
Combined Architecture for Early Test Case Generation and Test

suit Reduction

Mr. Saurabh Karsoliya, Prof.Amit Sinhal, Er.Amit Kanungo

Computer Science and Engineering, MANIT

Bhopal, M.P., India

Information Technology Department, TIT

Bhopal, M.P., India

Information Technology Department, TIT

Bhopal, M.P., India

Abstract

Model based combinatorial testing is the most effective and

efficient method of systematic interaction testing. In this multiple
variables can interact with test model in the form of combination

and each set is considered as a test pairs. It is used mainly for

reducing the test pair‟s size, complexity and time of test

generation. Accomplishment of this reduction task is the most

vibrant and tedious activity because this consist of test data

extraction, boundary analysis, path measurement analysis,

condition coverage etc.

The problem with Model based combinatorial testing is

optimization of cost and effort which can only be achieved by

early test case generation methods. For this we are using UML

diagrams from design phase.
For reducing the test size and complexity we have proposed a

new MBTGA framework and an MTGIPO. In this paper we focus

our research on empirical study and result obtained by developed

framework. We are also proposing a new UML design data

extraction (DDE) algorithm for getting the useful information

from a given UML diagram as input.

Keywords: Combinatorial test, Pairwise test, UML, NP-complete,

Genetic algorithm, MBT, UML, MBTGA, MTGIPO, DDE

1. Introduction:

 Combinatorial Testing As Research Domain

Systematic testing of highly-configurable software systems, e.g.

systems with many optional features, can be challenging and

expensive due the exponential growth of the number of

configurations to be tested with respect to the number of features.
It is estimated that 30% of an enterprise„s IT budget is devoted to

the original development and 70% is for enhancements and fixing

bugs not discovered during original development [3]. Thus the

usage of Combinatorial Interaction Testing (CIT) technique can

improve the effectiveness of the testing activity for these kinds of

systems, at the only cost of modeling the system‟s configurations

space.

Combinatorial testing can help detect problems like interaction

failures of combinations this early in the testing life cycle. The
key insight underlying t-way combinatorial testing is that not

every parameter contributes to every failure and most failures

are triggered by a single parameter value or

interactions between a relatively small numbers of parameters

[4]. In fact, CIT consist in systematically testing all possible

partial configurations (that is, involving up to a fixed number

of parameters only) of the system under test. The most

commonly applied combinatorial testing techniques pairwise

testing, which consists in applying the smallest possible test

suite covering all

the pairs of input values (each pair in at least one test case). It
has been experimentally shown that a test suite covering just

all pairs of input values

can already detect a large part (typically 50% to 75%) of the

faults in a program [3, 4]. Moreover, incorrect behaviors or

failures due to unintended feature interaction, detected by CIT,

may not be detectable by other more traditional approaches to

systematic testing [1, 5].

2.Purpose of Study (Problem Statement):The

immediate purpose of this research is to Design & Develop a

MBTGA Framework for Programmed Combinatorial Test

(PCT) that can help to provide assurances of reduced overhead

of testing . Some techniques for providing such assurances

have been developed in the past, but no single technique has

provided a complete solution to the problem. Thus, this thesis

will explore the effectiveness of combining two such

techniques (Unified Modeling & Combinatorial Testing) into a

single tool. The more general purpose of this research is to
improve the available methods of software testing.

There are several major challenges that completely resolved

by our tool with testing modern software.

Some are as follows

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 484

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 Automation of the test case generation and their execution.

 Development of domain and software engineering

expertiseneeded for adequate testing.

 Formalization and modeling of the software specifications and

implementations, and software testing process and effects.

The reduction in growing complexity of the modern software-

based systems.

 Generating Test Cases Criteria at the Time of Design and

Requirement Analysis (Early Test Case Creation saves time &

cost).

 Extracting the data from UML diagram to generate test cases.

 Generating the reduced number of test cases (Test Suite Size).

