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Abstract 
In order to solve the problem of algorithm convergence in 
projective non-negative matrix factorization (P-NMF), a method, 
called convergent projective non-negative matrix factorization 
(CP-NMF), is proposed. In CP-NMF, an objective function of 
Frobenius norm is defined. The Taylor series expansion and the 
Newton iteration formula of solving root are used. An iterative 
algorithm for basis matrix is derived, and a proof of algorithm 
convergence is provided. Experimental results show that the 
convergence speed of the algorithm is higher, however it is 
affected by the initial value of the basis matrix; relative to non-
negative matrix factorization (NMF), the orthogonality and the 
sparseness of the basis matrix are better, however the 
reconstructed results of data show that the basis matrix is still 
approximately orthogonal; in face recognition, there is higher 
recognition accuracy. The method for CP-NMF is effective. 
Keywords: Non-negative Matrix Factorization, Projective, 
Convergence, Face Recognition. 

1. Introduction 

According to the point of view which perception of the 
whole is based on perception of its parts, a data technology, 
called non-negative matrix factorization (NMF) 

WHX »  [1], was constructed. The method had revealed 
the essence of describing data, and it had been widely 
applied to the fields of data dimension reduction, image 
analysis, pattern recognition [1, 2], text mining, spectral 
data analysis [3], and so on. NMF is a current research 
focus. 
 
Projective non-negative matrix factorization (P-NMF) 

XWWX T»  [4] was proposed based on NMF. Since it 
was constructed from the projection angle, the basis matrix 
W  was only computed in the algorithm for P-NMF. The 
computational complexity was lower for one iteration step 
for P-NMF, as only one matrix had to be computed instead 
of two for NMF. On the basis of optimization rule 
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NMF was forced to tend to be orthogonal. So, the 
orthogonality and the sparseness of the basis matrix were 
better in P-NMF than in NMF, and then the method for P-
NMF was more beneficial to the applications of data 
dimension reduction, pattern recognition, and so on. 
 
However, the proof of algorithm convergence was not 
given in the paper [4]. Now, we use the objective function 
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in the paper [4] to do an experiment. In Eq. (1), X  
consists of the first five images of each person in the ORL 
facial image database, a total of 200 data. We set the rank 
of the basis matrix W  80 and initialize it with non-
negative data. In order to reduce the amount of 
computation and improve the speed of operation, each 
image is reduced to a quarter of the original. After 10000 
iteration steps, we will see that the varied curve of the 
objective function values versus iteration steps is severely 
concussive, and the algorithm does not converge. Here, in 
order to make the graphics clearly seen, we give the varied 
curve of objective function values versus iteration steps 
after 100 iteration steps, and the curve is shown in Fig. 1. 
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Fig. 1 Objective function values versus iteration steps 
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In order to solve the problem of algorithm convergence in 
P-NMF, a method is proposed based on P-NMF 

XWWX T»  in this paper. We call it convergent 
projective non-negative matrix factorization (CP-NMF). In 
this method, another iterative algorithm for the basis 
matrix W is constructed, and strict proof of algorithm 
convergence is provided, and the convergence speed of the 
algorithm is higher. Like P-NMF, the orthogonality and the 
sparseness of the basis matrix are still better in CP-NMF. 
We compare this method with the methods of NMF, 
LNMF [5], and NMFOS [6], and the experimental results 
show that this method has higher recognition accuracy in 
face recognition. 
 
The rest of this paper is organized as follows. In Section 2, 
our method is introduced in detail. Firstly, an iterative 
formula for basis matrix W  is derived strictly based on 

XWWX T» . Secondly, a proof of algorithm 
convergence is provided. Finally, the algorithm steps are 
given. In Section 3, the convergence of the algorithm is 
validated by numerical experiments, and it is emphasized 
that the convergence speed of the algorithm is affected by 
the initial value of the basis matrix W  and the basis matrix 
W  is still approximately orthogonal. Moreover, by 
numerical experiments in face recognition, we compare 
this method with NMF and some extended methods in 
Section 4, and explain the effectiveness of the method. In 
the end, conclusions are drawn in Section 5. 

2. Convergent Projective Non-negative Matrix 
Factorization (CP-NMF) 

We consider an objective function [4] 
2
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where .0,0 ³³ WX  Obviously, F  is a function 

defined in P-NMF. We may minimize F  to get W . 

2.1 The Iterative Rule for Basis Matrix W  

For any element abw  of W , let 
abwF stand for the part of 

F  relevant to abw  in Eq. (2). So, writing w  instead of 

abw  in the expression of 
abwF , we may get a function 

).(wF
abw  Obviously, the first order derivative of 

)(wF
abw  at abw  is the first order partial derivative of F  

with respect to abw . That is 
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and other order derivatives of )(wF
abw  with respect to w  
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is gotten from Eq. (8). 
 
