

A Formalization of the End User Service Development ApproachA Formalization of the End User Service Development ApproachA Formalization of the End User Service Development ApproachA Formalization of the End User Service Development Approach

Meriem Benhaddi1, Karim Baïna2 and El Hassan Abdelwahed3

 1 Faculty of Sciences Semlalia, Cadi Ayyad University
PO.Box 2390, Marrakesh, Morocco

2 ENSIAS, Mohammed V Souissi University

PO.Box 713 Agdal-Rabat, Morocco

3 Faculty of Sciences Semlalia, Cadi Ayyad University
PO.Box 2390, Marrakesh, Morocco

Abstract
The end user service development known as the user-centric
SOA emerged as a new approach that allows giving the end user
the ability to create on the fly his own applications that meet a
situational need. In fact, the classical SOA was designed for
developers and is characterized by a heavy technical stack which
is out of reach of end users. Lightweight Web 2.0 technologies
such as Mashup appeared to bridge this gap and provide a new
agile and quick way to compose and integrate different resources
in a dynamic and on the fly manner. However, Mashups are
emerging applications, and thus consist of immature, non
intuitive and non formalized area. In this paper, we formalize the
user-centric SOA development by proposing a new cloud-based
architecture for user-centric SOA platforms, and by introducing a
new rich integration language based on the advanced Enterprise
Integration Patterns (EIPS). We also propose a new intuitive and
self-explanatory semantic process for end users services
integration.
Keywords: SOA, Mashup, integration patterns, end user
development, end user satisfaction, intuitiveness, Cloud
Computing.

1. Introduction

The text must be in English. Authors whose English
language is not their own are certainly requested to have
their manuscripts checked (or co-authored) by an English
native speaker, for linguistic correctness before submission
and in its final version, if changes had been made to the
initial version. The submitted typeset scripts of each
contribution must be in their final form and of good
appearance because they will be printed directly. The
document you are reading is written in the format that
should be used in your paper.

1.1 Problems and limitations of SOA

The concepts behind the Service Oriented Architecture has
proved that it is the best way to urbanize the enterprise
information system by modulating applications as
interoperable services; in fact SOA promotes the
modulating applications as fine or coarse grained services,
the reuse of services to build more complexes ones, the
interoperability between different heterogeneous system,
and the standardized languages and protocols (WSDL,
SOAP, BPEL). SOA’s goal is to lower costs and make
information systems more flexible. Nevertheless,
enterprises that applied SOA didn’t get the great promised
added value, which has prevented the installation of the
global SOA, and has lowered the percentage of companies
planning the SOA [9].
In this section, we introduce the concept of "End User", to
signify the non-computer user, who has very little
computer knowledge. We will give a further definition of
this concept in the next section.
• The limitations of SOA could be summarized as:
• Exclusion of the end user from the hierarchy of the

SOA actors: users kept away and out of the loop. In
fact, the SOA technologies (WSDL, SOAP, SCA,
BPEL, etc) are hard to master and require advanced
knowledge [22] [28].

• Rigidity, heaviness and incompatibility of SOA
implementations with the real constraints of end
users:
o Lack of accessibility: UDDI registries are

dedicated to expert; therefore, end users have
to browse different web sites in order to use
services. [17] states that SOA was originally
designed as an architecture focused
fundamentally on the B2B context, and does
not offer support for B2C interactions.

o Lack of interoperability and openness: The
implementation of SOA has been limited to

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 668

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

the use of WS* technologies (WSDL, SOAP,
UDDI), which prevents the development of
SOA specifications, that are independent of
any technology.

o Lack of flexibility and scalability: SOA
technologies cannot support the services
composition on the fly: After composition
design, implementation, testing and
deployment, it becomes very difficult to
change the composition logic according to the
changing needs of users, as it involves a long
life cycle [18].

o Lack of mobility: SOA implementation and
integration technologies are very heavy for
devices with limited capabilities. WSDL and
SOAP are instances of complicated XML
documents, which makes the WS* services
very demanding in terms of computing power,
bandwidth and storage [10].

1.2 End users: Who are they? What do they need?

Definition of end user: A software end user is a person
who interacts with information systems solely as a final
information consumer. It’s a user with minimal technical
knowledge, and who uses the software in the context of
daily life or daily work for personal (business or leisure)
purposes, without having any intentions to produce other
systems. He is not interested in computers per se, and do
not worry about system technologies as long as he can get
what he needs quickly [8] [1].
End users have many requirements that should be
respected by system designers and developers in order to
deliver systems satisfying end users. Based on the work of
[20] and [15], we have grouped into four criteria the end
users requirements, which are listed in table 1.

