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Abstract 
Cloud service allows enterprise class and individual users to 
acquire computing resources from large scale data centers of 
service providers. This cloud service is more involved in 
purchasing and consuming manners between providers and users 
than others. However, Cloud service providers charge users for 
these services. Specifically, to access data from their globally 
distributed storage edge servers, providers charge users 
depending on the user’s location and the amount of data 
transferred. User applications may incur large data retrieval and 
execution costs. Therefore, optimizing execution time, the cost 
arising from data transfers between resources as well as 
execution costs should be taken into account. In this paper, we 
present a discrete Particle Swarm Optimization (DPSO) approach 
for tasks allocation. We construct application Amazon EC2 as an 
example and simulation with Cloud based compute and 
transmission resources. Experimental studies illustrate that the 
proposed method is more efficient and surpasses those of 
mathematical programming and reflecting the actual benefit of 
saving with the total cost as well as tasks allocation.  
Keywords: Particle Swarm Optimization, Resource Allocation, 
Cloud service provider. 

1. Introduction 

Cloud computing is a modality of computing characterized 
by on demand availability of resources in a dynamic and 
scalable fashion. The term resource here could be used to 
represent infrastructure, platforms, software, services, or 
storage. Cloud computing services allow users to lease 
computing resources from large scale data centers 
operated by service providers. Using cloud services, cloud 
users can deploy a wide variety of applications 
dynamically and on-demand. Most cloud service providers 
use machine virtualization to provide flexible and cost 
effective resource sharing. The cloud service provider is 
responsible to make the needed resources available on 
demand to the cloud users. It is the responsibility of the 
cloud service provider to manage its resources in an 
efficient way so that the cloud user needs can be met when 
needed at the desired Quality of Service (QoS) level[1]. 
Recently, many companies, such as Amazon, Google and 

Microsoft, have launched their cloud service businesses. 
Most cloud service providers use machine virtualization 
techniques to provide flexible and cost-effective resource 
sharing among users. Virtual machine(VM)instances 
normally share physical processors and I/O interfaces with 
other instances. It is expected that virtualization can 
impact the computation and communication performance 
of cloud services. Although most commercial providers 
present VM performance criteria to customers, it is 
difficult for management systems to assure VMs of their 
minimize execution cost or maximum assigned resources. 
If the tasks of VMs, for example, suddenly change from 
idle to active, the locations of VMs cannot be optimized 
again to meet the change[2]. In this paper, we propose 
meta-heuristic optimization approach based on Particle 
Swarm Optimization (PSO) for finding the near optimal 
tasks allocation with reasonable time. The approach is to 
dynamically generate an optimal task allocation so as to 
complete the tasks in a minimum period of time as well as 
utilizing the resources in an efficient way. The rest of the 
paper is organized as follows. Section 2 deals with some 
theoretical foundations related to tasks allocation model. 
In Section 3, we describe the proposed DPSO based 
algorithm in detail. Experimental results are presented in 
Section 4 and some conclusions and future works are 
provided towards the end. 

2. Provisioning of Resources in a Cloud 
Environment 

Cloud computing services are often roughly classified into 
a hierarchy of as a service terms as following[3]: 
 
Infrastructure a s a  Serv ice (IaaS) is providing general 
on-demand computing resources such as virtualized 
servers or various forms of storage (block, key/value, 
database, etc.) as metered resources. This can often be 
seen as a direct evolution of shared hosting with added on-
demand scaling via resource virtualization and use-based 
billing. 
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Platform as a  Serv ice (P aaS) is providing an existent 
managed higher-level software infrastructure for building 
particular classes of applications and services. The 
platform includes the use of underlying computing 
resources, typically billed similar to IaaS products, 
although the infrastructure is abstracted away below the 
platform. 
 
Software as  a Service (SaaS) is providing specific, 
already-created applications as fully or partially remote 
services. Sometimes it is in the form of web-based 
applications and other times it consists of standard non-
remote applications with Internet-based storage or other 
network interactions.  
 
EC2 and other server clouds follow an IaaS model, in 

which the cloud users rent virtual servers and selects or 
controls the software for each virtual server tasks[4]. 
Every cloud service providers might have a unique way of 
managing and tasks allocation must ensure that they do 
not conflict with the resource owner's policies. In the 
worst-case situation, the cloud service providers might 
charge different prices to different cloud users for their 
resource usage and this might vary from time to time. 
Mathematical programming approaches [5] using column 
generation or branch-and-bound techniques can solve the 
tasks allocation problem[6]. However, the general n-
processor tasks allocation has been found to be NP-
complete[7]. Therefore, finding exact optimum solutions 
to large-scaled tasks allocation problem is computationally 
prohibitive. The development of meta-heuristic 
optimization theory has been flourishing during the last 
decade. Particularly, with its sound exploration ability of 
both global and local optimal solutions, some new search 
techniques involving nature-inspired meta-heuristics have 
become the new focus of resource allocation research. As 
mentioned in [8] scheduling is NP-complete. Meta-
heuristic methods have been used to solve well-known 
NP-complete problems. Efficient Meta-heuristic methods, 
which are used frequently, are simulated annealing (SA) 
[9], genetic algorithm (GA) [10], ant colony optimization 
(ACO) [11] and particle swarm optimization (PSO)[12]. 
 
