectural
Designs’, IJCNDS, 2011, v6 (forthcoming).

[12] Fonoage, M., Cardei, I. and Shankar, R, "Mechanisms for
Requirements Driven Component Selection and Design
Automation" the 3rd IEEE Systems Conference,
Vancouver, Canada, 2009.

[13] Gamma, E., Helm, R., Johnson, R. and Vlissides, J.,
“Design Patterns”, 1995, Addison Wesley.

[14] George, J.F., Batra, D. and Valacich, J.S., “Object-
Oriented Systems Analysis and Design”, ISBN:
0132279002, ISBN-13: 9780132279000, Published by
Prentice Hall, 2006

[15] Goguen, J.A., “Reusing and interconnecting software
components”. IEEE Computer, 19(2):16–28, Feb. 1986.

[16] Hesse, W., “Ontologies in the software engineering
process”. In R. Lenz et al., editor, EAI 2005 Proceedings of
the Workshop on Enterprise Application Integration

[17] Hoffer, J.A., George, J.F. and Valacich, J.S., “Modern
Systems Analysis and Design (5th Edition)”, ISBN-10: 0-
13-224076-9, ISBN-13: 978-0-13-224076-5, Published by
Prentice Hall, 2008

[18] Koopman, P., "A taxonomy of decomposition strategies
based on structures, behaviors, and goals", 1995
Conference on Design Theory and Methodology, Boston,
September 1995.

 [19] Lane, T.G., “Studying software architecture through design
spaces and rules”, Technical Report CMU/SEI-90-TR-18,
CMU, 1990.

[20] Lung, C. and Zaman, X. M., "Software Architecture
Decomposition Using Attributes" Carleton University,
Ottawa, Ontario press, Canada 2006.

[21] Mancoridis, S., Mitchell, B., Rorres, C., Chen, Y. and
Gansner, E., “Using automatic clustering to produce high-
level system organizations of source code”. In Proceedings
of the 6th Inter. Workshop on Program Comprehension
(IWPC’98), pp. 45–52, June 1998.

Mohamed DBOUK, received a Bachelor’s Honor” in Applied
Mathematics; Computer Science, Lebanese University, Faculty of
Sciences, and a PhD from Paris-Sud 11 University (Orsay-France),
1997. He is a full time Associate Professor, at the Lebanese
university - Faculty of Sciences-I, Dep. of Computer Science. His
was (2005-2007) the director of this Faculty, and he is the Founder
and Coordinator of the research master “M2R-SI: Information
System”. His research interests include Software engineering,
Information systems, GIS, Cooperative and Multi-Agent Systems,
Groupware. He participates in many international projects.

Hamid Mcheick is currently an associate professor in Computer
science department at the University of Quebec At Chicoutimi
(UQAC), Canada. He holds a master degree and PhD. in software
engineering from Montreal University, Canada.

Ihab Sbeity occupies a full time position in Computer Science
Department at the Lebanese University. He holds a PhD.in
performance evaluation and system design from “Institut National
Polytechnique de Grenoble”, France in 2006