Table 1. Criteria of a user-centric solution
Criteria Description Problem of criteria

lacking
Functional
richness

Features
requested to
execute different
tasks.

Limited set of
offered features.

Usability &
intuitiveness

User interfaces,
interaction and
dialogue mode.

Lack of visibility,
feedback,
consistency, non-
destructive
operations,
discoverability,
scalability,
reliability [23].

Efficiency,
reliability,
maintainability
and portability

Difficulties that
do not refer
directly to system
features.

Lack of
documentation,
performance,
security,

(ERMP) supportability.
Personnalizabilit
y,
customizability

Capability of end
user to tailor
themselves their
systems.

Useless systems that
lack many important
features.

Based on this section, we define the user-centric SOA as
the expectation of end users, their future hope, and the
promise for better information systems. A user-centric
SOA offers:

• Empowerment of the end user: Easy and flexible
composition on the fly of services by all end users
that can design and create new services through the
combination and composition of existing services,
made possible by reduction of the complexity of
services composition techniques.

• Openness of the Information System to the public:
the democratization of SOA and the installation of
the global SOA. In this context, [26] speaks about
the Internet of Services where every user use and
access to services.

• More independence of SOA: the adoption of a
variety of interoperable technologies in order to
meet the great variety of the web.

• Lightweight SOA technologies: the support of SOA
technologies by all mobile devices.

2 State of the art

2.1 Mashup frameworks limitations

Mashup is a new paradigm of the Web 2.0 [24] – the new
generation of the web - that enables the user generation of
services by allowing end users to personalize and
customize their applications [13][19][6]. Today, there are a
big number of Mashup frameworks on the web, which
allow end users to mix visually different heterogeneous
resources and thus create new applications called mashups.
Mashup frameworks have helped to bridge the gap
between end users and software development, but they are
still some technical gaps [4]:
• Mashup frameworks use lightweight resources (RSS,

ATOM, REST services, etc): [25] affirms that
existent Mashup frameworks focus on the integration
of lightweight Web Services, and do not take into
consideration enterprise-class and complex services,
that may use any SOA technology and not only Web
Services. [21] says that the conversion between inputs
and outputs parameters is limited to simple data
types, and do not consider complex
parameters.Moreover, the Mashup tools do not allow
diversity of the output type; an example is Yahoo
Pipes [27] that provide only RSS as output of the
Mashup. Besides, Mashup tools require ready-to-use

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 669

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

sources, which prevent the flexibility of these tools.
Thus, existent Mashup tools cannot support the Web
Services Mashup and more generally the SOA
Mashup. In this context, [25] underline the need of
the enablement of Web Services Mashup.

• Mashup frameworks do not allow the creation of
business process mashups: the existent Mashup
frameworks do not provide ways to design and create
complicated use case. In fact, the resources
composition and the interaction are based only on the
data flow. Moreover, the event-handling concerns
only the events from sources and doesn’t satisfy the
user interaction level [21].

• Mashup tools do not provide stable applications: [2]
asserts that the solutions provided by Mashup tools
are fragile, neither stable nor robust.

• Mashup frameworks are still outside the scope of end
users: Mashup frameworks still lack simplicity for the
end user. In fact, the Mashup tools often use technical
concepts like port or wires. For the simple end user,
handling these technical concepts is not easy and
requires a learning time [22].

These critics show that the Mashup is at an early stage and
needs more research. In fact, there is a lack of a powerful
language for describing Mashup and realizing advanced
Mashup applications. Hence, in order to achieve the user-
centric SOA, there is a need to introduce new elements
consisting of patterns and models to enhance the
development of Mashup applications.
The next section introduces the Enterprise Integration
Patterns, and shows their contribution to any integration
solution.

2.2 Contribution of the Enterprise Integration
Patterns

The Enterprise Integration Patterns (EIPs) collected by
[12] describe a number of design patterns for enterprise
application integration and message oriented middleware.
The EIPs are implemented by a set of sophisticated
mediation bus, such as Camel, Mule and Apache, in order
to achieve very complex integration scenarios. Enterprise
Integration Patterns propose the best and common
solutions to integration problems. Therefore, when EIPs
are used, they enhance the quality of the integrated
applications. EIPs consist of six groups of patterns:
messaging channels, message construction, message
routing, message transformation, messaging endpoints and
system management. Based on the book of [12], we
categorize these patterns groups according to the four end
user satisfaction criteria that we defined and presented in
section 1.2.
As it can be seen from table 2, the Enterprise Integration
Patterns, when used together, help achieving a high level

of system quality by ensuring four of the end user
satisfaction criteria. The use of EIPs is therefore
considered as a proof of the system quality. Hence, we had
the idea of studying different Mashup frameworks based
on the EIPs. The next section gives the result of this study
and positions the Mashup frameworks against the user-
centric SOA.