 Controlling the Test Case Creation by Constraints &

Relations.

 Providing the maximum test coverage (100% for 2-way

pairwise testing).

 Reducing the execution time for testing.

Thus, by considering the entire above research objective we

have developed a Automated Tool which follow the proposed

design architecture of MBTGA & Implemented an algorithm

for this interaction testing based on Enhanced MBTGA based

IPOG (MTGIPO). We also proposed a UML based data
extraction algorithm (DDE). Our tool is capable of generating

the minimum test cases in comparison with other publicly

available tool.

2.1 Literature Survey

Proposed Methodology: - Complexity of software needs to

identify better techniques for different functionalities in the

software development life cycle. This complexity is truly
reduced by deterministic decision environment of parameters

in quality assurance of software. It is mainly done by ways of

testing, which is an activity that faces constraints of both time

& resources. Testing the outbound of any software is been

judged by means of special type of test in black box testing

known as combinatorial testing. It is a well known dynamic

approach for quality improvements because it provides

effective error detection at very low cost. Creation of optimal

set of test will effectively decreases complexity of the

software system by pairing the input parameters through

pairwise testing using orthogonal arrays & Latin squares.
Hence an efficient strategy is required to reduce the number of

test cases formed by above mentioned method.

MBTGA with enhanced IPOG has contributed to enhance

many known CA and MCA that exist in the literature. In our

research & implementation we proves that the given algorithm

& design architecture of MBTGA (Model Based Test

Generation Architecture) is well defined for improving

efficiency thorough multiple parameters (Size, Time,
Complexity, Cost etc.).We have implemented our tool based

on two proposed approaches. First is MBTGA Algorithm &

Design Architecture for 2-way (Pairwise Testing) & a

Modified Test Generation IPO (MTGIPO) for 3,4 way

interaction testing. The MTGIPO uses algorithmic approach

based on IPOG (In Parameter Order General) strategy for test

case reduction with improved parameters. While for pairwise

test suite creation phase of MBTGA requires searching the

best pair combination for pairtest (2 way Test).

Design Architecture

3. PROPOSED SOLUTION:

During our research & implementation we had used a result

which is been proven that the problem of combinatorial testing

is NP complete & whose solution may be achieved by

heuristic or genetic based search algorithm. We are calculating

our result of reduced pairtest through genetic algorithm. It has

two basic operator‟s mutation & crossover. We first construct

the activity diagram for the given problem and then randomly
generate initial test cases, for a program under testing. Then,

by running the program with the generated test cases, we

obtain the corresponding program execution traces. Next, we

compare these traces with the constructed activity diagram

according to the specific coverage criteria. We use path

coverage as test adequacy criteria. Next, we propose a novel

approach to generate test cases from test scenarios using UML

activity, sequence and class diagram. First we generate test

scenarios from the activity diagram and then for each scenario

the corresponding sequence and class diagrams are generated.

After that we analyze the sequence diagram to find the

interaction categories and then use the class diagrams to find
the settings categories. After analyzing each category using

category partitioning method, its significant values and

constraints are generated and respective test cases are derived.

Finally, we propose a technique to optimize the generated test

cases automatically. We define an error minimization

technique in our approach, which works as the basic principle

for optimized test case generation. Transition coverage is used

as test adequacy criteria in this approach.

3.1 Developing a Common Framework (MBTGA)

Several approaches to design test cases and application of

software testing have been proposed by researchers. We also

know that testing is a very important phase of software

development and always comes at the last. No such technique is

been developed to generate test cases before the

implementation of code. So we are focusing our research on

development of a framework on the basis of which it is been

possible of developers and stakeholders to generate different

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 485

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

test scenarios previously. We are also contributing our work

towards the optimization of test case generation strategies via

combinatorial testing. Thus by enriching the above two main

goals of early generation of test case by UML through Model

based testing & improving the test case efficiency by enhancing

the combinatorial testing methodologies, we had developed a
UML based combinatorial approach(MBTGA) framework. It

will fulfill all the requirements and serve best to accomplish our

research objectives. Also the prototype tool being developed to

prove efficiency and effectiveness of the proposed

methodology.

