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Abstract
Tracking maneuvering targets introduce two major
directions to improve the Multiple Model (MM) approach:
Develop a better MM algorithm and design a better model
set. The Interacting Multiple Model (IMM) estimator is a
suboptimal hybrid filter that has been shown to be one of
the most cost-effective hybrid state estimation schemes.
The main feature of this algorithm is the ability to estimate
the state of a dynamic system with several behavior modes
which can “switch” from one to another. In particular, the
use of too many models is performance-wise as bad as that
of too few models. In this paper we show that the use of
too many models is performance-wise as bad as that of too
few models. To overcome this we divide the models into a
small number of sets, tuning these sets during operation at
the right operating set. We proposed Hierarchal Switching
sets of IMM (HSIMM). The state space of the nonlinear
variable is divided into sets each set has its own IMM. The
connection between them is the switching algorithm which
manages the activation and termination of sets. Also the re-
initialization process overcomes the error accumulation
due to the targets changes from one model to another. This
switching can introduce a number of different models
while no restriction on their number. The activation of sets
depends on the threshold value of set likely hood. As the
likely hood of the set is higher than threshold it is active
otherwise it is minimized. The result is the weighted sum
of the output of active sets. The computational time is
minimum than introduced by IMM and VIMM. HSIMM
introduces less error as the noise increase and there is no
need for re adjustment to the Covariance as the noise
increase so it is more robust against noise and introduces
minimum computational time.
Keywords: Interacting Multiple Model (IMM), Probabilistic
Data Association, Sensor Network.

1. Introduction

Multiple-model approach provides the state-of the-art
solutions to many problems involving estimation, filtering,

control, and/or modeling. One of the most important
problems in the application of the multiple-model
approach is the design of the model set used in a multiple-
model algorithm. There are two types of model-set design:
online and offline. Offline design is for the total model set
or the initial model set in a variable-structure approach, as
well as for the fixed structure approach. In a fixed-
structure algorithm, the model set used cannot vary and is
determined a priori by model-set design. In a variable-
structure algorithm, the model set in effect at any time is
determined by an adaptation process, known as model-set
adaptation, which may be viewed as an online (real-time)
design process and will depend on the total model set
determined a priori if such a set exists. In this paper we
study the IMM with a large number of operating modes
and introduce its performance for different modes changes.
Then we replace this IMM with another structure of IMM.
The structure includes sets of IMM. Each set includes part
of these operating modes. At initialization all the sets are
active but the right set which introduce lower innovation
will be active while the others will be switched off When
the system change to a different active set the diverging of
the active set will cause system initialization and activation
to all sets and start to tune to the right set. This algorithm
overcome the problem of large number of modes in IMM,
activate only the right set not all sets which introduce less
computation complexity, and allow variation of time step
to large values to reduce energy consumption in Sensor
Network while tracking.

In section 2 the related work is presented. We
introduce IMM in section 3. Variable structure IMM is in
section 4 while the HSIMM in section 5. The Results of
IMM of The First Tracking Problem is in section 6.The
design of HSIMM is introduced in section 7 while its
results of the first tracking problem in section 8. The
second tracking dynamics and its results are introduced in
section 9, finally section 10 presents conclusion and future
work.
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2. The Related Work

The IMM was introduced in [1] which
summarized the state-of-the-art of the IMM and its
variants. They discuss and compare the base-line IMM
algorithm with variable-structure variants, multiple sensor
variants, correlated noise variants, glint-noise influenced
variants, and others to know more about IMM. But it is
shown theoretically that the use of too many models is
performance-wise as bad as that of too few models. In [7]
they introduced difficulties of excess of measure while [8]
introduced the difficulties of using IMM in Radar system.
In [2] they introduced limitations of the fixed structure
algorithm. Then presented theoretical results pertaining to
the two ways of overcoming these limitations.
select/construct a better set of models and/or use a variable
set of models. The new approach was illustrated in non
stationary noise identification problem. In our previous
work [12] considering Extended Kalman filter and IMM
in the same tracking problem to introduce the accuracy and
time delay of the two tracking algorithm.  In this paper
structure of IMM sets are introduced to overcome limited
number of sets and nonlinearity of target motion model.
The structure includes number of IMM (set of modes)
working separately. But the right set will be considered
while the others will be switched off.