Table 2. Categorization of EIPs according to end user SOA criteria

Patterns/
Criteria

 Non-functional
Functional
Richness

Efficiency Reliabili
ty

Mainta-
inability

Messaging
Channels

X X

Message
construction

X

Message
routing

X

Message
transformation

X

Endpoint
patterns

X X

System
management

 X X

2.3 Study: Mashup frameworks and the user-centric
SOA

As we announced in the previous section, we studied three
Mashup frameworks according to the EIPs. The Mashup
frameworks considered are: Yahoo! Pipes [27], Jackbe
Presto Wires [16] and IBM Mashup Center [14]. As the
latter two groups of the EIPs – endpoint and system
management patterns - are related to the internal
implementation of the solution, we could study the Mashup
frameworks only according to the first four groups which
are: messaging channels, message construction, message
routing and message transformation.
Table 3 shows the number of patterns used among all the
existing patterns. The quotient x/y means that x patterns
are used among y existing patterns.

Table 3. Study of three Mashup frameworks according to EIPs
Patterns/
Mashup
Frameworks

Yahoo!
Pipes

Jackbe
Presto Wires

IBM
Mashup
Center

Messaging
Channels

3/7 3/7 3/7

Message
construction

2/9 2/9 2/9

Message routing 4/12 4/12 3/12
Message
transformation

3/7 4/7 4/7

Table 3 shows that the three Mashup frameworks
implement a limited set of the integration patterns. Our

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 670

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

study showed also that the used patterns are very basic and
simple; the three Mashup frameworks fail to implement
advanced and sophisticated integration patterns. According
to this study and to table 2, we deduced that the three
Mashup frameworks fail to totally ensure the criteria of
“Functional richness”, “Efficiency”, “Reliability” and
“Maintainability”.
We also studied the three Mashup frameworks according
to the other end user satisfaction criteria, which are
“Usability & intuitiveness” and “Portability”, and the study
showed also that they are not completely ensured.
Unfortunately we could not introduce this study in this
paper because of the restricted number of pages.
All the study that we conducted showed that the Mashup
frameworks are not user-centric SOA solutions. To
enhance Mashup, we propose the idea of using the EIPs
within Mashup frameworks to improve their acceptance by
different end users. The next section gives a brief
description of our proposed new SOA-Mashuped language
based on the Enterprise Integration Patterns.

Table 4. Mashup frameworks and user-centric SOA criteria
UCSOA
criteria/Mashup
Frameworks

Yahoo!
Pipes

Jackbe
Presto
Wires

IBM
Mashup
Center

Functional Richness 2 2 2
Personnalizability 3 3 3
Usability &
Intuitiveness

2 2 2

Efficiency,
Reliability,
Maintainability and
Portability

3 2 2

3=High, 2=Medium, 1=Low

In this section, we presented and criticized existing
Mashup frameworks. Mashup development is still
immature and at an early stage and thus needs more
research. In particular, there is no significant formalization
of Mashup integration. For this reason, we conducted a
study of three Mashup frameworks regarding to the end
user satisfaction criteria defined in section 1.2. The
conclusion drawn from this study led us to the need for
new patterns and methodologies to improve Mashup
development. The next section is dedicated to the proposal
of a new Cloud-based Mashup architecture, that uses a new
EIPs-based integration language, while allowing the end
user service creation through a new intuitive and self-
explanatory creation process. The last requirement – non
functional requirement – is out of the scope of this paper.

3 User-centric SOA proposal

3.1 Cloud-Based Architecture

We presented the technical architecture of the user-centric
SOA in [5]. This Architecture includes six vertical layers –
Web or non Web resources, Resources access, Gadget or
Mashup component development, Integration or Mashup
components assembly and Visualization or consumption –
and two cross layers – Enterprise infrastructure and Web
2.0 collaborative community –. Each layer relies on several
services; usability is a very important dimension that
should be considered in Gadgets layer, Integration layer
and Visualization layer in order to provide end users with
intuitive and self-explanatory creation process.
The different services used by Mashup platforms can be
homemade (developed internally), or accessible through
the Cloud Computing. Indeed, the Cloud Computing can
be considered as a novel way to retrieve and use IT-
enabled services by customers. The new Software-as-a-
Service (SaaS) paradigm allows the supply of services
through the internet. According to [7], the Cloud
Computing is an emerging paradigm that is based on
compute and storage virtualization to deliver reliable
services to customers. Customers can access data and
applications anywhere in the world on demand.
This way, Mashup platforms can rely on the Cloud
Computing services to ensure the operation of each layer
of the technical architecture. For example, Enterprise
Service Buses could be used for their routing and
translation capabilities, BPEL engines could be used for
their orchestration capability and the CRUD services offer
different services such as identity management, persistent
storage, resources access, routing and translation.
As stated before in this paper, end users have four
requirements: functional richness, usability &&
intuitiveness, infrastructure requirements such as
reliability, efficiency, maintainability and portability, and
Personalizability. As Mashup platforms were created to let
end users personalize their applications, we consider that
the fourth requirement is ensured. The third requirement is
out of the scope of this paper. We focus our work on the
first two requirements. The next section is dedicated to the
study of the first requirement -functional richness – and
provides a solution based on the Enterprise Integration
Patterns (EIPs).

