
IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

95

Optimal Provisioning of Resource in a Cloud Service

Yee Ming Chen1 Shin-Ying Tsai

Department of Industrial Engineering and Management, Yuan Ze University
135 Yuan-Tung Rd., Chung-Li, Tao-Yuan, Taiwan, ROC.

Abstract
Cloud service allows enterprise class and individual users to
acquire computing resources from large scale data centers of
service providers. This cloud service is more involved in
purchasing and consuming manners between providers and users
than others. However, Cloud service providers charge users for
these services. Specifically, to access data from their globally
distributed storage edge servers, providers charge users
depending on the user’s location and the amount of data
transferred. User applications may incur large data retrieval and
execution costs. Therefore, optimizing execution time, the cost
arising from data transfers between resources as well as
execution costs should be taken into account. In this paper, we
present a discrete Particle Swarm Optimization (DPSO) approach
for tasks allocation. We construct application Amazon EC2 as an
example and simulation with Cloud based compute and
transmission resources. Experimental studies illustrate that the
proposed method is more efficient and surpasses those of
mathematical programming and reflecting the actual benefit of
saving with the total cost as well as tasks allocation.
Keywords: Particle Swarm Optimization, Resource Allocation,
Cloud service provider.

1. Introduction

Cloud computing is a modality of computing characterized
by on demand availability of resources in a dynamic and
scalable fashion. The term resource here could be used to
represent infrastructure, platforms, software, services, or
storage. Cloud computing services allow users to lease
computing resources from large scale data centers
operated by service providers. Using cloud services, cloud
users can deploy a wide variety of applications
dynamically and on-demand. Most cloud service providers
use machine virtualization to provide flexible and cost
effective resource sharing. The cloud service provider is
responsible to make the needed resources available on
demand to the cloud users. It is the responsibility of the
cloud service provider to manage its resources in an
efficient way so that the cloud user needs can be met when
needed at the desired Quality of Service (QoS) level[1].
Recently, many companies, such as Amazon, Google and

Microsoft, have launched their cloud service businesses.
Most cloud service providers use machine virtualization
techniques to provide flexible and cost-effective resource
sharing among users. Virtual machine(VM)instances
normally share physical processors and I/O interfaces with
other instances. It is expected that virtualization can
impact the computation and communication performance
of cloud services. Although most commercial providers
present VM performance criteria to customers, it is
difficult for management systems to assure VMs of their
minimize execution cost or maximum assigned resources.
If the tasks of VMs, for example, suddenly change from
idle to active, the locations of VMs cannot be optimized
again to meet the change[2]. In this paper, we propose
meta-heuristic optimization approach based on Particle
Swarm Optimization (PSO) for finding the near optimal
tasks allocation with reasonable time. The approach is to
dynamically generate an optimal task allocation so as to
complete the tasks in a minimum period of time as well as
utilizing the resources in an efficient way. The rest of the
paper is organized as follows. Section 2 deals with some
theoretical foundations related to tasks allocation model.
In Section 3, we describe the proposed DPSO based
algorithm in detail. Experimental results are presented in
Section 4 and some conclusions and future works are
provided towards the end.

2. Provisioning of Resources in a Cloud
Environment

Cloud computing services are often roughly classified into
a hierarchy of as a service terms as following[3]:

Infrastructure a s a Serv ice (IaaS) is providing general
on-demand computing resources such as virtualized
servers or various forms of storage (block, key/value,
database, etc.) as metered resources. This can often be
seen as a direct evolution of shared hosting with added on-
demand scaling via resource virtualization and use-based
billing.

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

96

Platform as a Serv ice (P aaS) is providing an existent
managed higher-level software infrastructure for building
particular classes of applications and services. The
platform includes the use of underlying computing
resources, typically billed similar to IaaS products,
although the infrastructure is abstracted away below the
platform.

Software as a Service (SaaS) is providing specific,
already-created applications as fully or partially remote
services. Sometimes it is in the form of web-based
applications and other times it consists of standard non-
remote applications with Internet-based storage or other
network interactions.