3. The Interacting Multiple Model

The system is described by the model:
)),1(,(*))1(,()())1(,()1(  kmkukmkGkxkmkFkx (1)

),()()()( kwkxkHkz  (2)

Where xnx  is the system state vector, znz  is the

measurement vector, unu  and znw  are mutually
uncorrelated, white zero mean Gaussian noises with
coveriances uQ and Rw respectively. The parameter mk

presents the current system mode. F is the system dynamic
matrix, and H is the measuring matrix.
Because the accurate system model is unknown, the system
is described by a number of models. The event that the ith

model mi is actual at time k is denoted as
Mi(k)={m(k)=mi}.
It is assumed that the system model sequence is a Markov
chain with transition probabilities
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Designing model set is the major element affects the
performance of the IMM. These models represent different
mode of operation of the system. If the system operating
mode is fare from these models it doesn’t converge.  Or if
we add models near to each other in parameters the
estimated state may converge to the wrong model and also

models probabilities after converging to the wrong model
cause system divergence.
We introduce two models one linear motion and one
coordinated turn model for quick maneuver detection.
1) Constant Velocity Model: This model is the most
commonly used. The target is assumed to move with a
constant velocity. For notational simplicity,

},,,{ tytytxtxtx  refers to the state (coordinates and

the velocities) of a single target following this motion

model and tu is the corresponding motion noise.
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where ),(,0(~ 22
yxt diagNu  .

2) Coordinated Turn Rate Model: This model assumes that
the target moves with a constant speed (norm of the
velocity vector) and a constant known turn rate  . Again,

we denote tx as the state of a single target from this class

and tu as the corresponding motion noise. To introduce

the case of a target moving with varying  change from
0.2 to 1.8 we divide the IMM into 10 modes, one linear
and other 9 modes at different 
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(4)

Where tu has the same Gaussian distribution as in (3).

Fig. 1 Scheme of IMM algorithm
A Markov transition matrix is used to specify the

probability that the target is in one of the modes of
operation. The model probabilities are updated at each new

)1|1(ˆ  kkxi

)|(ˆ kkx
)1|1(ˆ  kkx j

 Filter 1

Filter 2

Filter n

Interaction

Combination

Mixing
probability

)1|1(|  kkji

Markov model switching probability
Pij

Likelihoo
d )(kj

Model
probabilit
y )(kj

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013 
ISSN (Online): 1694-0814 | ISSN (Print): 1694-0784 
www.IJCSI.org 775

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



measurement, and the resulting weighting factors are used
in calculating the state. One cycle of a practical IMM
algorithm consists of the following steps which in
[3],[4],[9]

One Cycle of the IMM Estimator

1. Model-conditioned re initialization (for i = 1, 2,….,;M):

Predicted model probability:  
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2. Model-conditioned filtering (for i = 1, 2,…..M):
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3. Model probability update (for i = 1,2,…..M):

Model likelihood:
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Model probability:
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4. Estimate fusion: 
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4. Variable Structure Multiple Model
Estimation

General speaking, a fixed structure MM (FSMM)
algorithm is one with a fixed set of models while a variable
structure MM (VSMM) algorithm is one with a variable
set of models. The set of models used by MM algorithm at
time k is denote by Mk and the total set of models is
denoted M. As M is the union of all Mk’s. The MM
algorithm is said to have a fixed structure if the model set
Mk used is fixed over time (i.e. Mk = M; k ). Otherwise it
is said to have a variable structure.

