

Knowledge representation with SOA

Daniela Gotseva1 and Ioannis Dimakopoulos2

 1 Computer Systems Department, Technical University of Sofia

Sofia, Bulgaria

2 Computer Systems Department, Technical University of Sofia

Sofia, Bulgaria

Abstract
This paper addresses the problem of supporting the software

development process through the artificial intelligence. The

expert systems could advise the Domain Engineer in

programming without the detailed experience in programming

languages. He will use and integrate, with the help of deductive

database and domain knowledge, the previously developed

software components to new complex functionalities.

The objective of this document is to provide the knowledge

representation about atomic Web Services which will be

registered as the facts in the deductive database. The author

proposes to use the decision rules in decision tables for

representing the service model which consists of semantic

specification, interface description, service quality (QoS), non-

functional properties. Also the use of Domain Specific

Languages (DSL) for modeling Domain Engineer’s re-quests to

the expert system will be considered within this document. As

the illustrative use case for described knowledge representation

the author proposes the domain of SOA-based geographic

information systems (GIS) which represent a new branch of

information and communication technologies.

Keywords: domain engineering, Services Oriented Architecture,

deductive database, expert system, Domain Specific Languages,

service model, complex service.

1. Introduction

The aim of this document is to propose a new approach of

soft-ware development supported by the artificial

intelligence. The Services Oriented Architecture (SOA),

especially the Web Services go towards the need of

developing software families through Domain Engineer

which has no detailed experience in computer

programming, but has strong expert knowledge. This

process could be supported by expert systems.

The background of the consideration is the Domain

Engineering approach [8] which relies on developing

software families from reusable components which are

parts of common domain system. In the future, the

software can be named service-ware, where all resources

are services in a Service Oriented Architecture. The main

idea of this approach is that business processes engineer

operates on atomic services, not on the software or

hardware that implements the service [9].

The method proposed within this paper could be used in

large companies enabled on SOA for realizing business

processes management (BPM) applications. Web Services

are considered as a promising technology for Business-to-

Business (B2B) integration. A set of services from

different providers can be composed together to provide

new complex functionalities.

2. Concept

Fig. 1 presents the overview of the approach considered

within this document. Expert system plays the role of

decision supporting system. Its task is to provide the

proposition of complex service (workflow of atomic Web

Services) basing on the Domain Engineer’s request

explained by means of Domain Specific Language (DSL).

The facts in the deductive database are delivered by Soft-

ware Developer which implements new functionalities

fashioned as the Web Services compliant with enterprise

SOA infrastructure. Software Developer registers the

atomic service model into facts database and also the

service instance in SOA registrars.

The author of this paper proposed in previous work [3] the

proof of concept prototype based on the Java framework

for intelligent discovery and matchmaking atomic Web

Services within integrated workflow called complex

service. Thus, the problem of knowledge representation in

Services Oriented Architecture will be considered in next

sections.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 443

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3. Problem statement and challenges

The solution issue of writing computer program through

other computer program is very idealistic challenge, so it

seems to be realistic when some assumptions have been

fulfilled. The Services Oriented Architecture based on a

collection of Web Services that communicate with one

another within the distributed systems, which are self-

contained and do not depend on the context or state of the

other services, allows for discovery of new program

functionalities by expert system. The next assumption is

that all actors of Fig. 1 should use common domain

namespace (domain objects) expressed through domain

ontologies (for instance Web Service Modeling Ontology

[20]).

The aim of research work described within this document

is to provide the sufficient knowledge representation about

Web Services which consists of service models, that

involve interface de-scription and semantic specification as

well as information about service quality (QoS) and non-

functional properties.

The properly defined models of atomic Web Services

registered as the facts in expert system will enable

inferring knowledge about enterprise software resources by

Domain Engineer and matchmaking them as the new

applications.

4. Related work

The author of [1] describes the semantic service

specification, which is the basis for the composition of

services to application service processes. Semantic-

specified services are a precondition for the development

of complex functionality within application service

processes. If the user wants to use a service with a desired

functionality he sends the semantically specified request

and checks which existing services can fulfill this request.