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 671

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 1 Application architecture of our proposal

3.2 The system point of view: Functional Richness

As it was showed in section 2.2, the Enterprise Integration
Patterns help enhancing the system quality in terms of the
functional richness. Therefore, our proposal is based on the
Enterprise Integration Patterns.
In the following, we give an example of use case to help
defining the different entities that will form our language.
Our example is taken from the world of physical Mashup.
According to [11], physical Mashup is a concept that
allows to link and combine real-world objects. So let’s take
the example of an end user whose goal is to model and
customize his Mini Cooper car.
The Mini Cooper is considered as an object with features
and services. In addition, end users can add various
accessories to personalize the car and develop new
services. Accessories are considered as objects to be
integrated with the car. Examples are integrating the car
with an object that displays the temperature, the state of the
seatbelt and some advices, with dataflow from central
system to the accessory; or integrating the car with a car
burglary detector, with an event as a message between the
two objects.
To summarize, in order to achieve his task, the end user
needs a platform that encapsulates the following elements:
• Objects/resources to integrate: Mini Cooper car,

accessories.
• Fields on interface allowing the entry of intermediate

data.
• Communication channels that allow binding and

forwarding the results between different objects.
• Messages of different types which will be carried by

channels and sent by one object to another. A
message can be of different types: a message
representing a document, a message representing an
order, etc.

• Routing components whose role is to route the results
of an object to another.

• Translation components that transform the results of
an object before sending them to another object.

• A view showing a graphical interface that displays the
final result of the integration.

From this simple illustrative example, we have identified
the different basic elements that will form our future
language that we named SOA4EU (SOA for End User).
Table 2 lists these elements.

Table 5. Constructs of SOA4EU language
Construct Description
Task is the goal of the end user performing the

integration. Each task can have a frequency of
execution.

Tag key words used to describe a task
Mashup A Mashup application represents the

realization of a task and includes a set of
integration taking place between several
resources.

Process Is the composition process of the Mashp
application resources and consists of parallel
or sequential integration flows.

Step Is a step in the integration process and consists
of a link between two or several components.

Component Is the integration process node: resource, input
of the end user, router or translator.

Partner represents the external partner of the Mashup:
resource or end users.

EndUser Represents the interaction with end users
during the integration process.

Resource Represents the applications to integrate by the
Mashup. A resource is described by its type,
address and exchange format.

Expose
Resource

Represents an exposed resource with input and
output variables. The same resource can be
exposed many times within the integration
process.

Channel Allows communication between two
components and supports the single atomic
integration step.

Message is the entity transferring in a channel between
two components.

Router Is a node forwarding messages between
resources, end user fields or translators.

Translator Is the messages translation node.
Data Represents any data type handled by the

Mashup application.
View Is the view or graphical interface displaying

the final result of the integration.
Transaction End users may want to synchronize actions of

components to realize a transaction.

The formalization of UCSOA language was done using
Backus-Naur Form (BNF). Because of the pages number
restriction, we present only the main part of the
formalization, and it is as follow:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 672

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

<Task>::= {<Tag>} {<Frequency>} <Mashup>
<Tag>::= [a-zA-Z][0123456789]
<Mashup>::= {<Resource>}+ {<Expose_Resource>}+
{<EndUser>} {<Router>} {<Translator>} <Process>
<View>
<Process>::= <Sequence> | <Flow>
<Sequence>:=sequence({<Step>} {<Flow>} {<Step>})
<Flow>::= flow({<Step>} {<Sequence>} {<Step>})
<Step>::= <FromComponant> <ToComponants>
<Channel> <Message>
<FromComponant>::= <Componant>
<ToComponants>::= {<Componant>}+
<Componant>::= <Partner> | <IntegrationService>
<Partner>::= <Expose_Resource> | <EndUSer>
<IntegrationService>::= <Router> | <Translator>
<EndUser>::= <Input>
<Resource>::= <Type> <DataFormat> <URL>
<Expose_Resource>::= <Resource> <ExpectVariable>
<ReturnVariable> {<Transaction>}
<Data>::= <Input> | <Content> | <Event> | <Address> |
<Identifier> | <Time> | <Version>| <Key> | <Schema> |
<Datatype>

The formalization of “Channel”, “Message”, “Router” and
“Translator” elements is done based on the Enterprise
Integration patterns that define five patterns for channels,
nine patterns for messages, twelve patterns for routers and
six patterns for translators.
The next section focuses on the second requirement –
usability & intuitiveness – and presents a methodology
helping end users to easily compose services.