In this study, we consider the tasks allocation with the 

following scenarios(figure 1). The processors in the 
system are heterogeneous and they are capacitated with 
various units of memory and processing resources. Hence, 
a task will incur different execution cost if it is executed 
on different processors. On the other hand, all of the 
communication links are assumed to be identical and some 
communication cost between two tasks will be incurred if 
there is a communication need between them and they are 
executed on different processors.  

 
 Figure  1 The framework of tasks allocation process 

 
In this paper, a version of discrete particle swarm 
optimization (DPSO) is proposed for cloud service 
provider’s tasks allocation and the goal of allocation is to 
minimize the execution cost and communication cost 
mentioned above simultaneously. 

2.1 Tasks allocation Model 

The Tasks allocation model [13,14]is an integer program 
with a quadratic objective function (1) which represents 
the total execution cost and communication cost, 
respectively. 
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Constraint (2) states that each task should be allocated to 
exactly one processor. Constraints (3) and (4) ensure that 
processing resource and the memory capacity of each 
processor is no less than the total amount of resource 
demands of all of its allocated tasks. The last constraint (5) 
guarantees that ikx  are binary decision variables. As 
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mentioned in the previous section the goal of the tasks 
allocation is to minimize the total execution cost and 
communication cost simultaneously. 

3. Proposed Discrete Particle Swarm 
Optimization Algorithm 

In this section we propose a version of discrete particle 
swarm optimization for tasks allocation. Particle needs to 
be designed to present a sequence of tasks in available 
cloud service providers. Also the velocity has to be 
redefined. Details are given what follows. 
In our method solutions are encoded in a t×p matrix, 
called position matrix, in which p is the number of 
available processors at the time of allocation and t is the 
number of  tasks. The position matrix of each particle has 
the two following properties: 
1) All the elements of the matrices have either the value 

of 0 or 1. In other words, if idX  is the position matrix 

of i-th particles in  a d-dimensional space , then: 

      
  )1,0(, ptXid  

2) In each row of these matrices only one element is 1 
and others are 0. 

 
In position matrix each row represents a task allocation 

and each column represents allocated tasks in a processor. 

Velocity idV  of each particle is considered as a t×p matrix 

whose elements are in range[−V max, V max] . Also Pbest 
and nbest are t×p  matrices and their elements are 0 or 1 
as position matrices. idp represents the best position that i-

th particle has visited since the first time step and gdp  

represents the best position that i-th particle and its 
neighbors have visited from the beginning of the algorithm. 
In this paper we used star neighborhood topology for gdp  . 

In each time step idp  and gdp  should be updated:  
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In (6) ),( ptV new
id  is the element in t-th row and p-th 

column of the i-th velocity matrix in the updated time step 

of the algorithm and ),( ptX new
id  denotes the element in t-

th row and p-th column of the i-th position matrix in the 
updated time step. 1C  and 2C  are positive acceleration 

constants which control the influence of idP and gdP  on 

the search process. Also 1rand  and 2rand  are random 

values in range [0, 1] sampled from a uniform distribution. 
weight which is called inertia weight was introduced by 
Shi and Eberhart [7] as a mechanism to control the 
exploration and exploitation abilities of the swarm. 
Usually w starts with large values (e.g. 0.9) which 
decreases over time to smaller values so that in the last 
iteration it ends to a small value (e.g. 0.1). 
Eq. (7) means that in each row of position matrix value 1 
is assigned to the element whose corresponding element in 
velocity matrix has the max value in its corresponding row. 
If in a row of velocity matrix there is more than one 
element with max value, then one of these elements is 
selected randomly and 1 assigned to its corresponding 
element in the position matrix. 
 
