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Abstract 

Portfolio selection problem is one of the core research fields in 

modern financial management. While considering the 

transaction costs in the long term investment makes the 

portfolio selection problems more complex than there are no 

transaction costs. In this paper, the general multi-period 

investment problems with HARA utility function and 

proportional transaction costs are investigated. By using the 

dynamic programming method, the indirect utility function is 

defined for solving the portfolio selection problem. The 

optimal strategies and the boundary of the no-transaction 

region are obtained in the explicit form. And the procedure for 

solving the original portfolio selection problem is given. 

Numerical example shows the feasibility and effectiveness of 

the method provided in this paper. 

Keywords: Optimal portfolio, Dynamic programming, 

Transaction costs, HARA utility function. 

1. Introduction 

The portfolio selection problem is one of the most 

important problems faced to the investors, who need to 

allocate his or her wealth among different assets or 

assets classes properly. Determining the optimal 

portfolio is a rather complex problem which depends on 

the objective of the investor. In the single period setting, 

the problem is well understood and can be easily solved 

by using the mean-variance model [1] or other static 

models (see [2]). In the multi-period setting, the problem 

is more complex than the single period one. The 

multi-period portfolio problem was proposed by [3] and 

[4]. Explicit solutions for these problems are only 

available under some assumptions: investment 

opportunities are constant; there are no transaction costs; 

the short sale is allowed and the market is complete. 

 

It is well known that an investor who ignores the 

transaction costs would end up bankrupt. Several authors 

have made important contributions to the effect of the 

transaction costs in the multi-period setting (see, for 

example, [5-18]). Kamin [5] introduced the transaction 

cost into the dynamic portfolio selection model, and 

found that the investor’s behavior is systematically 

different from the one without transaction costs. 

Constantinides [6] extended Kamin’s model to the 

HARA utility function. Magill and Constantinides [7] 

developed a method to determine the impact of trading 

costs on capital market equilibrium. Constantinides [8] 

showed that in the case of proportional transaction costs 

and power utility, the no-transaction region is of great 

importance for all practical applications, and believed 

that these boundaries cannot be obtained analytically. 

Then, he developed approximate solutions for the case of 

the investor with a power utility (see [9]). In [10], they 

studied the optimal consumption and investment 

decision with the transaction costs for an investor and 

gave an algorithm for solving the free boundary problem. 
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These solutions usually deal with the case in an infinite 

time horizon. But it is more realistic to analyze a finite 

terminal time. In this case, Gennotte and Jung [11] 

developed a numerical approximate value of the 

boundaries. Akian et al. [12] considered the n risky 

assets situation, and gave the viscosity solution. Boyle 

and Lin [13] extended Gennotte and Jung’s work, and 

illustrated the solution procedure in which the returns on 

the risky asset follow a multiplicative binomial process. 

Framstad et al. [14] showed that the solution in a jump 

diffusion market has the same form as in the pure 

diffusion case. Jang [15] investigated an optimal 

portfolio selection problem with transaction costs when 

an illiquid asset pays cash dividends and there are 

constraints on the illiquid asset holding, and provided the 

closed form solutions for the problem. 

 

Motivated by the above results, we extend research by 

Boyle and Lin to include the case where the investor has 

the HARA utility functions. We provide an explicit 

closed form solution to the finite horizon problem when 

there are proportional transaction costs and the investor 

has the HARA utility function. A procedure to derive the 

boundaries of the no-transaction region is also given. 

2. THE MODEL 

2.1 HARA utility function 

The definition of the general class of HARA utility 

function is introduced in this subsection. This kind of 

utility function is very general indeed since it contains 

the most used utility functions. 

 

Definition 1. A utility function U  is said to have 

harmonic absolute risk aversion (HARA) if the inverse of 

its absolute risk aversion is linear in wealth. 

 

Remark 1. According to Definition 1, the HARA utility 

function can be written as: 
1

( )

c
x

U x a b
c

−
 = ⋅ + 
 

          (1) 

with the domain 0
x

b
c

+ > . The constant parameters a , 

b , and c  satisfy the condition: (1 ) 0a c− > . 

 

Usually four subclasses are distinguished. When 1c = − , 

the utility function is the quadratic utility function. As 

c → ∞ , the utility function takes the form 

1

( ) exp

c
x

U x ab
b

−
 = ⋅ − 
 

, 

which is often called the CARA (Constant Absolute Risk 

Aversion) or exponential utility function. If 0b = , 

1c ≠ the utility function is the CRRA (Constant Relative 

Risk Aversion) or power utility function, which formed 

(1 )

( )
1

c
x

U x a
c

−

= ⋅
−

. 

