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Abstract 
In this paper, we consider numerical differentiation of bivariate 
functions when a set of noisy data is given. A mollification 
method based on spanned by Legendre polynomials is proposed 
and the mollification parameter is chosen by a discrepancy 
principle. The theoretical analyses show that the smoother the 
genuine solution, the higher the convergence rates of the 
numerical solution. To get a practical approach, we also derive 
corresponding results for Legendre-Gauss-Lobatto interpolation. 
Numerical examples are also given to show the efficiency of the 
method. 
Keywords: Ill-posed problem, Numerical differentiation, 
Legendre spectral method, Discrepancy principle. 

1. Introduction 

Numerical differentiation is a problem of determining the 
derivatives of a function from its perturbed values on an 
interval or some scattered points. It arises from many 
scientific research projects and applications, e.g., the 
identification of the discontinuous points in an image 
process [1]; the problem of solving the Abel integral 
equation [2, 3]; the problem of determining the peaks in 
chemical spectroscopy [4] and some inverse problems in 
mathematical physics [5], etc. The main difficulty is that 
differentiation is an ill-posed problem, which means small 
errors in the measurement of a function may lead to large 
errors in its computed derivatives [5, 6]. Some 
computational methods have been suggested for one-
dimensional case [5-9, 11, 12],  but so far only a very few 
results on the high dimensional case have been reported 
[13-16] and most of these papers focus on the first order 
derivative. As far as we know, the literature on higher 
order differentiation in two dimensions is extremely poor. 
In [14], G. Nakamura, S. Z. Wang and Y. B. Wang 
proposed a method for constructing second order 
derivatives of 2D functions. They have present a 
convergence result for functions in  and the 
convergence rate can not be improved even if the 
functions have a higher smoothness. Moreover, an 
additional boundary condition is needed for their method.  

4 ( )H Ω

In the present paper, as an alternative way of dealing with 

numerical differentiation, we introduce a new 
mollification method. Mollification methods for the 
regularization of ill-posed problems have been studied and 
analysed in a number of publications, whereof we can only 
cite a short list [8, 9, 17-20]. Generally, the idea of 
mollification methods for an evaluation problem.  
 

y Ax=   
with perturbed data x δ , x xδ δ− ≤ (δ  is is a known error 

level) consists of two stages: 
 

 Take the mollification of  xδ : 
x M xδ δ

α→ . 
 Take 

y AM xδ δ
α α=  

 as the approximation of . y
 

The key issues of mollification methods are construction 
of the mollification operator Mα

 and choice of the 
mollification parameter α . In this paper, we will 
construct the mollification operator by using subspace 
projection associated with Legendre polynomials. We also 
point out that the mollification parameter can be chosen by  
a general strategy----the discrepancy principle, which has 
been thoroughly studied [6,21,22]. The theoretical analysis 
shows that the smoother the genuine solution, the higher 
the convergence rate of the numerical solution. Moreover, 
the solution processes will be uniform in our method for 
the different order derivatives and the method is self-
adaptive. 
 
This paper is organized as follows. In section 2, we 
present some preliminary materials which will be used 
throughout the paper. The methods to construct 
approximate functions by Legendre expansion and 
Legendre-Gauss-Lobatto interpolation will be found in 
section 3 and 4. Some numerical results are given in 
section 5 to show the efficiency of the new methods. 
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2. Preliminaries 

In this section, we present some preliminary materials 
which will be used throughout the paper. Let ( ,1 2 )x x

( 1,1) ( 1,1)Ω = − × − 2 ( )Ω

 and 

and denote by L  and ( )rH Ω  the 
usual Lebesgue and Sobolev spaces and by v , 

r
v

)

 their 
corresponding norm. Let N be the set of all non-negative 
integers. For any two tuples 1 2( ,α α α= ( , )l= 2N∈, l l , 1 2

1 2| | ,α α α= + | |∞ 1 2|,|max(|l =

2

|)l l . Throughout this 
paper, we denote by c a generic positive constant 
independent of any function. The Legendre polynomial of 
degree l is defined by 

                                
1 21( ) ( ) ( )l l lL x L x L x= ,                        (1) 

where 

                    2( 1)( ) (1 ) , 1, 2.
2 !

q
q

q

q qq

l
ll

l q x ql
q

L x x q
l

−
= ∂ − =                 (2) 

The set of Legendre polynomials is a 2L -orthogonal 
system on Ω , i.e., 

1 1

1 2
1 1( ) ( )
2 2l k lL x L x dx l l ,kδ

− −

Ω

⎛ ⎞ ⎛ ⎞= + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠∫          (3) 

where 
,l kδ  is the Kronecher symbol. 