EC2 and other server clouds follow an IaaS model, in

which the cloud users rent virtual servers and selects or
controls the software for each virtual server tasks[4].
Every cloud service providers might have a unique way of
managing and tasks allocation must ensure that they do
not conflict with the resource owner's policies. In the
worst-case situation, the cloud service providers might
charge different prices to different cloud users for their
resource usage and this might vary from time to time.
Mathematical programming approaches [5] using column
generation or branch-and-bound techniques can solve the
tasks allocation problem[6]. However, the general n-
processor tasks allocation has been found to be NP-
complete[7]. Therefore, finding exact optimum solutions
to large-scaled tasks allocation problem is computationally
prohibitive. The development of meta-heuristic
optimization theory has been flourishing during the last
decade. Particularly, with its sound exploration ability of
both global and local optimal solutions, some new search
techniques involving nature-inspired meta-heuristics have
become the new focus of resource allocation research. As
mentioned in [8] scheduling is NP-complete. Meta-
heuristic methods have been used to solve well-known
NP-complete problems. Efficient Meta-heuristic methods,
which are used frequently, are simulated annealing (SA)
[9], genetic algorithm (GA) [10], ant colony optimization
(ACO) [11] and particle swarm optimization (PSO)[12].

In this study, we consider the tasks allocation with the

following scenarios(figure 1). The processors in the
system are heterogeneous and they are capacitated with
various units of memory and processing resources. Hence,
a task will incur different execution cost if it is executed
on different processors. On the other hand, all of the
communication links are assumed to be identical and some
communication cost between two tasks will be incurred if
there is a communication need between them and they are
executed on different processors.

 Figure 1 The framework of tasks allocation process

In this paper, a version of discrete particle swarm
optimization (DPSO) is proposed for cloud service
provider’s tasks allocation and the goal of allocation is to
minimize the execution cost and communication cost
mentioned above simultaneously.

2.1 Tasks allocation Model

The Tasks allocation model [13,14]is an integer program
with a quadratic objective function (1) which represents
the total execution cost and communication cost,
respectively.

















1

1 1 1
)1(

1 1
)(

t

i

t

ij

p

k jkxikxijcc
t

i

p

k ikxikecXCMin (1)

Constraints：

 ,1
1




n

k
ikx ti ,,2,1  (2)

 ,
1




t

i
kiki Rxr pk ,,2,1  (3)

 ,
1




t

i
kiki Mxm pk ,,2,1  (4)

)1,0(ikx (5)

Constraint (2) states that each task should be allocated to
exactly one processor. Constraints (3) and (4) ensure that
processing resource and the memory capacity of each
processor is no less than the total amount of resource
demands of all of its allocated tasks. The last constraint (5)
guarantees that ikx are binary decision variables. As

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

97

mentioned in the previous section the goal of the tasks
allocation is to minimize the total execution cost and
communication cost simultaneously.

3. Proposed Discrete Particle Swarm
Optimization Algorithm

In this section we propose a version of discrete particle
swarm optimization for tasks allocation. Particle needs to
be designed to present a sequence of tasks in available
cloud service providers. Also the velocity has to be
redefined. Details are given what follows.
In our method solutions are encoded in a t×p matrix,
called position matrix, in which p is the number of
available processors at the time of allocation and t is the
number of tasks. The position matrix of each particle has
the two following properties:
1) All the elements of the matrices have either the value

of 0 or 1. In other words, if idX is the position matrix

of i-th particles in a d-dimensional space , then:

 )1,0(, ptXid

2) In each row of these matrices only one element is 1
and others are 0.

In position matrix each row represents a task allocation

and each column represents allocated tasks in a processor.

Velocity idV of each particle is considered as a t×p matrix

whose elements are in range[−V max, V max] . Also Pbest
and nbest are t×p matrices and their elements are 0 or 1
as position matrices. idp represents the best position that i-

th particle has visited since the first time step and gdp

represents the best position that i-th particle and its
neighbors have visited from the beginning of the algorithm.
In this paper we used star neighborhood topology for gdp .

In each time step idp and gdp should be updated:

)()(2211 idgdidid

old
id

new
id XprandCXprandCVweightV 

(6)



 


 otherwise

ptVptV if
ptX

new
id

new
idnew

id
0

)},(max{),(1
),(

 (7)

In (6)),(ptV new
id is the element in t-th row and p-th

column of the i-th velocity matrix in the updated time step

of the algorithm and),(ptX new
id denotes the element in t-

th row and p-th column of the i-th position matrix in the
updated time step. 1C and 2C are positive acceleration

constants which control the influence of idP and gdP on

the search process. Also 1rand and 2rand are random

values in range [0, 1] sampled from a uniform distribution.
weight which is called inertia weight was introduced by
Shi and Eberhart [7] as a mechanism to control the
exploration and exploitation abilities of the swarm.
Usually w starts with large values (e.g. 0.9) which
decreases over time to smaller values so that in the last
iteration it ends to a small value (e.g. 0.1).
Eq. (7) means that in each row of position matrix value 1
is assigned to the element whose corresponding element in
velocity matrix has the max value in its corresponding row.
If in a row of velocity matrix there is more than one
element with max value, then one of these elements is
selected randomly and 1 assigned to its corresponding
element in the position matrix.