Because of 
0

1
lim( 1) lnc

c
x x

c→
− ⋅ = , ( ) lnU x x=  can be 

considered as another special case of HARA utility 

function. 

2.2 Dynamic programming with utility functions 

Consider a financial market where an investor can make 

decision for his sequential investment at T  trading 

times, indexed as 1,2, ,t T= ⋯ , over a finite planning 

period. There are two securities: one riskless asset and 

one risky asset at each time. Denote 
0

tP  the price of the 

riskless asset and 
t

P  the prices of the risky assets at 

time t . For 1,2, , 1t T= −⋯ , 
0

0 1

0

t

t

P
r

P

+=  is the total 

return on riskless asset and 1t

t

t

P
r

P

+=  is the total return 

on the risky assets respectively. Thus, 0r is a constant 

and 
t

r  is a random variable. 

 

Assume that an investor holds a portfolio with 0

1
0x ≥  

dollars of the riskless asset and 
1

0x ≥  dollars of the 

risky asset at the initial time 1t = . At each trading time 

1,2, , 1t T= −⋯ , the investor may make his investment 

decision to maximize his expected utility of terminal 

wealth. Let 0

t
x  be the dollar amounts of the riskless 

asset and 
t

x  be dollar amounts of the risky asset in the 

portfolio at time t  before trading. It is assumed that 

there is a transaction cost proportional to the amount of 
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each risky asset traded. Let θ  be the unit transaction 

cost for buying or selling the risky asset. We use 
t

u  to 

denote investment decision at time t . 
t

u  is the amount 

of the risky asset traded, 0
t

u ≥  for buying and 0
t

u ≤  

for selling. Thus, the total transaction costs could be 

t
uθ ⋅ . Then, the following relationships can be built: 

0 0

t t t t
y x u uθ= − − ⋅ ,             (2) 

t t t
y x u= + ,                    (3) 

here 0

t
y  is the dollar amounts of the riskless asset, 

t
y is 

the dollar amounts of the risky asset at time t  after 

trading. We also assume that 0

t
y  and 

t
y  are 

non-negative. 

 

Thus, at time 1t +  the portfolio amounts before trading 

can be written as: 

0 0 0 0 0

1
( )

t t t t t
x y r x u u rθ+ = = − − ⋅ ,     (4) 

1
( )

t t t t t t
x y r x u r+ = = + .              (5) 

 

Equation (4) and (5) describe feasible investment 

decisions. The objection is to find an optimal sequential 

investment strategy that maximizes the expected utility 

of terminal wealth, namely: 

0

, 1,2, , 1
max [ ( , )]

t

T T
u t T

E U x x
= −⋯

,         (6) 

for the given initial portfolio 0

1 1
( , )x x . Here ( )U ⋅  

represents the HARA utility function. 

 

From above preparation, the model for the investment 

problem can be presented as: 

0

, 1,2, , 1

0 0 0

1

1

max [ ( , )]

( ) ,

( ) ,

1,2, , 1.

t

T T
u t T

t t t t

t t t t

E U x x

subject to x x u u r

x x u r

t T

θ
= −

+

+

= − − ⋅
= +

= −

⋯

⋯

  (7) 

Problem (7) can be solved by a dynamic programming 

technique. In [13], it was assumed that the terminal 

utility function U  must be a concave, homogeneous 

differentiable function with some degree, say α . As we 

assumed above, the terminal utility function U  is the 

HARA utility function which taken the form of (1) is a 

concave and differentiable function to the terminal total 

wealth. But it is not homogeneous. Thus we need to do 

the following transformations. Let 

0 0

0 0

0

,

1
, 1,2, , 1,

T T

T t

t t

x x bc

x x bc t T
r

−

= +

 = + ⋅ = − 
 

⋯

   (8) 

Thus, 

1
0

0 0( , ) ( , )

c

T T

T T T T

x x
U x x U x x a

c

−
 +

= =  
 

ɶ .   (9) 

Then, problem (7) is equivalent to problem (10): 

0

, 1,2, , 1

0 0 0

1

1

max [ ( , )]

( ) ,

( ) ,

1,2, , 1.

t

T T
u t T

t t t t

t t t t

E U x x

subject to x x u u r

x x u r

t T

θ
= −

+

+

= − − ⋅
= +

= −

⋯

ɶ

⋯

   (10) 

