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Abstract 
Quantum genetic algorithm has the characteristics of good 

population diversity, rapid convergence and good global search 

capability and so on.It combines quantum algorithm with genetic 
algorithm. A novel quantum genetic algorithm is proposed ,which 

is called variable-boundary-coded quantum genetic algorithm 

(vbQGA) in which qubit chromosomes are collapsed into variable-

boundary-coded chromosomes instead of binary-coded 
chromosomes. Therefore much shorter chromosome strings can be 

gained.The method of encoding and decoding of chromosome is 

first described before a new adaptive selection scheme for angle 

parameters used for rotation gate is put forward based on the core 
ideas and principles of quantum computation. Eight typical 

functions are selected to optimize to evaluate the effectiveness and 

performance of vbQGA against standard genetic algorithm (sGA) 

and genetic quantum algorithm (GQA). The simulation results 
show that vbQGA is significantly superior to sGA in all aspects 

and outperforms GQA in robustness and solving velocity, 

especially for multidimensional and complicated functions. 

Keywords: function optimization; quantum genetic algorithm; 

variable-boundary coding; optimization algorithm. 

1. Introduction 

Quantum computation is a new and developing 

interdiscipline integrating information science and quantum 

mechanics. In the early of 1980’s, Benioff[1] and Feynman[2] 
proposed the concepts of quantum computing. In 1994, 

Shor[3] presented a quantum algorithm used for factoring 

very large numbers, Grover[4] developed a quantum 

mechanical algorithm to search unsorted database in 1996. 

Since then, quantum computing has attracted serious 

attention and been widely investigated by researches. 

Nareyanan, Moore[5],and Han[6] proposed respectively 

quantum inspired genetic algorithm and genetic quantum 

algorithm in 1996 and 2000. These algorithms are inspired 

by certain concept and principles of quantum computing 

such as qubits and superposition of states. Chromosomes in 

these algorithms are probabilistically represented by qubits 

and so can represent a linear superposition of solutions. 

Many researches have found that these algorithms have 

excellent performance such as population diversity, rapid 

convergence and global search capability. Effective 

applications have been found in many domains such as shop 

scheduling [7,10], signal analysis[8], reactive power and 

voltage control[9], etc. 

 

In classical quantum genetic algorithms, chromosomes are 

generally represented by two types, qubits and binary, during 

the algorithm procedure. Binary chromosomes are generated 

by observing (equating quantum collapsing in quantum 

mechanics) qubit chromosomes. The two types of 

chromosomes have the same length. As the more of 

dimension of optimization problems, the bigger of range of 

variables and the higher of precision of variables, the 

chromosome strings will become longer and then result in 
big memory requirement and long run time for a computer. 

In order improve this condition, this paper presents a novel 

quantum genetic algorithm, in which chromosomes are 

encoded by qubit and variable-boundary, to expect to short 

the length of chromosome strings and then cut down the 

memory requirement and speed up the run velocity of 

algorithm. 

 

The organization of the remaining of this paper is as follows: 

In Section 2 the variable-boundary-coded quantum genetic 

algorithm is described in detail. Section 3 carries out the 

evaluation of effectiveness and performance of vbQGA by 

adopting eight typical functions and comparing with sGA 

and GQA. The result of this paper is summarized in the last 

Section. 

2. Variable-boundary-coded Quantum Genetic 

Algorithm 

Han[6] proposed a novel evolutionary computing method 

called a genetic quantum algorithm (GQA) and applied it to 
a well-known combinatorial optimization problem, knapsack 

problem. His research shows that GQA is superior to other 

genetic algorithm. Based on the GQA, we propose a novel 

quantum genetic algorithm called variable-boundary-coded 

quantum genetic algorithm, vbQGA, which we will 

introduce in this Section. 
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2.1 Representation in vbQGA 

In GQA, the smallest unit of information is qubit. A qubit 

may be in the ‘0’ state, in the ‘1’ state, or in any 

superposition of the two. Based on the idea, in vbQGA, we 

represent the state of a qubit as follow: 

 ul xx |||                                (1) 

 

where  
lx  and  

ux  are respectively the lower bound and the 

upper bound of some variable x  ,   and  are complex 

numbers that specify the probability amplitudes of the 

corresponding states. Obviously, a qubit may be in the ‘
lx ’ 

state, in the ‘
ux ’ state, or in any superposition of the two. 