The pseudo code of the proposed DPSO algorithm is

stated as follows:

Create and initialize a t×p -dimensional swarm with P
particles
repeat
for each particle i=1,…,P do

if)(idXf)(idpf then // f() represent the fitness

idid XP  ; function of Eq.(1)

end
if)()(gdid PfPf  then

idgd PP  ;

end
end

for each particle i=1,…,P do
update the velocity matrix using Eq. (6)
update the position matrix using Eq. (7)

end
until stopping condition is true;

4. Experimental results

In this section, we will present the experimental results

and comparative the computational performance. The
platform for conducting the experiments in a PC with Dual
Core Processor 4400+2.29 GHz CPU and 1.75GB RAM.
All programs are coded in Java programming language in
Borland JBuilder 2006.

We give a formal description of our tasks allocation

model. We start with a description of a cloud
infrastructure. Then, we formalize user tasks and
allocation of tasks on the cloud infrastructure. In our

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

98

model, we represent a cloud as a connected graph of
networked computation nodes. We assume that there
exists a communication link between each pair of nodes.
We also assume that each link has an individual
bandwidth and the data transfer on one link does not affect
the other links. A node n corresponds to a computing
entity like a physical or a virtual machine. An edge e is a
communication link between two nodes.

Figure 2 shows an example of a cloud. The cloud is

depicted by the directed acyclic graph (DAG). The nodes
contain tasks by users submit to be executed on the cloud.
The upper part of the node , ec , represent task execution
cost. The numbers on the edges represent the
communication cost of bandwidth links.

kec1

kec4 kec6

kec2

kec3

kec5 kec7

kec8

 Figure 2 the directed acyclic graph of tasks

To simulate our proposed DPSO algorithm for
interconnection tasks graph in figure 2 , we have used the
data set of Amazon EC2 Standard Instance are shown in
Table 1. The stopping criterion in DPSO is the number of
generations such that no improvement is obtained in the
value of fitness function (figure 3).The achieve results of
eight tasks allocation are shown in Table 2.

Figure 3 The convergence of DPSO for eight tasks allocation

 Table 2 The eight tasks allocation solutions through DPSO

Table1. Amazon EC2 Standard Instance

Processors
Memory(M) CPU(GB)

Executed
cost(ec)

1P 1.7GB
8.0GB~9.6G

B
$0.12~$0.1

4

2P 1.7GB
8.0GB~9.6G

B
$0.12~$0.1

4

3P 15GB
8.0GB~9.6G

B
$0.96~$1.1

1

4P 7.5GB
5.0GB~6.0G

B
$0.48~$0.5

2

5P 7.5GB
5.0GB~6.0G

B
$0.48~$0.5

2

6P 1.7GB
4.0GB~4.8G

B
$0.12~$0.1

4

7P 1.7GB
4.0GB~4.8G

B
$0.12~$0.1

4

EC2
Standard
Instance

8P 1.7GB
4.0GB~4.8G

B
$0.12~$0.1

4

4.1 Comparative performances

In this section, we present the comparative
performances between the proposed DPSO and
mathematical programming(Table 3). The parameter
values used in both of DPSO and mathematical
programming LINGO are optimally tuned by intensive
preliminary experiments to let the competing algorithms
perform at the best level. To be specific, the parameter
setting used by DPSO is (number of particles=15,
c1=1,c2=3) and 000208.0ijcc .
Table 3. Comparison of the performance for various tasks allocation

.

Task 1 Task 2 Task 3 Task 4 Task 5 Task 6 Task 7 Task 8 Optimal
Allocation Processor 8 Processor 7 Processor 7 Processor 1 Processor 2 Processor 2 Processor 7 Processor 6

Cost Total execution cost and communication cost $1.011

Heuristics Math. programming
Quantity

DPSO LINGO
Tasks Processors fitness Time

(sec)
Min Cost Time

(sec)
4 4 0.507 0 0.507 0

8 8 1.013 0.469 1.011 1

12 12 2.944 1.234 2.936 16

IJCSI International Journal of Computer Science Issues, Vol. 7, Issue 6, November 2010
ISSN (Online): 1694-0814
www.IJCSI.org

99

5. Conclusions

This paper presented a version of Discrete Particle Swarm
Optimization (DPSO) algorithm for tasks allocation. We
used the heuristic to minimize the total cost of application
tasks excution on Cloud computing environments. The
performance of the proposed algorithm was compared
with the mathematical programming method through
carrying out exhaustive simulation tests and different
settings. Experimental results show that the advantage of
the DPSO algorithm is its speed of convergence and the
ability to obtain faster and feasible allocation. As future
work, the authors of the paper plan to carry out extended
simulation studies that consider not only CPU time and
memory space share but also network bandwidth as
resources.