The semantic service specification specifies the

characteristics of a service. It means, semantic service

specification defines what the service does, not how the

service doest it. The characteristics of a service contain for

example the input parameter, the results, the effects

(changing of the world) and the conditions for a successful

execution of the service. The first requirement of the

semantic service specification is an existing domain

ontology, which describes the domain specific concepts

and associations and attributes of these concepts. A further

requirement for the description of the semantic service

specification is a unified description language. The F-

Logic language [17] and its extension called Flora-2 [19]

have been used. F-Logic is a deductive, object oriented

database language which combines the declarative

semantics and expressive-ness of deductive database

languages with the rich data modeling capabilities

supported by the object oriented data model [1].

The authors of this paper propose other approach to

explain the service models using Java language

expressions. The main objective for this solution is to

combine in one programming language: knowledge about

services, expert system/rule engine compliant with JSR-94

specification (implementation of the Java Rule En-gine

API known as JSR94, which allows for support of multiple

rule engines from a single API [16]) as well as J2EE [18]

middle-ware and software patterns which is the powerful

development platform for Services Oriented Architecture

[2]. In the previous paper author proposed the architecture

for complex services prototyping and proven the feasibility

of this approach on the Java plat-form using the developed

prototype [3].

A proper service description answers three questions about

a service: what the service does (including its non-

functional description), where it is located, and how it

should be executed [4]. The Fig. 2 presents the atomic

service model proposed by authors of this paper which

answers these questions.

Web Services are software applications with public

interfaces described in XML. According to the established

standards, Web Service interfaces are defined in Web

Service Description Language (WSDL) [5]. Published in

Universal Description, Discovery and Integration (UDDI)

registrars [10] could be discovered and invoked by other

software components. These systems interact with Web

Services using XML-based message in Simple Object

Access Protocol (SOAP).

Fig. 1 Overview of the approach.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 444

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Service Grounding Specification (see Fig. 2) refers to the

WSDL description. WSDL consists of a hierarchy of

objects (proposed within [3] to use domain ontology to

define these objects), from the most basic data type,

through message, operation, port type, binding and port to

service itself [5]. Its wsdlUri attribute is the Unified

Resource Identifier (URI) and refers to the service WSDL

file. WSDL does not provide methods to describe non-

functional service properties.

Quality of Service (QoS) in service oriented platforms is a

crucial attribute in assessing proper operation of services.

Loosely coupled distributed systems in service discovery,

composition and execution have emerged as a new

paradigm in building virtual organizations. In order to

support rapid and dynamic composition of services it

should be possible to locate services that meet user’s

functional requirements. Moreover, it should be possible to

select the best service based on their QoS. It is important

to stress the difference between non-functional (NF) and

QoS parameters. QoS parameters are a subset of NF

parameters. NF parameters may include some information

that is not directly computable, for example textual service

description, phone numbers to service developers

(providers), date of service preparation etc. As a result of

that, when using either NF or QoS concepts, one should

distinguish that NF relates to a whole set of non-functional

parameters, and QoS refers to those NF parameters that

may be computationally processed, compared and verified

with greater ease [4].

In service arena it is suggested that the term QoS should

refer not only to such basic, originating from networking

parameters as bandwidth, latency, error rate or availability

(the probability that the service is available), reliability

(stability of a service function-ality, i.e. ability of a service

to perform its functions under stated conditions). Therefore,

additional aspects come into consideration, such as speed

of operation, robustness, accuracy of operation, de-

pendability, capacity (a limit of concurrent requests for

guaranteed performance), throughput (the number of

requests served in a given time period), response time (the

time taken by a service to process its sequence of

activities), execution cost (the amount of money for a

single service execution). Even parameters such as

operating system and storage capacity of the executing

system may by considered QoS parameters, as they affect

end-to-end op-eration of a service [4] [7].

Currently, most approaches that deal with quality of

services address only some generic parameters such as

execution price, execution duration, service availability

and reliability [6]. These parameters may be defined as

follows [4]:

 Execution price – the amount of money that a

service requestor has to pay to the service

provider for using the Web Service.

 Execution duration (also called latency time) –

mea sures the expected delay in seconds between

the moment when a request is sent and the

moment when the service is rendered.

 Execution duration is a sum of the processing

time and the transmission time.

 Reputation (also called Service quality reputation)

is a measure of service trustworthiness. It depends

mainly on end user’s experience of using the

service. Different users may have different

opinions on the same service.