3.3 The end user point of view: Usability and
Intuitiveness

3.3.1 Goals Composition vs Services Composition
 When creating new applications, end users try to achieve a
new goal by composing existing sub-goals. Each sub-goal
is represented by a service. In this way, when composing
services, end users try to resolve a problem whose solution
does not exist yet on the web. In fact, the answer exists in
the form of many subparts – services – dispersed on the
web. Therefore, the inexperienced end user faces many
challenges when trying to compose services in response to
a new goal:
• Determine the types of resources: what to do?
• Find resources that meet the end user criteria (quality,

price, etc.).
• Determine necessary actions for the use of interfaces

(selection problems): what and how to use interfaces?
• Determine how to arrange and coordinate resources

(integration): how to coordinate the elements?
• Determine the final interface of the integrated

resources.

The system has the role of helping end user to answer these
different questions, by suggesting resources, providing
guidelines for the coordination of resources and providing
feedback and documentation for each selected action.
Faced with these design problems, the end user will use the
knowledge he possesses that describe his goal and which
consists of:
• The objective or set of operations that the goal task

must accomplish,
• The final result of the goal task (output of the

process),
• The frequency of the goal task execution,
• The degree of importance of the goal task,
• The duration of the goal task.

This end-user knowledge represents the semantic which,
alone, should be involved in the interaction between the
end user and the user-centric SOA platform. Indeed, the
service-to-service interaction, which is based on the
syntax, is not valid at the interface level. The interface
provides gadgets that represent a sub-goal, which is an
abstraction of services; therefore, the interaction and
communication way at the interface level should also be an
abstraction of the communication way between services
(Figure 2). Being the abstraction of the syntax, the
semantic should be defined as the only way of interaction
at the interface level. The semantic is what should be
offered to the end user so that he could compose services.

Fig. 2 Interaction way on the service level and the interface level

As the knowledge of the end user is limited to the semantic
- goal, output, frequency, importance and duration of the
task -, the end user should not and cannot manipulate the
syntax. Therefore, the end user knowledge is insufficient to
enable the integration of resources and the creation of new
applications. The user centric SOA platform has to allow
to end users to link the various resources in a very intuitive
and self-explanatory way, requiring no knowledge of how
to map an output of a resource to an input of another. The
interface has then the role of intermediary between the end
user and the services and should translate the end user
interactions from semantic to syntax or code, as shown in
Figure 3.

Fig. 3 Interaction between end users and the user centric SOA platform

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 673

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

To achieve this, the user centric SOA platform has to
provide the end user with a set of goal prototypes or goals
patterns. These goals patterns have the role of guiding the
end user through the goals composition process. The next
section presents our goals patterns-based suggestion
system.

3.3.2 Goals Patterns-Based Suggestion System:
1) What are the goals patterns? In the world of software
development, design patterns are solutions or best
practices in response to common problems in software
design. For example, the "Model-View-Controller" pattern
help organizing an application by splitting it into a data
model, an interface or a presentation and a controller
(control logic, event management and synchronization).
Goals patterns represent common and repetitive use cases,
and can also be called end users experience patterns. They
provide answers to questions like "How to automate the
execution of two consecutive tasks - eg. Turn on the light
on the entrance of the house and turn on the heating - in
response to a triggered event? - ex. presence of a person
detected by the sensor.
The following are examples of goals patterns:
• Booking airline ticket, hotel room and car for a

destination.
• Purchase order for a product whose quantity reached

a limit value.
• Turning on the room light and the coffeemaker when

the alarm clock goes off.
While software design patterns are derived from the
experience of the software developers, goals patterns are
created, improved and enriched by end users themselves.
Our objective is to create a relational database of end users
goals that end users will feed and develop as they create
new applications. This database can also be automatically
enriched by systems such as systems for smart homes
patterns discovering.
2) Suggestion system: The usefulness of the goals patterns
is the suggestion system. In fact, end users will be guided
in the process of services composition through the database
of goals patterns that contains the possible links between
the various gadgets. As gadgets represent sub-goals, the
database links represent also relations between sub-goals.
The system will utilize this goals patterns database to
suggest to the end user links and components in order to
build new applications.
The suggestion system should be based on the semantic
information, as it is explained in section 3.3.1. In fact, the
different links between components should be represented
by semantic information as input/output matching.
The database of goals patterns being built through the
experience of end users, the system will score the various
components, depending on the frequency of use, and thus

offer to the end user the best one - which has the highest
score.
Our suggestion model is similar to e-mail interfaces - ex.
Gmail. When writing a new message, and when the first
recipient address is entered by the user, other addresses are
proposed and suggested at the basis of the previous
messages sent by this user.
The goals patterns database elements that constitute also
the components of the services composition interface are
managed by the following description:
• An end-user profile is described by the age, the types

of goals (work, leisure or both) the end user is
interested in, the areas of interest, the physical
environment.