Acknowledgments

This research work was sponsored by the National Science
Council, R.O.C., under project number NSC99-2221-E-
155-022.

References
[1] W. Chung, R. Chang, “A new mechanism for resource

monitoring in Grid computing”, Future Generation
Computer Systems ,Vol. 25. No.1.,2009,pp. 1-7.

[2] M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. H. Katz,
A. Konwinski, G. Lee, D. A. Patterson, A. Rabkin, I. Stoica,
and M. Zaharia. ”Above the Clouds: A Berkeley View of
Cloud Computing” . Technical Report UCB/EECS-2009-28,
EECS Department, University of California, Berkeley, Feb
2009.

[3] I. Foster, Y. Zhao,I. Raicu, S. Lu, S.” Cloud computing and
grid computing 360-degree compared”, Grid Computing
Environments Workshop,2008, pp. 1–10.

[4] Amazon Elastic Compute Cloud, http://aws.amazon.com/ec2
[5] A. Ernst, H. Hiang, M. Krishnamoorthy,” Mathematical

programming approaches for solving task allocation
problems”, Proc. of the 16th National Conf. Of Australian
Society of Operations Research, 2001.

[6] G.H. Chen, J.S. Yur, “A branch-and-bound-with-derestimates
algorithm for the task assignment problem with precedence
constraint”, Proc. of the 10th International Conf. on
Distributed Computing Systems, 1990, pp. 494– 501.

[7] Zs. Németh, V. Sunderam, “Characterizing grids: Attributes,
definitions, and formalisms”, Journal of Grid Computing,Vol.
1 . No.1,2003,pp. 9-23.

[8] A. Abraham, H. Liu, M. Zhao,” Particle swarm scheduling
for work-flow applications in distributed computing
environments, in: Metaheuristics for Scheduling: Industrial
and Manufacturing Applications,” in: Studies in
Computational Intelligence, Springer Verlag, Germany, 2008,
pp. 327-342.

[9] A. Abraham, R. Buyya, B. Nath, “Nature's heuristics for
scheduling jobs on computational Grids”, in: Proceedings of

the 8th International Conference on Advanced Computing
and Communications, Tata McGraw-Hill, India, 2000, pp.
45-52.

[10] Y. Gao, H.Q. Rong, J.Z. Huang,” Adaptive Grid job
scheduling with genetic algorithms”, Future Generation
Computer Systems,Vol. 21,No. 1,2005, pp. 151-161.

[11] A. Abraham, R. Buyya and B. Nath, “Nature’s heuristics for
scheduling jobs on computational grids”, Proc. of the 8th
IEEE International Conference on Advanced Computing
and Communications, India, 2000,pp.45-52.

 [12] H. Liu, A. Abraham,” An hybrid fuzzy variable
neighborhood particle swarm optimization algorithm for
solving quadratic assignment problems”, Journal of
Universal Computer Science, Vol.13, No.7, 2007, pp.
1032-1054.

[13] P.Y.Yin, S.S. Yu,P.P. Wang, and Y.T. Wang,” A Hybrid
Particle Swarm Optimization Algorithm for Optimal Task
Assignment in Distributed System”, Computer Standards
& Interfaces, Vol. 28, 2006, pp. 441-450.

[14] P. Ruth, X. Jiang, D. Xu, and S. Goasguen. “Virtual
distributed environments in a shared infrastructure”.
Computer, Vol. 38, No. 5, 2005,pp.63–69.

Yee Ming Chen is a professor in the Department of
Industrial Engineering and Management at Yuan Ze
University, where he carries out basic and applied
research in agent-based computing. His current
research interests include soft computing, supply
chain management, and system diagnosis/prognosis.

 Shin-Ying Tsai was a graduated student in the
Department of Industrial Engineering and
Management at Yuan Ze University, where she was
studying basic and applied research in Cloud
computing and heuristic algorithms. She now works
in Gold Circuit Electronics as a Design Engineering.