VSIMM Recursion

1. Model-set conditioned (re)initialization [ ki Mm  ]:

Predicted model probability:
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Mixing covariance:




 

kj Mm

ij
k

j
kk

i
kk

j
kk

i
kk

j
kk

i
kk xxxxPP |

1
)(

1|1
)(

1|1
)(

1|1
)(

1|1
)(

1|1
)(

1|1 ])ˆ)(ˆ([ 

2. Model-conditioned filtering [ ki Mm  ]:
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3. Model probability update (for i = 1; 2; : : : ;M):
Model likelihood:
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4. Estimate fusion: 
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As the outcome of the advances during the past three
decades, the state-of-the art FSMM estimators usually
perform quite well for problems that can be handled by the
use of a small set of models. Consequently, they have
found a great success in solving many state estimation
problems compounded with structural or parametric
uncertainty, particularly in target tracking. However, when
they are applied to solve many real-world problems (e.g.,
many practical target-tracking problems), it is often the
case that the use of only a few models is not good enough.
Although further development is certainly possible, the
FSMM estimation techniques have arrived at such a stage
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that great improvement can no longer be expected. This
perception is based on an understanding of the
fundamental limitations of the FSMM approach.
These limitations stem from the following facts:
 It assumes fundamentally that the system mode at

any time can be represented (with a sufficient
accuracy) by one of a fixed set of models that can
be determined in advance.

 The set of possible system modes is not fixed. It
depends on the hybrid state of the system at the
previous time.

 As shown in [34],[38], use of more models in an
FSMM estimator does not necessarily improve
performance; in fact, the performance will
deteriorate if too many models are used.

 It cannot incorporate certain types of a priori
information.

 Clearly, the amount of computational resource
required by an FSMM estimator increases
dramatically with the number of models used.

5. Hierarchal Switching sets of IMM

The variable IMM increase the accuracy of the estimated
position but still doesn’t solve the problem of increasing
number of models to estimate a wide range of variation. It
works as IMM but takes only the results of models with
relativity higher model probability.
In our proposed algorithm we mix the advantage of small
number of models of IMM and variation of its activation
over a wide range. The space plane of the nonlinear
variable (e.g. acceleration or turning angle) is divided into
sets. Each set has its own IMM with its transition matrix
and model probability as if it stands alone. The likelihood
of each set is calculated according to its introduced
innovation. The output of sets is calculated as in VIMM. A
threshold value to the introduced innovation cause the
switching between the sets. The right set will be on while
the other will be off which reduced the computation time.
As the right set deviates from being the right one, all other
sets will start to work while this set will be off. The overall
computation time is less than that of including all sets as in
IMM and VIMM. The accuracy isn’t as IMM or VIMM
due to the activation of off sets. Overall the Hierarchal
Variable Switching of IMM overcomes the limitation of
increasing number of models of IMM with high stability
against measuring noise and also reduces the computation
time.

5.1 Model-Set Probability and Likelihood
As in VIMM the marginal likelihood of a model-set Mj at
time k is the sum of the predicted probabilities times the
marginal likelihoods, both of all the models in Mj
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Where z~ the measurement residual and s is is the mode in
effect during the time period over which the test is
performed. Note that s has to be assumed constant because
a hypothesis cannot be time variant. The joint likelihood of
the model-set

Mj is defined as ]|~{ j
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. The (posterior)

probability that the true mode is in a model-set Mj is
defined as
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Which is the sum of the probabilities of all models in Mj ,
where Mk is the total model-set in effect at time k, which
includes Mj as a subset and is problem  dependent. The
model probability  zsmsP ki

~,| m for each model mi is
typically available from an IMM estimator.

5.2 Initialization of New Models and Filters

The key to the optimal initialization of new models and
filters is the concept of state dependency of the system
mode set. It simply states that given the current mode (and
base state), the set of possible modes at the next time is a
subset of the mode space, which is determined by the
(Markovian) mode transition law. The optimal assignment
of the initial probability to a new model accounts only for
the probabilities of those models that may jump (switch) to
this new model, and the optimal initial state estimate for a
filter based on a (new or old) model is determined only
from the estimates (and the probabilities) of the filters
based on those models that may jump to the model.