5. Implementation

All service instances available in particular domain are

treated as the knowledge representation system and can be

explained as the decision table which contains production

rules. Decision tables specify what decisions should be

made when some conditions are fulfilled [11]. This

document considers the knowledge reasoning problem

employing decision tables’ formalism

K = (U, A) (1)

Where K is the knowledge representation system, U is a

nonempty, finite set, called universe, and A is a nonempty

set of primitive attributes.

The knowledge representation system which distinguishes

the condition and decision attributes can be called decision

table T:

T = (U, A, C, D) (2)

Where C and D called condition and decision attributes are

two subsets of attributes.

Any implication

Φ→Ψ (3)

Is considered as the decision rule and Φ, Ψ are called

predecessor and successor respectively.

Fig. 2 Atomic Service Model.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 445

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

If Eq. (3) is decision rule and P contains all attributes

occurring in Φ (condition attributes) and Q contains all

attributes occurring in Ψ (decision attributes) then this

decision rule can be called PQ-rule.

Let’s consider the real decision table (see Table 1), which

represents the knowledge system from geographic

information systems domain in Services Oriented

Architecture and the facts are explained as the PQ-rules.

The use case scenario and the services landscape were

described within [3].

Table 1: Real Decision Table.

O
p
e
ra

ti
o
n

 N
a
m

e

In
p
u

t
P

a
ra

m
et

e
rs

O
u

tp
u

t
P

a
ra

m
et

e
r

P
ro

v
id

er

E
x
e
c
u

ti
o
n

 P
ri

ce

E
x
e
c
u

ti
o
n

D
u

ra
ti

o
n

R
e
p
u

ta
ti

o
n

S
e
rv

ic
e
 N

a
m

e

P1 P2 P3 P4 P5 P6 P7 Q1

g
et

M
ap

{
C

o
o

rd
in

at
es

}

M
ap

T
el

eA
tl

as

5
$

1
2

m
s

h
ig

h

G
is

M
ap

p
ro

v
id

eM
ap

{
C

o
o

rd
in

at
es

}

M
ap

G
IS

A
tl

as

0
$

2
4

m
s

m
ed

iu
m

P
ri

n
tM

ap

d
ra

w
P

o
in

t

{
C

o
o

rd
in

at
es

,

M
ap

}

P
o

in
tM

ar
k

et

G
IS

 C
o

m
p

an
y

0
$

2
m

s

h
ig

h

D
ra

w
P

o
in

t

d
ra

w
S

eg
m

en
t

{
C

o
o

rd
in

at
es

,

C
o

o
rd

in
at

es
,

M
ap

}

S
eg

m
en

tL
in

e

G
IS

 C
o

m
p

an
y

2
$

5
m

s

h
ig

h

D
ra

w
S

eg
m

en
t

co
m

p
u
te

D
is

ta
n
ce

{
C

o
o
rd

in
at

es
,

C
o
o
rd

in
at

es
}

D
is

ta
n
ce

IT
S

0
$

1
m

s

m
ed

iu
m

C
o
m

p
u
te

S
eg

m
en

t

D
is

ta
n
ce

The columns P1-P7 represent the condition attributes and

column Q1 represents the decision attribute of the PQ-rule.

These PQ-rules are stored as the facts in expert system

database.

The Eq. (4) formalizes a possible representation of PQ-rule

from Table 1 in accordance to the Eq. (3).

P1=getMap and P2={Coordinates} and P3=Map →

Q1=GISMap (4)

The authors of this paper prepared the facts database in

terms of production rules regarding Eq. 4 and Table 1 as

the Java class which is loaded into the Working Memory

of expert system (see code listing 1).

Code listing 1: FactsDatabase Class.
public class FactsDatabase { WorkingMemory

rulesEngineMemory;

public FactsDatabase(WorkingMemory rulesEngineMemory) {

this.rulesEngineMemory = rulesEngineMemory;

}

public void activateFacts() { AtomicService as;

Collection inputParameters; QoS qos;

// PQ rule

// P-attributes

as = new AtomicService();

as.setOperationName("getMap");

inputParameters = new ArrayList();

inputParameters.add(new

Coordinates().getClass().getName());

as.setInputParameters(inputParameters);

as.setOutputParameter(new Map().getClass().getName());

as.setProvider("TeleAtlas");

qos = new QoS(); qos.setExecutionPrice(5);

qos.setExecutionDuration(12); qos.setReputation("high");

as.setQos(qos); //Q-attributes

as.setServiceName("GisMap");

as.setServiceDescription("Service creates a map

according to provided longitude and latitude.");

rulesEngineMemory.insert(as);

}

As the expert system the JBoss DROOLS [12] rule engine

based on the RETE algorithm [13] has been used. Drools

imple-ments and extends the Rete algorithm which is

called ReteOO, what signifying that Drools has an

enhanced and optimized im-plementation of the Rete

algorithm for Object Oriented systems [14].

