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Abstract 
In this contribution, Cramer-Rao lower bound (CRLB) for signal-

to-noise ratio (SNR) estimation from linear modulation signals 

over flat Rayleigh fading channel is addressed. Therefore, we 

derive the analytical expressions of Fisher information matrix 

entries that assess the optimal variance of any unbiased SNR 

estimator. Based on statistical Monte Carlo computing method, 

simulation results are drawn from several constellation densities 

and observation window sizes. For the linear modulation 

schemes used here, it is shown that the lower bound is as higher 

as the modulation order increases. The derived bound provides 

an efficient standard for evaluating the performance of any 

unbiased non-data aided (NDA) SNR estimator from linear 

modulation signals over flat Rayleigh fading channel (FRFC). 

Keywords: Cramer-Rao lower bound, signal-to-noise ratio, 

non-data aided estimation, FRFC, complex AWGN. 

1. Introduction 

Modern communication systems often require the 

knowledge of the SNR level at the receiver side in order to 

qualify the performance of the received signal quality. 

Then accurate SNR estimate is required for measuring the 

channel quality for adaptive modulation schemes as well 

as for soft decoding procedures as shown in [1], [2] and 

[3]. In addition to low-complexity requirement, it is 

essential to assess the truthfulness of SNR estimators in 

term of their statistical variances. For this purpose, the 

well-known CRLB is a prominent benchmark to evaluate 

the statistical variance performance of unbiased estimators.  

 

Actually both data aided (DA) and non-data aided (NDA) 

trends are considered for either performance bounds 

derivation or estimation algorithms. Data aided approach, 

which relies on the transmission of known data streams 

such as training sequences and also pilot symbols, should 

expedite and ease the estimation process. Unfortunately, 

this approach limits the system through-put in the sense 

that adding known pilot symbols to the data stream should 

drop down the spectral efficiency of the communication 

system. Hence NDA SNR estimation approach receives 

substantial attention in recent literature. CRLB for NDA 

SNR estimation is derived in [4] from both BPSK and 

QPSK modulated signals with AWGN channel. Derived 

bounds are compared to those obtained for DA estimation. 

In [5], a straightforward approximation of the CRLB for 

NDA SNR estimation from BPSK modulated signals over 

AWGN channel is presented in efficient form that avoids 

tedious numerical integration. Authors, in [6], derive a 

lower bound for SNR estimation from general M-ary 

one/two dimensional modulation signals with axis/half 

plane symmetry over AWGN channel. Exact analytical 

CLRB of unbiased NDA SNR estimation from square 

QAM signals using I/Q received signal model is addressed 

in [7], where a generalization of the elegant CLRB 

expressions presented in [4] is also introduced. 

In addition to AWGN channel, derivation of SNR 

estimates CRLB for fading channels deserves great 

attention regarding its significance for modern wireless 

communication systems. Hence, derivation of the CRLB 

for SNR estimation is addressed in [8] over a time-varying 

channel based on polynomial-in-time model according to 

Taylor’s theorem. Recent works presented in [9] and [10] 

deal with the CRLB derivation for carrier phase and 

frequency estimation assuming transmission over fading 

channel. On this basis, the present work is devoted for 

analytically deriving the CRLB for NDA SNR estimation 

from linearly modulated signals over flat Rayleigh fading 

channel (FRFC) where the transmitted signal is scaled by a 

non-constant fading gain during the estimator observation 

window. Noise power and also signal amplitude are 

assumed as completely unknown at the receiver side. The 

lower bounds derived hereafter offer an efficient standard 

to assess NDA SNR estimator performance over FRFC.  

2. System Model 

Consider the transmission of linearly modulated signal 

over FRFC corrupted by a complex AWGN (CAWGN). In 

absence of carrier phase and frequency offsets and also 

under the assumption of ideal timing recovery, the 

complex sample at the output of the receiver matched filter 

kx can be written as: 
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where, k
a  is the transmitted symbol and N  is the 

observation window size. Note that the transmitted 

symbols 10 ,..., Naa  are assumed as independent and 

identically distributed. k
 is the CAWGN sample. The 

vector },...,{
10 


N

ω  is a set of randomly drawn 

samples from independent zero-mean complex Gaussian 

process with uncorrelated real and imaginary parts having 

equal variances 
2 . k

  is a Rayleigh distributed positive 

random variable, where the well-known Rayleigh 

probability density function (PDF) is given by [11]:  
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The signal-to-noise ratio (SNR) is then given by: 
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We expect to estimate   based on the observation samples 

vector },...,{
10 


N

xxx . Then two parameters are 

involved in this estimate. For convenience, we note: 