Specifically, the optimal initialization of a filter based on a
new (or old) model mn can be done as follows. When

calculating ]~,;|[ 1)( zMmxE kn
kk

 , only the previous

estimates )(
1|1ˆ l

kkx  based on models in the set En should be

used, where En is the set of models in 1kM that are allowed
to switch to mn:

 0,: ,1   nlklln MmmE  (7)

Specifically, the initial estimate for time k cycle of the
filter based on model mn can be obtained as

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 2, January 2013 
ISSN (Online): 1694-0814 | ISSN (Print): 1694-0784 
www.IJCSI.org 777

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 
   

























nl

nl

Em

nl
k

l
kk

kn
k

l
k

Em

kkl
kk

kkn
kkkk

x

MmmPzMmxE

zMmxEx

|
1

)(
1|1

1)()(
1

12)(
11

11)(
11|1

ˆ

,|,,|

,,|



(8)

Where

 






 

ni Em

l
kin

l
knlkn

k
l

k
nl

k MmmP
)(
1

)(
1,1)()(

1
|

1 ,|



 (9)

5.3 Adding and Removing Sets

Perform N model-set sequential likelihood ratio test.
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These tests are implemented by using thresholds
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 Continue to the next time cycle to test for the
remaining pairs with one more measurement until
only one of the hypotheses H1,H2,…..,HN, say Hj ,
is not rejected.

5.4 Re-initialization of the off sets

The likelihood functions for filter j is as follows:
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Where )1|()()(~  kkzkzkz j
 is the innovation for filter j and

Sj(k) is the covariance matrix.
Switching between active sets as

 )1()( kk jj (11)

The model set of jM is change to off state and initiate the

other two sets.
One Cycle of Switching sets of IMM

Start one cycle for each set of IMM
3,2,1,....2,1))((max)( ,  iandjwherekk jii

For i=1:3
If  ik)( Set I change to off state
Else active
End.
If  ii kk )1()(

Change the state to off and activate the other sets
Else set is active.
End.
End.
Compare all )(ki the smallest )(ki takes its highest mode
l probability to be the set probability
Set probability of the other two sets=1- probability of minimum

)(ki

If the remaining sets are active
Distribute this value between them according
to their maximum model probability.

Else
Set the probability of the off sets to zero
End.
For active set which has the maximum probability we take its
output
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6 The Results of IMM of The First Tracking
Problem

We tested our model using Matlab 2010Ra. intel core 2
duo., under windows vista environment. The following

results is for 10 modes one for linear motion and the others
are at different ω [0.2,0.4,0.6,0.8,0.9,1.1,1.4,1.6,1.8],

Q=diagonal(0.52) R=diagonal(100). The results are the
average of 200 run. The target trajectory described in

Table1: target trajectory

scenario First trajectory Second trajectory
0<k<90 ω=1.4 ω=1.4
90<k<150 ω =0.2 ω=1.6
150<k<200 linear linear
200<k<300 ω=1.9 ω=1

The transition matrix has a diagonal of 0.82 while all
models start with equal model probability

Table 2: The results of the first target trajectory
IMM

RMSE
x

RMSEy RMSEv
x

RMXEvy Value T Exe.time

0.6174
2.9391

0.6039
2.711

0.3242
1.416

0.2970
1.528

Mean
Max

2.3 0.01443

0.6275
2.041

0.691
2.9366

0.4422
1.504

0.3774
1.6223

Mean
Max

2.5 0.01443

0.7423
3.3473

0.6081
2.4812

0.2973
0.9727

0.3163
1.4287

Mean
Max

2.9 0.01440
2

1.0326
4.9509

1.0102
4.509

0.3486
1.2098

0.4908
1.2983

Mean
Max

3.3
0.01449
8
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Table3: the results of the second target trajectory
IMM