• A profile is a set of goals.
• A goal is described by its type, its physical

environment of execution, its objective, its frequency
and its degree of importance.

• The realization of a goal involves several
composition steps. A step represents a link from a
component to one or several components (one-to-one
or one-to-many).

• A component can be another application participating
in the composition as sub-goal or an operator
(translator or router).

• In order to suggest to the end user the appropriate
actions, the database must store the various possible
relationships between components. Thus, each
composition step possesses a relation.

• Each link between two components (composition
step) is described by a semantic data that corresponds
to the output of the message transmitter and the input
of the message receiver.

• The semantic data of a component can be
information, event, interface or nothing.

• The participating applications or sub-goals can be
synchronized in order to realize a transaction.

The object model of the goals patterns database is
represented by Figure 4.

3.4 Linking the end user point of view with the
system point of view

The end user point of view allows representing the end
user services composition in terms of goals, relation,
semantic data and other operators. To be able to be
executed, the services composition application has to be
represented using the technical system elements such as
mashup, service, channel, message, etc. Thus, it is
necessary to translate the services composition application
from the end user point of view to the system point of
view. As described earlier in this paper, the system point of
view elements are based on the Integration Patterns which

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 674

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Figure 4.The object model of the goals patterns database

represent solutions to integration problems whose purpose
is to achieve a goal.
Table 6 summarize the main elements of correspondence
between the two set of elements: the end user point of view
elements and the system point of view elements.

Table 6. Correspondences between end user and system points of view
End user point of view
element

System point of view
element

Goal Mashup
Sub-Goal Service
Relation Channel
Semantic Data Message
Goal Translator Service Translator
Goal Router Service Router
Goals Synchronization Services Synchronization

(Transaction)
Goal composition Step Service composition Step

The formalization of this correspondence with Backus-
Naur Form (BNF) is as follow :
<Goal>::= <Mashup> <Profil> {<Tag>}
<Goal Composition Step> ::= <Service composition Step>
<Relation>::= <Canal>
<Semantic data>::= <Message>
<Goal Component>::= <Service Component>
<Sub Goal>::= <Partner>
<Goal Router>::= <Service Router>
<Goal Translator>::= <Service Translator>
<Goal Synchronization>::= <Services Transaction>

4 Illustrative Example

To illustrate our new proposal, we choose an example from
the WebOfThings world [10][3] which allows physical
objects – called smart objects – to belong to a network and
to be linked trough what is called the physical Mashup.
Our end user, Alice, wants to schedule a task to be
executed every day at 7:00 in the morning - when the alarm
goes off. The task, that represents Alice’s goal, consists of
turning on the light on the bedroom and the coffee maker
in the kitchen. When Alice is in the kitchen, the light must
be lit. After Alice had opened the fridge and eaten food,
the refrigerator recalculates the food quantities and
displays them. If a food quantity reaches a minimum limit,
a grocery order is automatically sent (Figure 5).
In the goals patterns database, there is a set of gadgets that
Alice could use and that the platform could suggest to her.
The gadgets are represented in four sub-directories
depending on their output type (information, event,
interface, none).
The steps followed by Alice to perform her task are as
follows:

• Alice launches the platform, looks in the different
sub-directories of smart objects she owns in her
home and which are the resources of the
applications she will creates with the user centric
SOA platform. She selects the first object - alarm -
from the sub-directory of event objects that she
adds to the interface. The alarm requires the time as

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 675

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

input and returns an event presented by ringing.
Alice sees on her interface the gadget "Alarm" with
the tag "Time" on its left and the red tag "Ring" on
its right. At this level, since the output of the
"Alarm" gadget is an event, any resource can be
added without any constraint on the compatibility of
input / output. In fact, an event role is to trigger a
sequence of sub-tasks and not to deliver inputs for a
sub-task. Thus, the platform does not make any
suggestion at this level.

• Alice looks a second time in the sub-directory
gathering objects that return nothing (the fourth
category) and chooses the "Room Light" object
which does not require input data and returns no
result. Alice adds the “Room Light” object in
sequence to the previous object. Alice also adds –
in the same manner – the "Coffee Maker" object in
sequence to the previous objects.