The Domain Engineer models the request to the deductive

database as the production rules presented in Eq. (3)

manner, also to infer conclusions which results in actions

“ When <conditions> then <actions>”. The advantage of

using rules engine is the declarative programming. Rules

are much easier to read than source code. Also the ability

of creation of executable domain knowledge repository

plays the important role. Domain experts are often a wealth

of knowledge about business rules and processes. They

typically are non-technical, but can be very logical. Rules

can allow them to express the logic in their own terms [12].

The production rule example (code listing 2) shows the

strength of proposed approach. The Domain Engineer

models the request to the deductive database as the one

rule instead of a lot of source code lines and nested loops

in structural programming languages or SQL statements.

But, the production rules modeling could be much easier

through usage of Domain Specific Language (DSL). It is

the way of extending the rule to problem domain. Simple

DSL can be implemented by lexical processing. In addition,

DSL can be used to create front-ends to existing systems or

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 446

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

to express complicated data structures. A DSL is a

programming language tailored especially to an application

domain: rather than being for a general purpose, it captures

precisely the domain's semantics [15]. DSL can act as

"patterns" of conditions or actions that are used in rules,

only with parameters changing each time [12]. Rules

expressed in Domain Specific Language have human-

readable form and match the expression used by domain

experts [15].

Code listing 2: Production Rule Example.
rule "serviceProposition1" when

#conditions

as : AtomicService(outputParameter == "soa-

rules.ontology.Map", qos.executionDuration < 20 , ser-

viceName : serviceName, serviceDescription : serviceDe-

scription)

then #actions

System.out.println("Proposed service1: " + serviceName

+ " - " + serviceDescription);

End

Code listing 3 shows how the rule can be transformed to

“patterns” of DSL.

Code listing 3: DSL patterns.
 [conditions]

DSL Language expression:

There is an Atomic Service where Rule mapping:

AtomicService(serviceName : serviceName, ser-

viceDescription : serviceDescription)

DSL Language expression:

- output parameter equals "{value}" Rule mapping:

outputParameter == "{value}"

DSL Language expression:

- executionDuration is less than "{value}" msec Rule

mapping:

qos.executionDuration < "{value}"

[actions]

DSL Language expression:

Print service name and service description Rule mapping:

System.out.println("Proposed service1: " + serviceName

+ " - " + serviceDescription);

The usage of “patterns” of Domain Specific Language

allows the Domain Engineer to model the request to the

expert system and find the desired Web Service in friendly

manner as shown on code listing 4.

Code listing 4: Usage of DSL patterns.
rule "serviceProposition1"

when

#conditions

There is an Atomic Service where

- output parameter equals "soa-

rules.ontology.Map"

- executionDuration is less than "20" msec

then

#actions

Print service name and service description

End

6. Conclusion

The presented approach allows supporting the Domain

Engineer in developing applications from business

processes management area. The Domain Engineer has no

detailed experience in computer programming, but has

strong expert knowledge. He can model the requests to the

deductive database as the production rules in human-

readable format with usage of Domain Specific Languages

instead of several lines and nested loops of Java or SQL

code The author discussed within this paper the knowledge

representation in SOA explained as the decision tables

with atomic service models which involve semantic

specification, interface description (WSDL), non-

functional properties and quality of services (QoS).

The further research will be focused on refinement of

reasoning process with usage of other techniques of the

artificial intelligence, development of domain specific

languages for GIS domain, storage of the facts before

loading to production memory (the traditional solution as

the text files is not enough convenient to hold on objects)

as well as discovery and matchmaking workflows of

complex services.