RMSE
x

RMSEy RMSEv
x

RMXEvy Value T Exe time

0.6174
2.9391

0.6039
2.711

0.3242
1.416

0.2970
1.528

Mean
Max

2.3 0.01443

0.6275
2.041

0.691
2.9366

0.4422
1.504

0.3774
1.6223

Mean
Max

2.5 0.01443

0.7423
3.3473

0.6081
2.4812

0.2973
0.9727

0.3163
1.4287

Mean
Max

2.9 0.01440

1.0326
4.9509

1.0102
4.509

0.3486
1.2098

0.4908
1.2983

Mean
Max

3.3
0.01449
8

7. Hierarchal Switching of IMM

In the above examples we change models with ω near to
each other while the change of linear model can take place
at any k . the sudden jump of ω to far values cause system
to diverge.  Also in this model we choose ω that can
introduce good results with each other not all values of
them cause system converge or good tracking. Also Not
wide range of the time step variation is available.
Two overcome these limitation we introduce a variable set
of models. We take the advantage of good tracking of
small sets of IMM and divide our structure into three sets
The first set includes ω1=[0.2 0.4 0.6] .The second set
includes ω2=[0.8 0.9 1.1]
The third set includes linear model with ω3=[1.4 1.6 1.8]
.The variable structure of IMM algorithm is shown in
figure 2
The transition matrix of the first two set and model

probability as follow
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The transition matrix of the third set has 0.97 diagonal and
equal model probability

Fig.2 The Hierarchal structure of IMM for the three sets

8. The results of Hierarchal Structure of IMM
for The First Tracking problem

We tested our model using Matlab Ra2010 on intel core 2
duo., under windows vista environment. The following
results is for 10 modes one for linear motion and the others
are at different ω [0.2,0.4,0.6,0.8,0.9,1.1,1.4,1.6,1.8],
Q=diagonal(0.52) R=diagonal(100). The results are listed
in table 4. The system characterized by unknown
changeable structure as in the previous first example.

Table:4 The results of the first tracking problem
IMM

RMSEx RMSEy RMSEvx RMXEvy value T Exe.
time

2.2637
18.505

3

1.1498
5.039

0.6093
3.6603

0.4307
2.5497

Mean
Max

2.3 0.0066

2.6597
7.2371

2.4558
7.3775

1.0951
4.0049

0.9815
4.078

Mean
Max

2.5 0.0066

0.6341
5.1443

0.6489
5.034

0.5999
1.8247

0.6096
1.5653

Mean
Max

2.9 0.0067

2.5489
7.929

2.7573
7.603

0.8608
3.2303

0.8229
3.0638

Mean
Max

3.3 0.0065

3.4279
14.176

2

3.2624
13.3039

1.1856
3.9484

1.2166
3.9018

Mean
Max

4 0.0067

2.4515
8.2294

2.6506
9.7918

0.8125
3.1517

0.9002
5.5053

Mean
Max

5 0.0065

If we change ω to ω1=[7/dt 8/dt 9/dt] ω2=[4/dt 5/dt 6/dt]
and ω3 =[1/dt 2/dt 3/dt] with linear model. These values
include most of the turning angles that have good
separation between modes of operation. The other values
included in these modes. The RMSE for the same
parameters of the IMM are listed in table 5 while the
results of RMSE if we choose R=I 25, are listed in table 6

Table 5: The result of the first tracking problem

HSIMM
RMSEx RMSEy RMSEvx RMSEvy value T Exe time

17.6978
1.8674

18.2421
2.1699

2.2899
0.5395

2.6145
0.5922

Max
Mean

2.3 0.0071

7.6344
0.872

12.4231
1.1034

3.0548
0.6205

1.9364
0.4502

Max
Mean

2.5 0.0068

10.5143
0.9774

15.9724
1.2805

2.2557
0.4727

1.8583
0.4726

Max
Mean

2.9 0.007

15.8625
1.1525

11.5765
1.0396

2.3474
0.4897

2.4372
0.4882

Max
Mean

3.3 0.007

13.3789
1.0023

7.4274
0.9793

2.8286
0.9544

2.2394
0.8300

Max
Mean

4 0.0067

11.5338
1.6121

14.1307
1.3044

1.814
0.6895

3.4595
0.8429

Max
Mean

5 0.0067
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Table 6: The result of the Other sets for the same target trajectory