The 
2

  and 
2

  give respectively the probability that the 

qubit will be found in ‘
lx ’ state and in ‘

ux ’ state. 

Normalization of the state to unity guarantees 

1|||| 22                                                                    (2) 

 

Now suppose we have an N-dimension function optimization 

problem described as 

min: ),,,,,()( 21 Ni xxxxfXf   

 s.t.: u

ii

l

i xxx  , Ni ,,2,1                                           (3) 

 

With respect to the chromosome k  in generation t , the 

substring of variable ix
 
can be represented by qubit as 

follow: 











t

ik

t

ik

t

ik

t

ikt

ikq
2,1,

2,1,

,



                                                        (4) 

 

then, a whole qubit chromosome string for the N-dimension 

function optimization problem can be defined as 
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(5) 

 

Apparently, the length of a qubit chromosome is NL 2 . 

Let s be the population size, then chromosome population in 

generation t  can be described as 

},,2,1|{ skqQ t

k

t                                                    (6) 

2.2 Observation of qubit chromosomes in vbQGA 

Observation in quantum genetic algorithm is similar to 

quantum collapse in quantum mechanics. In GQA, a 

probabilistic qubit chromosome will “collapse” into a binary 

chromosome through observation. However, in vbQGA, a 

qubit chromosome will “collapse” into a variable-boundary 

coded chromosome. For any a qubit  Tt

ijk

t

ijk ,, ,  

( 2,1j ), we generate a random number between 0 and 

1,
t

ijkr , , if 
2

,,

t

ijk

t

ijkr  , the qubit will be found in the ‘
lx ’ 

state, otherwise, the qubit will be found in the ‘
ux ’ state. 

With the substring of variable 
ix  of chromosome k  in (4), 

we can “collapse” it into a substring of a variable-boundary 

coded chromosome, which we denote as 
t

ikvb , . A 
t

ikvb ,  can 

be one of the four conditions defined as 

]}[],[],[],{[,
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So, a whole variable-boundary coded chromosome may be, 

for example, is in follow form: 

][ 2211

u

N

u

N

l

i

u

i

ulllt

k xxxxxxxxvb           (8) 

 

and then the variable-boundary coded chromosome 

population in generation t  can be described as 

},,2,1|{ skvbVB t

k

t                                                    (9) 

2.3 Rules of decoding 

As described in (7), the substring of a variable-boundary 

coded chromosome with respect to variable ix  can be one of 

the four conditions. The four conditions correspond to four 

value regions (namely I, II, III and IV) of ix , which are 

gotten by equally dividing the first quadrant, illustrated in 

Fig.1. Let 
l

i

u

ii xxx  , then every region represents a 

value span of 4/ix . The decoding rules of variable-

boundary coded chromosome are given in Table 1. 
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Fig.1. Four value regions of ix  corresponding to ,

t

k ivb  

In Table 1, r  is a random number between 0 and 1. If 

][,

l

i

l

i

t

ik xxvb  , ix  will take a small value inclining to 

the lower bound, the corresponding value region is Region I. 

If ][,

u

i

l

i

t

ik xxvb   and ][,

l

i

u

i

t

ik xxvb  , ix  will take 

a intermediate value, the corresponding value region are 
Region II and Region III respectively. Then if 
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][,

u

i

u

i

t

ik xxvb  , 
ix  will take a big value inclining to the 

upper bound, the corresponding value region is Region IV. 