• From the event object sub-directory, Alice selects
and adds – in sequence – the "I am in the kitchen"
object, whose role is to notify the presence of a
person in the kitchen.

• Alice adds in sequence the "Kitchen Light" object
from the fourth sub-directory (objects that return
nothing).

• Alice also adds the "Refrigerator" object which
displays the different foods quantities. This object
is represented by a gadget with different blue tags
on its right representing the amounts of different
foods (milk, eggs, cheese, butter, etc). As Alice has
already used a filter with the "Refrigerator" object,
the platform stored this link in the goals patterns
database. At this level and based on the goals
patterns database, the platform suggests to Alice, by
displaying a button at the top of the window, to add
a filter in order to show only foods with a specified
limit amount.

• The platform suggests a second time to Alice, based
on the goals patterns database, to add the “Grocery"
object in order to make purchases for foods with
small quantities.

At this level, the role of our end user is finished. In order
to be run, Alice’s new application which is made of visual
objects and links between these objects should be
translated into services and links between these services.
Those services links should be built based on the
Enterprise Integration patterns presented in section 2.2.

Fig. 5. Illustrative example for our intuitive creation process

The translation of visual objects and links into code
(services and EIP links) is the translation of the goals
composition – the end user point of view – into the
services composition – the system point of view. This
translation is realized based on the correspondences
already established between the two points of view (section
3.4).

5 Conclusion and future work

In this paper, we presented the limitations of the Service
Oriented Architecture that prevent it to be widely accepted
in the web by inexperienced end users. We gave a
definition of the end user and the end user satisfaction
criteria. At a second time, we introduced the Mashup as a
new web 2.0 paradigm and discussed its limitations
resulting from its immaturity and its need to new patterns.
We studied three Mashup platforms against the end users
satisfaction criteria (based on the Enterprise Integration
Patterns for the functional richness criteria) and we
concluded that the Mashup frameworks fail to be user-
centric SOA solutions. Our contribution aims at the
formalization of the end user service creation. It consists of
the proposal of a new Cloud-based architecture, a new
EIPs-based integration language and a new intuitive and
self-explanatory service creation methodology. Our future
work consists of the completion and the implementation of
our model in an intuitive graphical environment using
AJAX technology, and its testing by real end users to
guarantee the end users satisfaction. Our objective is to
prove that our proposal prevails over the classical SOA
and the existing Mashup solutions.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 676

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

References
[1] Allison, H and R. Kelly, R. (1992) ‘The Influence of

Individual Differences on Skill in End-User Computing’.
Journal of Management Information Systems I Summer
1992, Vol. 9, No. 1, pp. 93-111. (1992).

[2] Anjomshoaa, A., Tjoa, A.M. and Hubmer, A. (2010)
‘Combining and integrating advanced IT-concepts with
semantic web technology, Mashup architecture case study’.
Paper presented at The 2nd Asian Conference on Intelligent
Information and Database Systems, ACIIDS 2010, 24–26
March 2010, pp.13–22, Hue City, Vietnam, Part I, LNAI
5990. (2010).

[3] Avilés-López, E. and García-Macías, J.A. (2009) ‘UbiSOA
Dashboard: Integrating the Physical and Digital Domains
through Mashups’.Paper presented at The Human Interface
and the Management of Information Conference. Designing
Information Environments.San Diego, CA, USA, July 19-24,
2009.

[4] Benhaddi, M., Baïna, K. and Abdelwahed, E. (2010)
‘Towards an approach for a user centric SOA’. Paper
presented at The third International Conference on Web &
Information Technologies, Marrakech, Morocco, April 2010.
ISBN: 978-9954-9083-0-3. Pages: 91-104.

[5] Benhaddi, M., Baïna, K. and Abdelwahed, E. (2012) ‘A user
centric Mashuped SOA’. Int. Journal of Web Science. Vol. 1,
Issue 3. DOI: 10.1504/IJWS.2012.045812

[6] Bradley, A. (2007) Reference Architecture for Enterprise
Mashups, Gartner Research.

[7] Buyya, R., Yeo, C. and Venugopal, S. (2008) ‘Market-
Oriented Cloud Computing: Vision, Hype, and Reality for
Delivering IT Services as Computing Utilities’. Paper
presented at The 10th IEEE International Conference on
High Performance Computing and Communications (HPCC-
08), pages 25{27, Los Alamitos, CA, USA, 2008. IEEE

[8] Cypher, A.(1993) Watch What I Do: Programming by
Demonstration. The MIT Press, Cambridge.