The pseudo code of the proposed DPSO algorithm is 

stated as follows:  

 
Create and initialize a t×p -dimensional swarm with P  
particles 
repeat 
for each particle i=1,…,P do 

if )( idXf )( idpf  then  // f( ) represent the fitness 

idid XP    ;                    function of Eq.(1) 

 
end 
if  )()( gdid PfPf     then 

idgd PP   ; 

end 
end 

for each particle i=1,…,P do 
update the velocity matrix using Eq. (6) 
update the position matrix using Eq. (7) 

end 
until stopping condition is true; 
 
4. Experimental results 
 
In this section, we will present the experimental results 

and comparative the computational performance. The 
platform for conducting the experiments in a PC with Dual 
Core Processor 4400+2.29 GHz CPU and 1.75GB RAM. 
All programs are coded in Java programming language in 
Borland JBuilder 2006. 
 
We give a formal description of our tasks allocation 

model. We start with a description of a cloud 
infrastructure. Then, we formalize user tasks and 
allocation of tasks on the cloud infrastructure. In our 
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model, we represent a cloud as a connected graph of 
networked computation nodes. We assume that there 
exists a communication link between each pair of nodes. 
We also assume that each link has an individual 
bandwidth and the data transfer on one link does not affect 
the other links. A node n corresponds to a computing 
entity like a physical or a virtual machine. An edge e is a 
communication link between two nodes. 
 
Figure 2 shows an example of a cloud. The cloud is 

depicted by the directed acyclic graph (DAG). The nodes 
contain tasks by users submit to be executed on the cloud. 
The upper part of the node , ec , represent task execution 
cost. The numbers on the edges represent the 
communication cost of bandwidth links.  
 
 

kec1

kec4 kec6

kec2

kec3

kec5 kec7
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 Figure  2 the directed acyclic graph of tasks  

 

To simulate our proposed DPSO algorithm for 
interconnection tasks graph in figure  2 , we have used the 
data set of Amazon EC2 Standard Instance are shown in 
Table 1.  The stopping criterion in DPSO is the number of 
generations such that no improvement is obtained in the 
value of fitness function  (figure  3).The achieve results of 
eight tasks allocation are shown in Table 2. 
 

 
Figure  3 The convergence of DPSO for eight tasks allocation 

 
 
 
                 Table 2   The eight tasks allocation solutions through DPSO 

Table1. Amazon EC2 Standard Instance 

Processors
Memory(M) CPU(GB) 

Executed 
cost(ec) 

1P 1.7GB 
8.0GB~9.6G

B 
$0.12~$0.1

4 

2P 1.7GB 
8.0GB~9.6G

B 
$0.12~$0.1

4 

3P 15GB 
8.0GB~9.6G

B 
$0.96~$1.1

1 

4P 7.5GB 
5.0GB~6.0G

B 
$0.48~$0.5

2 

5P 7.5GB 
5.0GB~6.0G

B 
$0.48~$0.5

2 

6P 1.7GB 
4.0GB~4.8G

B 
$0.12~$0.1

4 

7P 1.7GB 
4.0GB~4.8G

B 
$0.12~$0.1

4 

EC2 
Standard 
Instance

8P 1.7GB 
4.0GB~4.8G

B 
$0.12~$0.1

4 

 
4.1 Comparative performances 

In this section, we present the comparative       
performances between the proposed DPSO and 
mathematical programming(Table 3). The parameter 
values used in both of DPSO and mathematical 
programming LINGO are optimally tuned by intensive 
preliminary experiments to let the competing algorithms 
perform at the best level. To be specific, the parameter 
setting used by DPSO is (number of particles=15, 
c1=1,c2=3) and 000208.0ijcc . 
Table 3. Comparison of the performance for various tasks allocation 
 

 
 
. 
 
 

Task 1 Task 2 Task  3 Task 4 Task 5 Task 6 Task  7 Task 8 Optimal 
Allocation Processor 8 Processor 7 Processor 7 Processor 1 Processor 2 Processor 2 Processor 7 Processor 6 

Cost Total  execution cost and communication cost  $1.011 

Heuristics Math. programming
Quantity 

DPSO LINGO 
Tasks Processors fitness Time 

(sec) 
Min Cost Time 

(sec) 
4 4 0.507 0 0.507 0 

8 8 1.013 0.469 1.011 1 

12 12 2.944 1.234 2.936 16 
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5. Conclusions 

This paper presented a version of Discrete Particle Swarm 
Optimization (DPSO) algorithm for tasks allocation. We 
used the heuristic to minimize the total cost of application 
tasks excution on Cloud computing environments. The 
performance of the proposed algorithm was compared 
with the mathematical programming method through 
carrying out exhaustive simulation tests and different 
settings. Experimental results show that the advantage of 
the DPSO algorithm is its speed of convergence and the 
ability to obtain faster and feasible allocation. As future 
work, the authors of the paper plan to carry out extended 
simulation studies that consider not only CPU time and 
memory space share but also network bandwidth as 
resources.  
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