References
[1] Donath Steffi, Automatic Creation of Service Specifications,

6th Annual International Conference on Object-Oriented and

Internet-Based Tech-nologies, Concepts, and Applications

for Networked World, Net.ObjectDays Proceedings, pp.79-

89, September 19-22, 2005

[2] Hansen Mark, SOA Using Java Web Services, Person

Education Inc., Prentice Hall, 2007

[3] Grobelny Piotr, Rapid Prototyping of Complex Services in

SOA Architecture, IX International PhD Workshop

OWD’2007, Conference Archives PTETiS, vol. 23(1),

pp.71-76, 2007

[4] Kowalkiewicz Marek, Current challenges in non-functional

service description – state of the art and discussion on rese

arch results, Net.ObjectDays Proceedings, Spetember 19-22,

2005 pp.91-96

[5] Christensen, E., F.Curbera, et al. Web Services Description

Language (WSDL) 1.1, World Wide Web Consortium

(W3C), 2001

[6] Zeng, L., B. Benatallah, et al., Quality driven Web Services

Composition. Proceedings of the 12th international

conference on World Wide Web (WWW) Budapest, Hungary,

ACM Press 2003

[7] Kokash Natallia, D’Andrea, Vinzenzo, Evaluating Quality of

Web Ser-vices: A Risk-Driven Approach, Business

Information Systems, Witold Abramowicz (Ed.) 10th

International Conference BIS 2007 proceedings, LNCS 4439,

pp.180-194, Springer, 2007

[8] Czarnecki Krzysztof, Eisenecker Ulrich: Generative

Programming – Methods, Tools and Applications, Addison

Wesley, Boston, MA, 2000

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 447

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[9] Ekelhart Andreas et al.: Security Issues for the Use of

Semantic Web in E-Commerce, Business Information

Systems, Witold Abramowicz (Ed.) 10th International

Conference BIS 2007 proceedings, LNCS 4439 pp.1-13,

Springer, 2007

[10] UDDI Specifications, http://www.oasis-

open.org/committees/uddi-spec/doc/tcspecs.htm, accessed

January 2007

[11] Pawlak Zdzisław: ROUGH SETS Theoretical Aspects of

Reasoning about Data, Kluwer Academic Publishers, 1991

[12] Proctor Mark et al.: Drools Documentation,

http://downloads.jboss.com/drools/docs/4.0.4.17825.GA/htm

l_single/ in-dex.html, accessed January 2008

[13] ForgyC., RETE: A Fast Algorithm for the Many Pattern

Many Object Pattern Match Problem, Artificial Intelligence,

19(1), pp.17-37 Sept. 1982

[14] Doorenbos Robert B., Production Matching for Large

Learning Systems (Rete/UL), PhD thesis, Carnegie Mellon

University, January 31, 1995

[15] Spinellis Diomidis, Notable design patterns for domain-

specific languages, The Journal of Systems and Software 56

(2001) pp. 91-99, El-sevier 2001

[16] Toussaint Alex, Java Rule Engine API™ JSR-94, Java

Community Proc-ess, http://jcp.org/en/jsr/detail?id=94, BEA

Systems, September 2003

[17] Kifer Michael et al.: Logical Foundations of Object-

Oriented and Frame-Based Languages, Journal of the

Association for Computing Machinery, May 1995

[18] Sun Microsystems, Simplified Guide to the Java 2

Enterprise Edition,

http://java.sun.com/j2ee/reference/whitepapers/j2ee_guide.pd

f, Accessed January 2008

[19] Yang Guizhen et al.: FLORA-2: A Rule-Based Knowledge

Representation and Inference Infrastructure for the Semantic

Web, Second International Conference on Ontologies,

Databases and Applications of Semantics (ODBASE),

Catania, Sicily, Italy, November 2003

[20] Dumitru Roman et al.: Web Service Modeling Ontology,

Applied Ontology, 1(1), pp. 77-106, 2005

Daniela Gotseva is associate professor, PhD and Vice Dean of
Faculty of Computer Systems and Control, Technical University of
Sofia, from 2008 with primary research interest of programming
languages, system programming, and fuzzy logics. She is a
member of the IEEE and the IEEE Computer Society.

Ioannis Dimakopoulos is PhD student at Faculty of Computer
Systems and Control, Technical University of Sofia, from 2010,
with primary research interest of system programming and service
oriented architecture (SOA).

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 448

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