               2
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Let us define a parameter vectorθ  such that: 

 

               θ    (5) 

 

 

While the estimated SNR unit is usually the decibel, thus 

we consider the following function:  

                         )log(10)(

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θg  (6) 

 

The CRLB of the SNR estimation is given by [11, pp.45-

46]: 
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where )(θI  is the 2 2 Fisher information matrix (FIM) 

defined as: 
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and 
θ

θg



 )(
 is the 1 2 Jacobian matrix given by: 
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3. CRLB Derivation for SNR Estimation 

To derive the CRLB expressions, we have to evaluate the 

probability )( θ|xp  given in (8). The PDF 

 kik axp ,,| θ  for a single received sample kx  

parameterized by θ , i
a  and k

  is given by: 
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Then the PDF  ik axp ,| θ  parameterized by θ  and i
a  is 

computed by integration over the Rayleigh fading gain k
  

as follows: 
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After several algebraic handling, we obtain the following 

expression from (11): 
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and erf(.) is the error function defined by:  
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We consider that transmitted symbols  
i

a  fit in an M-ary 

constellation C , then the PDF  θ|kxp  can be expressed 

as follows: 
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Assuming that the received samples  
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x  are independent 

random variables and also that the transmitted symbols 
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then the probability  θx |p  is given by: 
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We inject (12) in (20), then we obtain: 
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Taking the logarithm of (21) and retaining the θ  

dependent terms only, we obtain the following expression: 
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Then, the first diagonal element of the Fisher information 

matrix )(θI can be expressed as follows: 
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In order to derive
 

2

2 )(



 θ|xpLn
, we compute 



 )(θPk  

and also 
2

2 )(



 θPk .   

The first partial derivative 


 )(θPk  may be written as: 

 
   









































Cia

ik

iiiki

i

k

H

GABAF
A

C

)(

1
)()()(),(

)(

4

)()(

,

2

0

2
3

,
2
3

θ

θθθθ
θ

θθPk





 (25) 

 

)(θiG  and )(, θikH  are given in appendix A. 

The expression of the second derivative 
2
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 θPk  is given 

by: 

 
   

 











































Cia

ikiiki

ikiii

k

HAHG

BAFGA

C

)()()()(2

)(),()()(
2

4

)()(

,
2
3

,

,
2
3

4

0

2

2

θθθθ

θθθθ

θθPk








(26) 

 

)(θiG  and )(, θikH  denote the first derivatives of )(θiG  

and )(, θikH with respect to  , respectively. Their 

expressions are detailed in appendix B.  

Applying the same procedure, then the derivation of the 

remaining elements of )(θI  is given by: 
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After derivation of several elements of both the matrix 

)(θI and 
θ

θg
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 , the CRLB for SNR estimation is given 

by: 
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4. Simulation Results 

We use Monte Carlo simulation techniques to evaluate the 

statistical expectation in (24), (27) and (28) with respect to 

the N-dimensional vector x . Note that once  kx  are 

statistically independent variables, we estimate the value 

of this expectation by generating a sequence of random 

samples at each SNR value, then computing the average of 



 ))|(Ln(2
θxp

for each sample. Note that a minimum of 

1000 trials is considered to ensure that the estimate 

stemming from Monte Carlo integration converges to the 

statistical expectation value. Figures 1 and 2 depict the 

CRLB curves from M-QAM signals for an observation 

window size N=100 and N=1000. It is shown that CRLB 

values decrease as far as the observation window size 

increases. Moreover, CRLBs for large modulation order 

take higher values at low SNR range.  

The method described here stand useful to determine the 

CRLB for larger M-QAM constellation densities and also 

general linear modulation schemes. 

 

5. Conclusions 

True Cramer-Rao lower bound for NDA signal-to-noise 

ratio estimation from linearly modulated signals over 

FRFC with CAWGN is derived. At low SNR range, 

simulation results show that CRLB values decrease as far 

as the modulation order increases. For high SNR levels, 

CRLBs almost coincide either for various modulation 

orders or various observation window sizes. The method 

introduced here represents a standard for NDA SNR 

estimator over FRFC from linearly modulated signals.  

 

Fig. 1 CRLB versus SNR for 4, 32 and 64-QAM and N=100. 

 

 

Fig. 2 CRLB versus SNR for 4, 32 and 64-QAM and N=1000. 

 

Appendix A 

The first derivative of )(θiA  with respect to   is given 

by: 
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