For any , we may write  , 

where  

2 ( )v L∈ Ω
| | 0

ˆ( ) ( )ll
v x vL x

∞

∞

=
=∑

1 2
1 1ˆ ( ) ( ) ,| | 0,1, .
2 2l lv l l v x L x dx l

Ω

⎛ ⎞⎛ ⎞= + + =⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ∫ …

    
(4) 

We first recall some properties of the Legendre 
approximation. Let N be any positive integer and 

NB  be 
the set of all algebraic polynomials of degree at most N in 
each variable. We turn to the inverse inequalities in the 
space . NB

Lemma 1[24] Let n be an non-negative integer and 
| | nα = Pφ ∈, then for any , 

N

2 .nD cNαφ φ≤                            (5)
 

Also for any , 0r ≥
2 .r

r
cNφ φ≤                             (6)

 

The 2L −orthogonal projection of a function 2 ( )v L∈ Ω  is  

| | 0

ˆ( ) ( )
N

N l
l

P v x v L x
∞ =

= ∑ l
.                       (7) 

Lemma 2 [24] If , then for any  0r ≥ ( )rv H∈ Ω

r
N r

v P v cN v−− ≤ .                         (8) 

We now turn to the discrete Legendre approximation. Let 
1 2( ) ( )( )

1 2( , )j jjx x x= , 0 ,qj N≤ ≤ ( )
0{ }k N

q kx =
are LGL points [24] 

and  

( ) 2

2 1 ,0 .
( 1) [ ( )]q qj qj

N q

j N
N N L x

ω = ≤ ≤
+       (9)

 

Let 
NΩ  be the set of all ( )jx . We can define discrete inner 

product in ( )C Ω  and its associated norm by 

1 2

1 2

( ) ( )
,

0 0

1
2

, ,

, ( ) (

,

N N
j j

j jN
j j

N N

u v u x v x

u u u

ω

ω ω

)ω ω
= =

=

=

∑∑

     (10)

 

We have 

,

0 ,
, 2 , .l k N

l k
L L

l k
N

ω

≠⎧
⎪= ⎨

=⎪⎩                (11)

 

 
Lemma 3 [24]        

,
3

N
u u u

ω
≤ ≤

                       (12)
 

The Legendre interpolation ( )N NI v x B∈  of a function 

( )v C∈ Ω  is defined by  
( ) ( ) ( )( ) ( ),j j j .N NI v x v x x= ∀ ∈Ω             (13) 

Lemma 4 [24] If ( ),rv H∈ Ω 1 ,
2

r >  then  

r
N r

v I v cN v−− ≤ .                     (14) 

3.A mollification method by using Legendre 
expansion 

We will discuss the following problem. Suppose that we 
know an approximate function  of 2 ( )g Lδ ∈ Ω ( )rg H∈ Ω  
such that 

,g g gδ δδ τδ− ≤ ≥                     (15)
 

where 0δ > is a given constant called the error level and 
1τ > . We want to approximate D gα  from gδ . Our idea is 

to compute approximate derivatives with the following 
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mollification method. At first, we mollify gδ by using the 
projection operator  

,
0

ˆ
n

n n l
l

( ).lg f P g gδ δ
δ

=

→ = =∑ L xδ

              (16)
 

The mollification parameter n plays an essential role in the 
accuracy of these approximations. In this paper, we make 
use of a discrepancy principle to obtain an optimal an a 
posteriori chosen ( , )n gδδ : 

1( ) ( )n nI P g I P gδ δτδ −− ≤ < −
.           (17)

 

Then 
,nD fα
δ

 will be used as an approximation of D gα , 

we will prove a convergence estimate in the following. 
Theorem 5 Suppose that ,nf δ  is defined by (16) and (17), 

, then for any ( )rg H∈ Ω | |α ≤
2
r , we have 

2| |

, ( ).
r

r
nD f D g O

α
α α

δ δ
−

− =                      
(18)

 

Proof: By Lemma 1 and 2 
, /2

/2/2
/2

/2

( )

( )

n nr

n n rr

r r

r

f g P g g P g

P g g P g

cn cn g

δ
δ

δ

−

− = − +

≤ − −

≤ +

/2n r
g

g

−

+

         (19)

 

On the other hand  
1 1 1

1 1

( ) ( )(

( )(

n n n

n n

P g g P g g I P g g

P g g I P g g

δ δ δ

δ δ δ

− − −

− −

− = − − − −

≥ − − − −

)

) .
    (20)

 

From (17), we have 

1 .nP g gδ τδ− − ≥
                             (21)  

 