Table 1: Decoding rules of variable-boundary coded chromosome 

 

2.4 Adaptive quantum rotation gate strategy 

In many kinds of quantum-inspired algorithms, a primary 

updating operator for chromosomes is quantum rotation gate, 

which is defined as follow [6]: 








 


)cos()sin(

)sin()cos(
)(




U  

 

where   is rotation angle, which is generally looked up 

from a table. In our algorithm, quantum rotation gate for the 

substring of a qubit chromosome with respect to variable ix  

is represented as 
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In order to make the qubit chromosomes effectively 

converge to the fitter states, we put forward an adaptive 

rotation angles computing method, which is defined as 
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(11) 

 

where 
t

kX  is the solution k  in generation t  and 
1tb  is 

best solution in generation 1t , 
t

ikx ,  and 
1t

ib  are the value 

of their i th variable respectively, )( t

kf X  and )( 1tf b  

are their fitness respectively. )(sign  is a sign function 

which described as 
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By analyzing formula (11) and (12) we can get: 

 

Rotation angles are adaptive selected according to the 

difference values between 
t

ikx ,  and 
1t

ib . The bigger the 

difference values are, the bigger the absolute value of 

rotation angles are also. 

 

The rotation directions, which can be gotten by (12), of 

quantum gate can make the solution converge to the fitter 

states. For example, if 0)()( 1  t

k

t ff Xb  (i.e., solution 

1tb  is better than t

kX ) and 
t

ik

t

i xb ,

1 
, then we should 

increase the 
t

ijk ,  so as to augment the probability of ‘
ux ’ 

state in the variable-boundary-coded chromosome. Hence, if 

0,,  t

ijk

t

ijk   (i.e., in the first quadrant), the quantum gate 

should rotate in anticlockwise direction and the rotation 

angle should be positive. This just agrees with the result we 

can get from (11) and (12). Other conditions can be analyzed 

in the same method. 

2.5 Procedure of vbQGA 

The algorithm of vbQGA can be implemented as follows: 

 

procedure vbQGA 
begin  

t0 

initialize 
tQ  

make 
tVB  by observing 

tQ  states 

decode 
tVB  into 

t
X  and evaluate them 

store the best solution, 
t

b , among 
t

X  

while (not termination-condition) do 

begin 

t t+1 

make 
tVB  by observing 

tQ  states 

   decode 
tVB  into 

t
X  and evaluate them 

    compare with 
t

X and 
1t

b , and update 
tQ   

using quantum gates 

store the best solution, 
t

b , among 
t

X  

end 
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end 

3. Experimental Evaluation of VbQGA 

3.1 Test functions 

For the experimental evaluation of the algorithm presented in 

Section 2 eight typical test functions is chosen [11, 12]. 

 

De Jong function: De Jong function is defined as 

2,1,048.2048.2,)1()(100 2

1

2

2

2

11  ixxxxF i
      (13) 

 

Although being mono-peak, DeJong function is ill-

conditioned and intractable to search the global minimal 

solution: 0)1,1( f . 

 
Coldstein Price function: Coldstein Price function is 

described as 
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                                                                                             (14) 

 

This function has only one global minimal solution: 

3)1,0( f . 

 

Schaffer function: Schaffer function is given by 
2 2 2

1 2

3 2 2 2

1 2

sin 0.5
0.5 , 100 100, 1,2

[1.0 0.001( )]
i

x x
F x i

x x

 
     

 
 

(15) 

 

This function has only one global minimal 

solution: 0)0,0( f . 

 

Mono-pole and six-peak camelback function: Mono-pole and 

six-peak camelback function is formulated as 

10,
)16.0(1.0

)/1sin(
10

24 


 x
x

x
F                             (16) 

 

The only one global maximal solution is 

8949.19)1275.0( f . 