HSIMM

RMSE
x

RMSEy RMSEv
x

RMSEvy Value T Exe.time

4.0811
0 .4532

7.2529
0.7541

1.4272
0.4739

1.4737
0 .4404

Max
Mean

2.3 0.0067

4.893
0 .7274

6.7546
0.5493

1.8966
0.4879

1.5485
0.4558

Max
Mean

2.5 0.0068

5.1443
0.6341

5.034
0.6489

1.8247
0.5999

1.5653
0.6096

Max
Mean

2.9 0.0067

7.3538
0.6939

4.0377
0.7537

2.7559
0.7178

2.2064
0.6819

Max
Mean

3.3 0.0068

4.773
0.7348

6.9591
1.0398

3.2547
0.6877

3.3066
0.6414

Max
Mean

4 0.0061

9.954
1.5052

5.7863
1.0657

2.9827
1.0743

3.3516
1.0657

Max
Mean

5 0.0068

9. Results of The second Tracking Problem

The target measurement model

)]()([)()1( kwkaGkFxkx  (12)
,....2,1,0);1()1()1(  kKvkHxkz (13)

Where ),,,(  yx vyvxx denotes the targets state

),(  yx aaa is the acceleration, ],0[~ QNw is the

acceleration process noise, ),( yx zzz  is the

measurement, ],0[~ RNv is the random measurement error
and
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The unknown true acceleration is assumed piecewise
constant, varying over a given continuous planar region Ac.
In the MM framework, we consider a generic finite set

(grid) of acceleration values:  riAaA cir ,...2,1:)()( 


which
defines the total model set. We approximate the evolution

of the true acceleration over the quantized set )(rA via a

Markov chain model, that is, )(r
k Aa  with given

  i
i PaaP  )(

0 and   rjiaaaaP ij
i

k
i

k ,....2,1,for| )(
1

)(    .

Consider the following target-tracking example, adopted
from [8],[18],[17],[19]. A target moves in the horizontal
plane that may have piecewise-constant acceleration with a
maximum value of 4g (40m/s2) in any direction. Assume
that the following set of 13 time-invariant models,
characterized by the expected acceleration vector a, is
used:
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The transition relations among models are easily
understood in terms of the directed graph (i.e., digraph)
representation of an MM, introduced in [13], [15], [14],
[16]. The topology of model set )13(A is depicted in Figure
3. Each model is viewed as a point in the mode
(acceleration) space. An arrow from one model to another
indicates a legitimate model switch (self-loops are omitted)
with non-zero probability.

Fig. 3 Digraph representation of 13-model set

8.1 Design of VIMM and HSIMM

For both VIMM and HSIMM we divide the sets into three
sets. },,,,{ 10611321 aaaaaM  , },,,{ 813592 aaaaM  and

},,,{ 127413 aaaaM 

The probability transition matrix of IMM13 and VIMM
has diagonal of 0,8
The model probability is
 076.0076.0076.0076.0076.0076.0076.0076.0076.0076.008.008.008.0

For HVSIMM we have three sets each set has its own
transition matrix and model probability as follow
Set1

























8.004.004.004.004.0

04.08.004.004.004.0

04.004.08.004.004.0

04.004.004.08.004.0

04.004.004.004.08.0

  2.02.02.02.02.0

Set2 and Set3
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97.001.001.001.0

01.097.001.001.0

01.001.097.001.0

01.001.001.097.0

  25.025.025.025.0

The sets probability is initialized by
 3.03.04.0Set . It is changed according to the

maximum model probability of the model of sets. The
active set takes higher value while the other is distributed
according to their higher model probability.

8.2 Performance Evaluation

Test scenarios
The performances of the IMM, VIMM and HSIMM
tracking algorithms were investigated first over a large
number of deterministic maneuver scenarios with fixed
acceleration sequences. Deterministic scenarios serve to
evaluate algorithms’ peak errors, steady-state errors and
response times. We present two of them, referred to as
DS1 and DS2, in the sequel. Their acceleration values are
given in Table 7

Deterministic Scenarios’ Parameters
The other parameters for both scenarios are T = 1s; Q =
O; R =1250I; x0 = [8000; 25; 8000; 200]. Note that while
the acceleration values in DS1 are relatively close to the
fixed grid points of IMM13, in DS2 they are deliberately
chosen far apart from the grid points. As such, for the fixed
structure estimator IMM13 the scenario DS2 is more
difficult than DS1.