Now, we define a function 
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In order to get the root of the equation 

=),( )(' t
abw wwG

ab
0,                             (12) 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 130

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

we have known that the function ),( )(' t
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Taylor series expansion with respect to w  from Eq. (11), 
and then may use the Newton iteration formula of solving 
root to get the root of Eq. (12). That is 
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Using Eq. (3), we simplify the Eq. (13) to 
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Because the Newton iteration formula of solving root is 
convergent, we may use this iterative rule Eq. (17) and 

make the auxiliary function ),( )(t
abw wwG

ab
 local 

minimum, and thus make the objective function )(wF
abw  

local minimum. If all elements of W  are updated by Eq. 
(17), the local minimum of the objective function F  may 
be gotten. Therefore, the algorithm converges. 
 

The Eq. (17) is the iterative update rule for the basis matrix 
W . 

2.2 Algorithm Steps 

Using Eq. (17), we may get an algorithm to compute the 
basis matrix W . As follows: 

Step1: initialize W  and X  with non-negative data; 
Step2: update W  by Eq. (15), Eq. (16) and Eq. (17); 
Step3: repeat step2 until algorithm converges. 
 

nW  and 1+nW  are respectively used to denote the nth and 

n+1th iterative result of the basis matrix W . The condition 
of algorithm convergence is that there is 

0,
2

1 >"<-+ ee
Fnn WW                      (18) 

for an arbitrarily small positive number e . In inequality 
(18), F stands for Frobenius norm. 

3. Experiments and Analysis 

In the following experiments, X  consists of the first five 
images of each person in the ORL facial image database, a 
total of 200 data. We set the rank of the basis matrix W  
80. In order to reduce the amount of computation and 
speed up the operating speed, every image is reduced to 
half. 

3.1 Algorithm Convergence 

In order to make the process of algorithm convergence 
seen more clearly in the graph, we set the larger e  0.001, 
and randomly initialize W  with non-negative data. The set 
precision of algorithm convergence is obtained after 60 
iterations. In this case, the varied curve of the objective 
function values versus iteration steps is shown in Fig. 2. 
We can see that the convergence speed of the algorithm is 
higher. In addition, we initialize W  with the first two 
images of each person in the ORL, and do an experiment 
again. The same precision of algorithm convergence is 
obtained after 39 iterations. The varied curve is shown in 
Fig. 3. We can see faster convergence of the algorithm. 
This shows the initial value of the basis matrix affects the 
convergence speed of the algorithm. The reason is that the 
convergence speed of Newton iteration formula is 
dependent on initial value, and the initial value is close to 
the root convergence faster. 
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Fig. 2 Objective function values versus iteration steps when the basis 

matrix is initialized randomly with non-negative data 
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Fig. 3 Objective function values versus iteration steps when the basis 

matrix is initialized with the known non-negative data 

3.2 Analysis of the basis matrix 

In the experiment of obtaining Fig. 2, we set the 
convergent precision e  0.00001 for the base matrix W   
while the other set data are unchanged, and do an 
experiment again. After the algorithm converges, the basis 
matrix image is shown in Fig. 4. We respectively take the 

vector xW T  and xWWW TT 1)( -  as the feature vector 

of the data x  and reconstruct x , and reconstructed results 
are respectively shown in Fig. 6 and Fig. 7. 

 
Fig. 4 Basis matrix image 

                                  
Fig. 5 Original image x ;  Fig. 6 )( xWW T ;  Fig. 7 xWWWW TT 1)( -  

From the basis matrix image, we can see that the basis 
matrix is very sparse. This shows that the basis matrix W  
is forced to tend to be orthogonal by optimizing the 
objective function F . 

 
From the reconstructed images, we can see that two 
reconstructed images are all effective, and this shows that 
the basis matrix W is effective; getting the reconstructed 
image of x  is better by xWWWW TT 1)( -  than by 

)( xWW T , and this shows that the basis matrix W  is still 

approximately orthogonal, therefore getting the feature 
vector of data x  is better using xWWW TT 1)( -  than 

using xW T . 
 
The orthogonality and the sparseness of the basis matrix 
may be computed quantificationally [8, 9]. Without doubt, 
because this method is still based on the objective function 
in Eq. (2) for optimization, the orthogonality and the 
sparseness of the basis matrix are still better. Here, we 
don’t repeat them. 

4. Results of Face Recognition and Analysis 

In learning phase, X  consists of the first five images of 
each person in the ORL facial image database, a total of 
200 data. In order to reduce the amount of computation, 
and speed up the operating speed, each image is reduced to 
a quarter of the original. We set e  0.00002, and initialize 
randomly the basis matrix W  with non-negative data. 
After the algorithm converges, we get the basis matrix W  

and feature matrix XWWW TT 1)( - , and take the feature 

matrix as a template library.  
 