And 

1( )( )nI P g g g gδ δ .δ−− − ≤ − ≤
           (22)

 

Hence 
1 ( 1) .nP g g τ δ− − ≥ −                         (23)

 

From Lemma 2, we can obtain 
1( 1) ( 1) r

n r
P g g c n gτ δ −

−− ≤ − ≤ −
          (24)

 

Thus we can get 
1

1

1
1

r
r r

c g
m δ

τ
−⎛ ⎞

≤ +⎜ ⎟
−⎝ ⎠                        (25)

 

So by (19), there exists a constant M which does not 
depend on δ  such that 

, /2
.n r

f g Mδ − ≤
                          (26)

 

Moreover, 
, , ( 1)n nf g f g g gδ δ
δ δ .τ δ− ≤ − + − ≤ +

       (27)
 

The assertion of theorem will be obtained by interpolation 
[23]. 

/2
/2/2 /2

/2
, , ( )

r
rr r

r
u K u u r u H

μ μ

μ
μ

−

.≤ ∀ ∈ Ω
        (28)

 ≤

4.A mollification method by using LGL inter- 
polation 

In this section, we derive corresponding results for 
pseudo-spectral approximations which are more 
convenient in actual computations. In practical, the 
perturbed data are usually given at nodes. Suppose that the 
data is given at points ( ) ,j

Nx ∈Ω  such that  
( ) ( )

1| ( ) ( ) |j jg x g xδ .δ− ≤                     （
We can 

29） 

obtain the following Lemma 
rbed data Lemma 6. Suppose that the pertu ( )( )jg xδ  

satisfies (29), then we have 
1,

ˆ2 : .
N ωN NI g I gδ δ δ− ≤ =

                     
（30）

 

Proof: 
( )

( )
1 21 2

1 21 2

1/2
( ) ( ) 2

0 0,

1/2

1 0 0

1

( ( ) ( ))

2

N N j j
N N j jj jN

N N

j jj j

I g I g g x g xδ δ

ω
ω ω

δ ω ω

δ

= =

= =

− = −

≤

=

∑ ∑

∑ ∑
  （31）

 

Using the LGL interpolation, we can give the app

.

roximate 
function as follows: 

                   f
1 1,f ( )n n Nx P I gδ

δ δ ==                     （32） 

where ined by the discrepa1n  is determ ncy principle 

1 1 1( ) ( )n N n NI P I g I P I gδ δτδ −− ≤ < −
N N          （33）

 

with 1.τ >  
We no tatw s e the main result of this section. 
Theorem 7. Suppose that 

1 ,fn δ  is defined by (32) and (33), 

( )rg H∈ Ω , then for any | |α ≤
2
r , we have 

2| |
2| |

,
ˆf (

r
rr

nD D g O N
α

α α α
δ δ

−
−− = + ).      （34）

 

Proof: By Lemma 1 and 2 

1 1 1

1 1

, /2 /2

/2/2 /2
/2

/2

f ( )n n N Ng P I g I g P

( )

n N N Nr r

n N N n N N N rr r

r r

r

I g I g I g g

P I g I g P I g I g I g g

cn cn g

δ

−

− + −

≤ − + − + −

≤ +
（35）

 

From (33), we have 

δ
δ− = − +

1 1 ,
ˆ

n N N N
P I g I gδ δ

ω
τδ− − ≥

                (36)
 

and 

1 1 ,
ˆ( )( )n N N N

I P I g I gδ

ω
.δ−− − ≤
            (37)

 

Hence 

1 1 ,
ˆ( 1)n N N N

P I g I g
ω

.τ δ− − ≥ −
                     (38)
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From Lemma 2 and 3, we can obtain 

1 1 ,
( 1) n N N

1

1 1 1

1

1

1

1

1

ˆ

3

3

2 3

2 3

2 3 ( 1)

N

n N N

n N n n N

N n

N n

r r

r r

P I g I g

P I g P g P g g g I g

I g g P g g

I g g P g g

cN g c n g

−

−

− −

≤ −

= − + − + −

≤ − + −

≤ − + −

≤ + −     (39)

 

Thus we can get 

P I g I g
ω

τ δ −− ≤ −

1/

1/
1

ˆ .
1

r

rr
C g

n δ
τ

−⎛ ⎞
≤ ⎜ ⎟

−⎝ ⎠                             (40) 
By (35), there exists a constant 1M  such that 

1 , 1/2
f .n r

g M
               (41)

Moreover, 
 

δ − ≤
                

 

1 1

1

, ,n nf g

, ,,

ˆ( 1)

N N N N

r
n N N N NN

r

f I g I g I g I g g

f I g I g I g cN g

cN g

δ δ
δ δ

δ δ
δ ωω

τ δ

−

−

− + − + −

≤ − + − +

≤ + + (42)

 

The assertion of theorem will be obtained by interpolation 

− ≤

inequality [23] 
/2

/2
r

ru K
μ μ

μ
μ

−

≤ ≤ ∀ ∈ Ω/2 /2
/2

, , ( ).r r
r

u u r u H
           

(43) 

s in this section. Let
5. Numerical examples 

 We provide numerical example  ( )g x  
be a function with two variables given by 

1 2( ) cos( )sin( ),g x x x xπ π= ∈Ω . 
 