 

Dual-pole and six-peak camelback function: Dual-pole and 

six-peak camelback function is defined as 

2,1,33,)44()
3

1
1.24( 2

2

2

221

2

1

4

1

2

15  ixxxxxxxxF i
 

(17) 

 

This function has two global minimal solutions, i,e., 

031628.1)7126.0,0898.0()7126.0,0898.0(  ff . 

 

Multi-peak positive function: Multi-peak positive function is 

described as 

0),8.0(cos2001.0

6   xxeF x
                                 (18) 

 

This function has two local optimal solutions and one global 

maximal solution: 1)0( f . 

 

Ackley function: Ackley function is given by 
2

1 1

1 1
0.2 cos(2 )

7 20 22.71282, 5 5 1,2, ,

n n

j j
i i

x x
n n

iF e e x i n


 

  

         

(19) 

 

This function has only one global minimal solution: 

0)0.0,,0.0,0.0( f . In the experimental evaluation 

we will take into account two conditions, 2n  and 

10n . 

 

Rastrigin function: Rastrigin function is formulated as 

2

8
1

10 [ 10cos(2 )], 5.12 5.12, 1,2, ,
n

i i i
i

F n x x x i n


        

(20) 

 

The only one global minimal solution is 

0)9687.420,,9687.420,9687.420(  f . We will 

take 6n  for the experimental evaluation. 

3.2 Optimization and results 

In order to test and evaluate the effectiveness and 

performance of vbQGA, we will optimize the 

aforementioned eight functions with sGA, GQA and vbQGA. 

 

In sGA, binary code，roulette wheel selection, one-point 

crossover and 0-1 mutation is adopted. The controlling 

parameters are: variable precision p=0.000001, population 

size s=50, crossover probability pc=0.8, mutation probability 
pm=0.01 and total generations of iteration t=500. The 

algorithm of GQA we used here is the same as that 

mentioned in [6]. With GQA we will take controlling 

parameters as: p=0.000001, s=10 and t=500, which are the 

same as those taken in vbQGA. 

 

All the algorithms are integrated in a test system 

programmed by Java language. The test system is operated 

under the following environments: Microsoft windows XP 

2002, Intel Pentium 1600MHz and 504M memory. For each 

algorithm 20 runs are performed with respect to the eight 

functions. The results are presented in Table 2. 

 

In Table2, optf  denotes the function value of optimum, f  

and sd  are respectively average and standard deviation of 

function value over 20 runs, t (sec/run) represents the 
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average elapsed time per one run. F1 ~F8 represent the 

corresponding functions described in the fore-subsection, 

e.g., F1 represents De Jong function, F2 represents Coldstein 

Price function etc.. We should notice that F7 represents two 

conditions’ Ackley function, so there are two lines of results, 

the upper one corresponding to 2n  and the lower one 

corresponding to 10n . 

 

For giving a much clearer view of the results, the data in 

Table2 are illustrated by Fig.2, Fig.3, Fig.4 and Fig.5. 

 

In the above four figures, the numbers of x-coordinate 

represent the index of the corresponding functions, e.g., ‘1’ 

represents F1(i.e., De Jong function), ‘2’ represent F2 (i.e., 

Coldstein Price function) etc.. We should also notice that ‘7’’ 

and ‘7’’’ represent respectively Ackley function under 

condition 2n  and 10n . 
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Fig.2. optf  of the eight functions 
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Fig.3. f  of the eight functions over 20 runs 
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Fig.4. sd  of the eight functions over 20 

runs

 

Fig.5. t of the eight functions over 20 runs 

 