Table 7: The Targets Dynamics

Performance measure:

The accuracy of the algorithms was measured in terms of
position and velocity root-mean-square
errors (RMSE):
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and the estimated velocity.
The performances of the three MM tracking algorithms are
investigated first over a large number of deterministic
maneuver scenarios with fixed acceleration sequences.
Deterministic scenarios serve to evaluate algorithms’ peak
errors, steady-state errors and response times. We present
two of them, referred to as DS1 and DS2, in the sequel.
Their acceleration values are given in Table 7. The other
parameters for both scenarios are T=1 sec, Q=0,R=1250I
Note that while the acceleration values in DS1 are
relatively close to the fixed grid points of IMM13, in DS2
they are deliberately chosen far apart from the grid points.
As such, for the fixed structure estimator IMM13 the
scenario DS2 is more difficult than DS1.

Table 8: The results of target dynamics in table 7
IMM13 VIMM13 HSIMM13

DS1 DS2 DS1 DS2 DS1 DS2
RMSx 0.0182 0.0118 0.0.094 0.0892 5.6850 4.2039
RMSy 0.0291 0.0276 0.312 0.3131 3.6809 5.6190
RMSvx 103.309

2
74.822
4

105.635
1

75.133
0

23.876
4

16.058
0

RMXvy 97.7809 93.333
6

103.902
3

99.936
8

15.207
6

10.526
1

Table 9: The execution Time of target dynamics in table 7
IMM13 VIMM13 HSIMM

DS1 DS2 DS1 DS2 DS1 DS2

Time 0.0.007
5

0.0072 0.0085 0.0073 0.0045 0.0019

Scenari
o

DS1 DS2

K ax(k) ay(k) ax(k) ay(k)
1-29 0 0 0 0
30-45 8 22 8 22
46-55 2 37 12 27
56-80 0 0 0 0
81-98 25 2 15 2
99-119 -2 19 -2 9
120-139 0 -1 0 -1
140-149 38 -1 28 -1
150-160 0 0 0 0
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Figure 4 Activation between the sets as their set probability change for
DS1 of HSIMM13
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Figure 5 Activation between the sets as their set probability change for
DS2 of HSIMM13

The proposed HSIMM introduced less computational time
and also minimum RMS error as shown in table 5, 6,8 and
9. But it needs to be re-initialized to overcome error
accumulation.

The activation between included sets is achieved by the
introduced threshold value of innovation. The switching
algorithm as shown in figure 4 and 5 for DS1 and DS2 is
effective.

10.  Conclusion

As the number of the IMM increase the algorithm stability
decrease. Or in other word As the parameters change the
system doesn’t converge to different values. As we show in
IMM with 10 models. The change of ω and T . Also the
choosing of their values may cause system to converge to
the wrong model of ω. Also as the time step change the
(increase) the system doesn’t converge as ω and time step
change together. Not all the models change during
operating from model to another allowed.

In structure set of IMM we first choose the near values of
ω in the same model to avoid converging to the wrong set.
The small numbers of models increase the system stability.
It doesn’t diverge at the changing of time step or different
values of ω. Also changing from any model to another is
allowed. The advantages of the structure set of IMM are
introducing varieties of motion models and also varieties
of time step values. Introduce variety of Model change
during operation. Introduce large number of modes of
operation so we can avoid using the nonlinear models with
their calibration hardness. It also introduce less
computation time than introduced by the large number of
IMM since we only activate the right set.
The error introduced by the structure HSIMM is due to the
initialization at the beginning before converging to the
right set. This error can be reduced by the refinement
process if we take the saved values of the right set but it
doesn’t suite the real time process. The HSIMM also
introduce relatively similar errors at velocity components
compared to other algorithms. The computational time is
minimum than introduced by IMM and VIMM. HSIMM
introduces less error as the noise increase and there is no
need for re adjustment to the Covariance as the noise
increase so it is more robust against noise and introduces
minimum computational time.
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