 

Figure 1: Functions g and its approximation 
 

The disc

 
 
 
 
 
 

retization knots are ( )j
Nx ∈Ω . The perturbed 

discrete data are given by 
( ) ( )( ) (j jg x gδ ) ,| |j jx ε ε δ≤

are generated b
= + , 

where 2( 1+ )
1{ } N

j jε =
y Function 

2 (rand( 1) 1)N δ× +  in Matlab.  The numerical results − ×
of constructing 

1
, xg g

2xg
1 1x xg

1 2x xg
2 2x xg  with N=256, 

δ =0.01 are illu vely. In Figs. 

ures are the constructed functions.  In Figs. 7-9, the 
constructed errors of 

1
,

strated in Figs. 1-6., respecti
1-6, the left figures are the original functions and the right 

fig
xg g

2xg
1 1x xg

1 2x xg
2 2x xg  are 

presented, respectively. In Figs. 1-6, we observe that the 
reconstructed functions a  the 
corresponding functions. In the following, we also further 
investigate how the relative errors depend on 

re very similar to those of

δ .  
 
 
 
 
 
 
 
 

1x
g  

2

and its approximation Figure 2: Functions 

 
 

Figure 3: Functions 

 
 
 
 
 
 

xg  

1 1

and its approximation 
 
 

Figure 4: Functions 

 
 
 
 
 
 

x xg  

2 2

and its approximation 
 
 

Figure 5: Functions 

 
 
 
 
 

x xg  

1 2

and its approximation 
 
 

Figure 6: Functions 

 
 
 
 
 
 

x xg  

 
and its approximation 
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1 2 1 1 2 2
,

x x x x x xg g g g gε , ε ε , ε ε, ,
1 2x xgεThe relative errors  are 

presented in Table 1 when δ  increases form 0.0001 to 0.1 
with fixed N=256. Here, th relative error e gε  are defined 
as 

1 , ,

,

fn N
g

N

g

g

δ ω

ω

−
=ε . 

We also defined , in the same 

Figure 7: Constructed errors of 

1 2 1 1 2 2 1 2
, , ,

x x x x x x x xg g g g gε ε , ε ε ε  

way.  
 
 
 
 
 
 
 
 
 

1x
g and 

2xg  

 

Figure 8: Constructed errors of 

 
 
 
 
 
 
 

1 1x xg and 
2 2x xg  

 

Figure 9: Constructed errors of 

 
 
 
 
 
 
 

g and 
1 2x xg  

 
rom Table 1, we can see that when the noise level F δ  is 

will 

oposed a new mollification method to 

decreased from 0.1 to 0.0001, the relative errors 
decrease too. The above numerical results show that the 
proposed method is efficient. 
6. Conclusion 
In this paper, we pr
reconstruct numerical derivatives from  noisy data.  The 
theoretical analyses show that the smoother the genuine 
solution, the higher the convergence rates of the numerical 
solution by our methods. Especially if ( )g H ∞∈ Ω , then 
the convergence rates of numerical der ( )Oivatives is δ . 
Moreover, the solution processes will be uniform

different derivatives, which means that the method is self-
adaptive. All the test numerical examples presented in the 
paper show that the new method works well. The 
extension of the work to piecewise smooth function is now 
under investigation. 

 for 

Table 1: Relative errors with different noise level 
δ  1e-1 1e-2 1e-3 1e-4 

gε  3.7147e-3 4.4912e-4 5.7346e-5 5.3339e-6

1xgε  1.0487e-2 2.4506e-3 1.7774e-4 2.1542e-5

2xgε  1.3426e-2 1.4016e-3 4.2203e-4 3.3407e-5

1 1x xgε  4.6777e-2 1.8234e-2 1.3249e-3 1.7913e-4

1 2x xgε  7.0255e-2 8.0529e-3 3.9971e-3 3.7298e-4

2 2x xgε  2.9172e-2 5.5944e-3 8.7607e-4 1.3671e-4
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