We separate our research in two domain in which first one

focuses on reducing the test case size, complexity and efforts.

Second one is early generation of test cases, at the time of
requirement analysis and design which saves cost, time and

efforts. Our project also makes it possible to identify the bugs

which tend to come at the time of development and installation.

To overcome our first research domain objective we developed

the solution in various phases. For this initially we proposes a

new flow structure to inculpate both the concept in one. Then

we develop an algorithmic approach based on Unified Model

Architecture of MBTGA for pairwise testing (Interaction 2-

way) & MTGIPO (Enhanced Unified In Parameter Order

General for Interaction > 2 way) strategy for test case reduction

with improved parameters. In this test suite creation phase of
MBTGA requires searching the best pair combination for

pairtest (2 way Test).We also applying test suite prioritization

methodology to enhance the performance of testing & also

reduces the test suite size & complexity. To accomplish our

second research domain goal we use model based testing

(MBT). From this we uses UML, which supports object-

oriented technology, is widely used to describe the analysis and

design specifications of software development. UML models

are an important source of information for test case design.

UML activity diagrams describe the realization of the operation

in design phase and also support description of parallel

activities and synchronization aspects involved in different
activities perfectly. Now this part must extract data from UML

diagram so to overcome this challenge we had also proposed a

new UML test data extraction (DDE) algorithm.

3.2 Taking UML as Model in Model Based Testing

Model based testing (MBT) refers to the type of testing process

that focuses on deriving a test model using different types of

formal ones, then converting this test model into a concrete set

of test cases [5]. Models are the intermediate artifacts between

requirement specification and final code. Models preserve the

essential information from the requirement, and are the basis

for implementation. Instrumentation of models into testing

process is the prime subject of concern of our thesis. Testing

methodologies which uses model is called model based testing

(MBT). Development of unified modeling language (UML) has
helped a lot to visualize/realize the software development

process. At the earliest stage of software development life cycle

(SDLC), no one including user and developer can see the

software; only at the final stage of the product development it is

possible. Any errors/problems found out at the final stage, it

incurs a lot of cost and time to rectify, which is very much

crucial in IT industry.

UML is the modeling language, which supports object-

oriented features at the core. In the last few years, object-

oriented analysis and design (OOAD) has come into existence,

it has found widespread acceptance in the industry as well as

in academics. We concentrate here on widely accepted

practices based on the use of the Unified Modeling Language
(UML) to support an object-oriented development process [6].

The main reason for the popularity of OOAD is that it holds

the following promises:

• Code and design reuse

• Increased productivity

• Ease of testing and maintenance

• Better code and design understandability

 UML accomplish the visualization of software at early stage

of SDLC, which helps in many ways like confidence of both

developer and the end user on the system, earlier error

detection through proper analysis of design and etc. UML also

helps in making the proper documentation of the software and

so maintains the consistency in between the specification and

design document. The key advantage of this technique is that

the test generation can systematically derive all combination
of tests associated with the requirements represented in the

model to automate both the test design and test execution

process.

 3.3 Problem Statement

To develop early test case generation strategy Our one of the

main research objective is to make it possible for designer and

developer to generate the test case at the time of requirement

gathering & design phase. From this early information of test

case failure & success reports the designer can easily remove

the bugs & error at very early stages of project development. It

improves quality of product in well defined standards. For this

we are using the UML diagram which is part of design phase

& flowchart which is a part of requirement gathering phase to

extract the sufficient amount of test data. Later on the

proposed reduction algorithm is applied to get better results.