TABLE I.  TABLE 2 RESULTS OF EXPERIMENTAL EVALUATION 

Functions 

sGA GQA vbQGA 

optf  f  sd  t  optf  f  sd  t  optf  f  sd  t  

F1 0.006 0.145 0.233 1.326 0.000 0.015 0.035 0.883 0.000 0.002 0.003 0.187 

F2 3.027 3.951 0.910 1.801 3.000 3.000 0.000 0.983 3.000 3.228 0.204 0.299 

F3 0.009 0.121 0.074 2.668 0.000 0.006 0.008 0.886 0.009 0.013 0.007 0.193 

F4 19.894 19.790 0.211 0.756 19.894 19.810 0.055 0.530 19.894 19.894 0.000 0.096 

F5 -1.032 -1.024 0.005 1.042 -1.032 -1.030 0.003 0.730 -1.032 -1.031 0.000 0.188 

F6 1.000 0.999 0.002 0.683 1.000 1.000 0.000 0.395 1.000 1.000 0.000 0.210 

F7 0.036 0.534 0.317 1.350 0.005 0.005 0.000 0.625 0.005 0.087 0.059 0.306 
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1.437 2.468 1.220 3.602 0.016 0.149 0.704 4.602 0.040 0.206 0.087 0.862 

F8 3.231 8.417 2.956 2.278 0.995 2.773 2.721 1.434 0.995 2.912 0.536 0.522 

 

It can be known from Fig.2 that three algorithms under 

discussion can all get optimums with respect to F1~ F6. 

However, for F7 and F8, No one of the three algorithms can 

get optimums under the given controlling parameters. 
Though, the solutions of GQA and vbQGA are still 

obviously better than that of sGA. From Fig.6 and Fig.7 we 

can find that F7 and F8 are very complicated and intractable 

for there exiting many local optimums. By taking population 

size as s=50 and remaining other parameters unchanged, we 

carried out some test runs and the results show that GQA 

and vbQGA can exactly find out the optimums of F7 and F8. 

 

Fig.3 tells us that sGA, GQA and vbQGA gain closely 

approximate averages of the function value of F1~ F6 over 

20 runs. In contrast with this, for F7 and F8, the averages 

obtained by GQA and vbQGA are very approximate and 

evidently superior to those by sGA. 
 

 

Fig.6. Figure of function Ackley(n=2) 

 

 
 

 

Fig.7. Figure of function Rastrigin (n=2) 

Fig.4 shows that vbQGA gets the smallest standard 

deviations among the three algorithms and sGA gets the 
largest ones. It reveals that vbQGA is more robust than the 

two algorithms. 

 

Fig.5 illustrates the comparison of average of elapsed time 

per one run among the three algorithms. It can be seen that 

vbQGA takes the least run time. Let us sum up all the t  of 

eight functions for sGA, GQA and vbQGA and we can get 

15.5062 seconds, 11.0675 seconds and 2.8631 seconds 

respectively. Obviously, vbQGA takes much less run time 

than the other two algorithms. In addition, it can be also seen 
that as the dimension and complexity of a function increase, 

this advantage will get more distinct. 

 

To sum up, vbQGA is superior to sGA in all respects. 

Comparing with GQA, vbQGA can get very approximate 

quality of solutions. However, the standard deviation and the 

average elapsed time per one run of vbQGA are, especially 

for the multidimensional and complicated functions, less 

than GQA. This indicates that vbQGA has better robustness 

and solving velocity. 

4. Conclusions 

In this paper, we proposed a variable-boundary-coded 
quantum genetic algorithm, vbQGA, based on the core idea 

and principle of quantum computation. In this algorithm, 

qubit chromosomes are collapsed into variable-boundary-

coded chromosomes instead of binary-coded chromosomes, 

a new adaptive selection strategy for angle parameters used 

for rotation gate is adopted. An experimental evaluation, in 

which eight typical functions are selected to optimize and 

sQA and GQA are selected as contrasts, has been conducted. 

Four statistical values have been used as measurements of 

performance to evaluate vbQGA. The results reveal that 

vbQGA is significantly superior to sGA in all aspects and 

outperforms GQA in robustness and solving velocity, 

especially for multidimensional and complicated functions. 

These demonstrate effectiveness and good performance of 

vbQGA. 
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