In the pattern recognition test phase, we take the after five 
images of each person in the ORL facial image database, a 
total of 200 data, as test data, and reduce every image to a 

quarter of the original, use xWWW TT 1)( -  to compute 

the feature vector of test image x  by the basis matrix W  
obtained in the learning phase, and use the nearest 
neighbor rule for face recognition. We compare this 
method with the methods of NMF, LNMF, and NMFOS. 
When the ranks (i.e., the feature subspace dimensions) of 
the basis matrix are set different values, the results of the 
face recognition are shown in Fig. 8. 
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Fig. 8 Comparison of the results of face recognition in the ORL 
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As can be seen from the Fig. 8, the recognition accuracy is 
obviously higher using CP-NMF than using NMF. The 
cause is that the basis matrix W  is forced to tend to be 
orthogonal by the objective function for CP-NMF in Eq. (2) 
so that the basis matrix is more orthogonal in CP-NMF 
than in NMF. So the discriminative power of the feature 

vector xWWW TT 1)( -  for CP-NMF is better. Meantime, 

when the rank of the basis matrix is greater than or equal to 
60, the recognition accuracy is slightly higher using CP-
NMF than using LNMF or NMFOS. This is because there 
are also approximately orthogonal constraints for the basis 
matrixes in the objective functions for LNMF and NMFOS 
so that the discriminative power of the feature vectors is 
also good. But the discriminative power of the feature 

vector xWWW TT 1)( -  for CP-NMF is better.  
 
In addition, when the rank of the basis matrix for CP-NMF 
is between 40 and 160, the recognition accuracy becomes 
more stable. This is because the orthogonality and the 
sparseness of the basis matrix for CP-NMF are always 
better so that the recognition accuracy is less affected by 
the number of the rank of basis matrix. 

5. Conclusion 

In this paper, we propose a method, called convergent 
projective non-negative matrix factorization (CP-NMF). In 
CP-NMF, the algorithm steps are given. The convergence 
speed of the algorithm is higher. Relative to NMF, the 
orthogonality and the sparseness of the basis matrix are 
better. Relative to NMF and some extended NMF methods 
with orthogonal constraints for the basis matrixes in the 
objective functions, there is higher recognition accuracy in 
face recognition. 

Acknowledgment 

This work was supported by Key Technologies Research 
and Development Program of Chinese Anhui Province 
under grant No. 07010202057. 
 
References 
[1] D. D. Lee and H. S. Seung, “Learning the parts of objects 

by non-negative matrix factorization,” Nature, 1999, vol. 
401, pp. 788−791. 

[2] L. Y. Ma, N. Z. Feng and Q. Wang, “Non-negative matrix 
factorization and support vector data description based one 
class classification,” International Journal of Computer 
Science Issues, 2012, Vol. 9, No. 5, pp. 36−42. 

[3] M. W. Berry, M. Browne, A. N. Langville, et al., 
“Algorithms and applications for approximate non-negative 

matrix factorization,” Computational Statistics & Data 
Analysis, 2007, vol. 52, pp. 155−173. 

[4] Z. J. Yuan and E. Oja, “Projective nonnegative matrix 
factorization for image compression and feature extraction,” 
In: Proceedings of the fourteenth Scandinavian Conference 
on Image Analysis, 2005, pp. 333−342. 

[5] S. Z. Li, X. W. Hou, H. J. Zhang, et al., “Learning spatially 
localized, parts-based representation,” In: Proceedings of 
the IEEE conference on Computer Vision and Pattern 
Recognition, 2001, pp. 1−6. 

[6] Z. Li, X. Wu and H. Peng, “Non-negative matrix 
factorization on orthogonal subspace,” Pattern Recognition 
Letters, 2010, vol. 31, pp. 905−911. 

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative 
matrix factorization,” In Advances in Neural Information 
Processing Systems 13, MIT Press, 2001. 

[8] L. Li and Y. J. Zhang, “Linear projection-based non-
negative matrix factorization,” Acta Automatica Sinica, 
2010, vol. 36, pp. 23−39. 

[9] Z. R. Yang, Z. J. Yuan and J. Laaksonen, “Projective 
nonnegative matrix factorization with applications to facial 
image processing,” Intenational Journal of Pattern 
Recognition and Artificial Intelligence, 2007, vol. 21, pp. 
1353−1362. 

 
Lirui Hu was born in Xiangtan, China, in November 1966. He 
received his Master degree in 2000 in mathematics from Guizhou 
University, Guizhou China. Presently, he is a doctoral candidate in 
computer application technology at the Key Laboratory of 
Intelligent Computing and Signal Processing of Ministry of 
Education, Anhui University, Hefei China. He is an associate 
professor at School of Computer Science and Technology at 
Nantong University, Nantong China. His research interests include 
image processing, pattern recognition and machine learning. 
 
Jianguo Wu was born in Suzhou, China, in August 1954. He 
received his Doctor degree in 1998 from Beijing Institute of 
Technology, Beijing China. He is a professor at School of 
Computer Science and Technology at Anhui University, Anhui 
China. His research interests include Chinese information 
processing, image processing and pattern recognition. 
 
Lei Wang was born in Xuancheng, China, in March 1987. 
Presently, he is a master’s candidate in computer application 
technology at the Key Laboratory of Intelligent Computing and 
Signal Processing of Ministry of Education, Anhui University, Hefei 
China. His research interests include image processing and 
pattern recognition. 
 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013 
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814 
www.IJCSI.org 133

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