To reduce the Test Suite size, complexity & cost here our aim

is to develop a strategy which can be able to generate

combinatorial test cases for variable parameters value which

reduces efforts and cost. It also extracts what information is

necessary to test the integration of components in the process

of system composition;

To extracts test data from different design diagrams (UML)

Here we investigate which individual or combination of UML

diagram types, offer sufficient information to generate test

cases; Also shows how the proposed strategy reports on the
amount of testable information contained in a model.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 486

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.4 UML Test Data Extraction Algorithm

Extracting the data from UML diagram is most difficult task.
For this there is no such software developed which will extract

the things from a png or jpeg format. It should be considered

as new project. So we focus our main aim towards extracting

all the useful information from a fixed textual format which is

automatically generated from an well recognized tool

PlantUML. It is a UML Based tool which takes the diagram as

input and gives the respective textual notation for UML. To

accomplish this reading we use pattern matching functions and

operators or regular expression and then transform the values

to a text file.

In our proposed strategy we had used activity diagram as a test

model or a formal model. Here activity diagram is used to

parse the information to generate test scenarios for various

path available in it. Covering all the path will ensure that the

maximum coverage is been achieved in it.

 First of all our approach parses the activity diagram and
generates the test scenarios which satisfy the path coverage

criteria. As activity diagrams represent the implementation of

an operation like the flow chart of code implementation and an

executing path is a possible execution trace of a thread of a

program, the executing paths are derived directly from the

activity diagrams. We have considered path coverage in our

approach, since it has the highest priority among all the

coverage criteria for testing. Our approach also handles the

complicacy of nested fork joins using a criterion that checks

whether the target activity state of a transition is a fork or an

activity state. If the target of the transition is a fork, then the
fork has higher priority over the activity state. So it should be

considered first and then only the other path is considered. As

a result of this priority criterion the complicated nested fork-

join pair is handled properly in our approach. After all the

possible test scenarios are generated we generate the

corresponding sequence diagram, and class diagrams for each

scenario. Then test cases are then derived by finding

significant values of environment conditions and parameters.

The Proposed Algorithm for UML test data extraction

(DDE):-

Algorithm: DDE (Parameter, values)

1. Initialize the diagram as @startuml and assign it
parameter 0, initial value is “Start”

2. Scan the file completely

3. Check for ” “

If (pattern==found) consider it as next parameter and

value in “ “ as its parameter value

Repeat above till all identified

4. Now again scan for < >

If found read for next two []

For [Yes] add value in ” “ as its value in above

parameter

 For [No] add default value *

 Else for no value found consider both as parameter

value.

5. Now check for York condition pattern

If (===_===” “equals to ===_===” “)

The above condition is consider as values of same

parameter

6. Repeat till 5 until find (*)

7. If(found== (*))

Then add next parameter and its value as “End”

8. Scan till all pattern matches

9. Exit

 Mathematical Expression

 Result Achieved: - We demonstrate our result by showing

the improved performance MBTGA based on MTGIPO over
other existing strategies. For this evaluation certain parameters

is been identified and the result is been compared. These

parameters are Reduced Test Size, Coverage, Time required,

Complexity, Don‟t Care Conditions and last one is most

important term possibility of early generation of test case.

To compare against other existing strategies we found that

about 40% of the conditions of the program were usually
covered by random test data generation, genetic approach

covered 60% of the conditions and pairwise testing

outperform former two by a considerable margin in most of

our experiments. Genetic search achieved about 85%

condition-decision coverage on average, while the random

test-data generator consistently achieved just over 55%. So the

pairwise testing strategy is proved to be an efficient test

generating strategy. The following table shows the size of

generated test set obtained by our technique as well as two

other methods. Note that the size of test suite in case of

pairwise strategy using MTGIPO is less than other tools and

pairwise testing result obtained is in the form of Comparison
Table‟s, Graphs, Utilities Functions, Features, Parameter

Covered tables.