[9] Gartner. (2005) Gartner Newsroom
http://www.gartner.com/it/page.jsp?id=790717. (2008).
(Accessed 10 June 2012).

[10] Guinard, D. and Trifa, V. (2009) ‘Towards the Web of
Things: Web Mashups for Embedded Devices’. Paper
presented at The 18th Int World Wide Web Conference,
April, 2009, Madrid, Spain.

[11] Guinard, D., Trifa, V., Pham, T. and Liechti, O. (2009)
‘Towards Physical Mashups in the Web of Things’. Paper
presented at The 6th international conference on Networked
sensing systems, INSS'09. 17-19 June 2009. Pittsburgh, PA,
USA.

[12] Hohpe, G. and Woolf, B. (2003) Enterprise Integration
Patterns: Designing, Building, and Deploying Messaging
Solutions, Addison-Wesley Professional.

[13] Hoyer, V., Janner, T., Schroth, C., Delchev, I. and
Urmetzer, F. (2009) ‘FAST Platform: A Concept for user-
centric, enterprise class Mashups’. Paper presented at The
5th Conference of Professional Knowledge Management,
Poster Session, Solothurn, Switzerland, 25-3-2009, pp.5-8.

[14] IBM Mashup Center. [Online] http://www-
01.ibm.com/software/info/mashup-center/ (Accessed 04
March 2012).

[15] ISO/IEC 9126-1. (2001) Software engineering – Product
quality - Part 1: Quality model. ISO.

[16] Jackbe Presto Wire. [Online]. www.jackbe.com/ (Accessed
04 March 2012).

[17] J. Hierro, J., Janner, T., Lizcano,D., Reyes,M., Schroth,C.
and Soriano,J.(2008) ‘Enhancing User-Service Interaction
Through a Global User-Centric Approach to SOA’. Paper
presented at The Fourth International Conference on
Networking and Services IEEE Computer Society, ICNS '08.
Washington, DC, USA (2008).

[18] Liu, X., Hui, Y., Sun, W. and Liang, H. (2007) ‘Towards
service composition based on Mashup’. Paper presented at
The IEEE Congress on Services, 9–13 July 2007, pp.332–
339, Salt Lake City, Utah, USA.

[19] López, J., Pan, A., Bellas, F., and Montoto, P. (2008)
‘Towards a Reference Architecture for Enterprise Mashups’.
Paper presented at The Jornadas de Ingeniería del Software y
Bases de Datos, 7-10 October 2008. Gijón, Spain.

[20] McCall, J.A., Richards, P.K., and Walters, G.F. (1977)
Factors in Software Quality, RADC TR-77-369, 1977, Vols
I, II, III, US Rome Air Development Center Reports. Italie.
(1977).

[21] Nestler, T. (2008) ‘Towards a Mashup-driven end-user
programming of SOA-based applications’. Paper presented at
The 10th International Conference on Information
Integration and Web-based Applications & Services, iiWAS
2008, 24–26 November 2008, pp.551–554, Linz, Austria.

[22] Nestler, T., Dannecker, L. and Pursche, A. (2009) ‘User-
centric composition of service front-ends at the presentation
layer’. Paper presented at The 2009 International Conference
on Service-oriented Computing, ICSOC/ServiceWave, 24–27
November 2009. Stockholm, Sweden.

[23] Norman, D. and Nielsen, J.. (2010) ‘Gestural Interfaces: A
Step Backward In Usability’. Interactions' magazine, Vol. 17
Issue 5, September + October 2010 ACM New York, NY,
USA.

[24] O’Reilly, T. (2005). ‘What is Web 2.0 – design patterns and
business models for the next generation of software’,
O’Reilly [Online] 30 September.
http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/3
0/what-is-web-20.html. (Accessed 10 November 2011).

[25] Roy, M. (2010) ‘Towards end-user enabled web service
consumption for Mashups. International conference on
software engineering’. Paper presented at The 32nd
ACM/IEEE International Conference on Software
Engineering, ICSE 2010, Vol. 2, pp.413–416, Cape Town,
South Africa.

[26] Schroth, C. and Janner, T. (2007) ‘Web 2.0 and SOA:
converging concepts enabling the internet of services’.
Journal of IT Professional, Vol. 9, No. 3, pp.36–41. (2007).

[27] Yahoo! Pipes [Online]. http://pipes.yahoo.com/pipes/.
(Accessed 04 March 2012).

[28] Zhao, Z., Laga, N. and Crespi, N. (2009) ‘The Incoming
Trends of End-user driven Service Creation’. Paper presented
at Digital Business : the first Iternational ICST Conference,
DigiBiz, London, UK, June 17-19, 2009 Springer (Ed.)
(2010) 98-108.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 1, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 677

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