Table: - Test Data 1:- 5 parameter, 15 parameter values

Method:-Variable value

Tool

Name

Number of

Pairs Covered

in all

Combinations

Test Case

Generated

Coverage

Achieved

Time

Required

Don’t care

Conditions

ACTS 270 40 0.254 0.015 sec Not Count

PICT NA NA NA NA NA

TCG 270 43 NA NA Not Count

MBTGA 270 40 0.467 0.019 ml

sec

Not

Present

Table 1:-Comparison of MBTGA with other tools available

for test data 1 for 3 way

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 487

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table Conclusion:-The above table shows that the tool is capable of

achieving reduction up to 85% and covers all pairs in just 40 test

cases with 3 way interaction probability in just 0.019 mili second. It

also shows that how the different tools perform under same

conditions.

Table 11:-Empirical study of MBTGA on the basis of various parameters

Table Conclusion: - The above table shows an effective early

test case generation feature of our tool which implies on the

data extraction from UML activity diagram. We used our

developed DDE algorithm for getting this result. We shows

the performance and result evaluation of our tool on the basic

of 7 parameters. Firstly DDE is been capable of extracting the

correct data from given UML textual notations. The table

shows how our tool effectively reduces the test size in very
less time and gives maximum coverage. The feature which we

have proposed and implemented is not present in any

combinatorial testing tool and serves as add on module for our

research. In future its improved versions are likely to be

developed.

Graph:

Graph Conclusion: - The above graph is been generated from

combinatorial coverage measurement tool by NIST. It shows

the coverage achieved by our MBTGA tool based on

MTGIPO and gives 100 % for 2 way (Red) and 0.467 for 3

way (Blue) interaction test, which is higher than any other

available tool.

4. Conclusion & Future Work: - The empirical study

& the above chart easily prove that the strategy which we are

proposing is effective & efficient for pairwise coverage

problem. The test cases will 70 % reduced in most of the cases

depending upon the seed value selected as per the given test

criteria based on requirement. Future work will more

effectively enhance the above proven results in a systematic
way so as to generalize the tool. Also some researchers were

focusing on improving solution domain of this genetic theory

by NP complete & hard relations. So while proposing a new

strategy in combination with pair wise approach always kept

in mind its practical implementation so as to make the tester‟s

work easy. MBTGA Tool is a great deal in test suite reduction

& in addition it also provided maximum coverage based on

genetic theory.

5. References:

[1] Pairwise Testing concept & strategy available
from ;http://www.pairwise.org/tools.asp.

[2]B. Selic, and J. Rumbaugh, "UML for Modeling Complex Real
Time Systems", Available Online Via
www.rational.com/Products/Whitepapers/100230.Jsp.

 [3]E. Holz, "Application of UML within the Scope of New

Telecommunication Architectures", GROOM Workshop on
UML, Mannheim:Physicaverlag, 1997.

[4]G. Booch, J. Rumbaugh and I. Jacobson, "The Unified Modeling
Language User Guide", Addision Wesley, Reading, MA,1999.

[5]Clementine Nebut, Franck Fleurey, Yves Le Traon, “Automatic
Test Generation: A Use Case Driven Approach”, IEEE
TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 32,NO.
3, MARCH 2000

[6]A.Abdurazik, J. Offutt, and A. Baldini. “A controlled
experimental evaluation of test cases generated from UML
diagrams”. Technical report, George MasonUniversity,
Department of Information and Software Engineering, 2004.

Data

Extrac

tion(D

DE)

Pai

rs

Co

ver

ed

Reduc

ed

Test

Cases

Tool

Name

Coverage

Achieved

Time Don’t

care

Comap-

atibility

MBTG

A

6

Param,

9

values

32 6 Activity

Diagram

1

1 2.609

ml sec

0 N/A

In

Any tool

5

Param,

7

Values

19 4 Activity

Diagram

2

1 0.683

ml sec

0 N/A

7

Param,

9

Values

34 4 Activity

Diagram

3

1 0.806

6 ml

sec

0 N/A

6

Param,

9

Values

32 6 Activity

Diagram

4

1 0.849

ml sec

0 N/A

11

Param,

15

Values

10

1

6 Activity

Diagram

5

1 1.508

9 ml

sec

0 N/A

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 488

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.pairwise.org/tools.asp
http://www.pairwise.org/tools.asp
http://www.rational.com/Products/Whitepapers/100230.Jsp
http://www.rational.com/Products/Whitepapers/100230.Jsp
http://www.rational.com/Products/Whitepapers/100230.Jsp

[7]Lei, Y and Tai, K. C., In-Parameter-Order: A Test Generating

Strategy for Pairwise Testing, IEEE Trans. on Softwa re
Engineering, 2002, 28 (1), 1-3.

[8]J.Bach and P. Shroeder. Pairwise testing - a best practice thatisn‟t.
In Proceedings of the 22nd Pa cific Northwest Software

Quality Conference, pages 180– 196, 2004.

[9]Mandl, R., Orthogonal Latin Squares: An Application of
Experimental Design to Compiler Testing, Comm. ACM,
1985, 28 (10), 1054-1058.

[10]Cohen, D. M., Dalal, S. R., Fredman, M. L., and Patton,G.
C., The AETG system: An Approach to Testing
Based on
Combinatorial Design, IEEE Transaction on Softwa re

Engineering, 1997, 23 (7), 437-443.
[11]Colbourn, C. and Dinitz, J. (Ed.) The CRC Handbook of

Combinatorial Design, CRC Press, 1996.
[12]A. Andrews, R. France, S. Ghosh, and G. Craig. “Test adequacy

criteria for UML design model. Software Test Verification and

Reliability”, 13:97–127, 2003.
[13]Stefania Gnesi, Diego Latella, and Mieke Massink. “Formal

test- case generation for UML state charts”. In ICECCS ‟04:
Proceedings of the Ninth IEEE International Conference on
Engineering Complex Computer Systems Navigating

Complexity in the e-Engineering Age, pages 75–84,
Washington, DC, USA, 2004. IEEE Computer Society.

[14]J. Hartmann, C. Imoberdorf, and M. Meisinger.” UML-based
integration testing”. In ISSTA ‟00: Proceedings of the 2000

ACM SIGSOFT international symposium on Software
testing and analysis, pages 60–70, New York, NY, USA,
2000.ACM.

[15]S. Helke, T. Neustupny, and T. Santen, “Automating Test Case
Generation from Z Specifications with Isabelle,” ZUM
‟97: The Z Formal Specification Notation, LNCS 1212, pp.
52-71.
J.P. Bowen, M.G. Hinchey and D. Till, eds. Springer-Verlag,
1997.

[16]Davis, Lawrence (1985). Job Shop Scheduling with Genetic
Algorithms, Proc. Int’l Conference on Genetic
Algorithms and their Applications.

[17]S. R. Dalal, A. Jain, N. Karunanithi,J. M. Leaton, C. M. Lott, G.
C. Patton “Model-Based Testing in Practice” To appear in
Proceedings of ICSE’99, May 1999 (ACM Press).

[18]P. E. Ammann and A. J. O_utt. “Using formal methods to
derive test frames in category partition testing”. In Ninth
Annual Conference on Computer Assurance
(COMPASS’94), Gaithersburg MD, pages 69–80,1994.

[19]P. E. Ammann and P. E. Black. “A specification-based

coverage metric to evaluate test sets”. In Proceedings of
Fourth IEEE Interna tional High-Assurance Systems
Engineering Symposium (HASE 99), pages 239–248.

IEEE Computer
Society, November 1999. Also NIST IR 6403.

[20]P. E. Ammann, P. E. Black, and W. Majurski.” Using model
checking to generate tests from specifications”. In

Proceedings of the Second IEEE International
Conference on Formal
Engineering Methods (ICFEM’98), pages 46–54.
IEEE Computer Society, Dec. 1998

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 489

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