To apply dynamic programming, we define the indirect 

utility function 
t

V , 1,2, ,t T= ⋯ , as follows: 

0

0
0

1 1 1

( , ),       ,
( , )

max ( , ),   1, 2, , 1.
t

T T

t T T
t t t t

u

U x x t T
V x x

E V x x t T+ + +

 ==  = −

ɶ

⋯
(11) 

Here, 
t

E  denotes the expectation over 
t

r  conditional 

on 0

t
x  and 

t
x . According to the Bellman principle of 

optimality, the variable 
t

u , which maximizes 

0

1 1 1
( , )

t t t t
E V x x+ + + , 1,2, , 1t T= −⋯ , forms the optimal 

trading strategy of the problem (7). 

3. OPTIMAL STRATEGY 

In this section, we develop the procedures for solving 

problem (7) and (10). The derivation is based on the 

main theorem of [13]. 

Let 

0 0

1 1 1

0 0

1

( , , ) ( , )

    (( ) , ( ) ).

t t t t t t t t

t t t t t t t

g u x x E V x x

E V x u u r x u rθ
+ + +

+

=

= − − ⋅ +
 (12) 

Then, we give the definition of the no-transaction region. 

For any portfolio in this region, the expected value will 

not be increased by buying or selling the risky asset. 
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Definition 2. When the set of portfolio 
t

Φ  satisfies 

( ) ( ) ( ){ }0 0 0, | , , 0, , ,  for all 
t t t t t t t t t t t

x x g u x x g x x uΦ = ≤  (13) 

t
Φ  is called the no-transaction region at time t . 

 

Let 
t t

g u+∂ ∂ , 
t t

g u−∂ ∂  denote the right and left 

derivatives of 
t

g  respectively. According to the main 

theorem of [13], if 0
t t

a b< ≤ < ∞ , the no-transaction 

region can be written as: 

( ){ }0 0, |
t t t t t t t

x x a x x bΦ = ≤ ≤ , 

where 

(0,1, )
min | 0, 0t t

t t t

t

g x
a x x

u

+ ∂
= = ≥ ∂ 

, 

(0,1, )
max | 0, 0t t

t t t

t

g x
b x x

u

− ∂
= = ≥ ∂ 

. 

The optimal transaction strategies for problem (10) are 

given in the bellowing theorem. 

 

Theorem 1. If 0

t t t t
a x x b≤ ≤ , then there will be no 

buying or selling the risky asset. 

If 0

t t t
a x x> , then 

0 0 0
max ( , , ) ( , , ) (0, , )

t

t t t t t t t t t t t
u

g u x x g u x x g y y
+ + += = ,  (14) 

where 

0

0 0

,
1 (1 )

(1 ) ,

,

t t t

t

t

t t t

t t t

x a x
u

a

y x u

y x u

θ
θ

+

+ +

+ +

−
=

+ +

= − +

= +

           (15) 

with 0( , )
t t t

y y+ + ∈ Φ  and 0

t t t
y y a+ + = . 

If 
0

t t tb x x< , then 

0 0 0
max ( , , ) ( , , ) (0, , )

t

t t t t t t t t t t t
u

g u x x g u x x g y y
− − −= = ,  (16) 

where 
0

,
1 (1 )

t t t

t

t

x b x
u

bθ
− −

=
+ −

 

0 0 (1 ) ,
t t t

y x uθ− −= − −          (17) 

,
t t t

y x u− −= +  

with 0( , )
t t t

y y− − ∈ Φ  and 0

t t t
y y b− − = . 

 

Proof.  Case 1, 
t

a < ∞ . since 0
t

u+ > , 

( )

( )

( )

( )

0

0 0

10

0

0 0

1

1

0

10 0

0

0

1

1

0

( , , )
  

( (1 ) ) , ( )
(1 )

( (1 ) ) , ( )
   

,
( (1 ) ) (1 )

,
   

(

t t t t

t

t t t t t t

t

t

t t t t t t

t t

t

t t tc

t t t

t

t t t

t t

t

t

g u x x

u

V x u r x u r
r E

x

V x u r x u r
E r

x

V r a r
x u r E

x

V r a r
E r

x

x

θ
θ

θ

θ θ

+

+ +
+

+ +
+

+

++ −

+

+

∂
∂

∂ − + ⋅ +
= − +

∂

∂ − + ⋅ +
+

∂

 ∂= − + ⋅ ⋅ − + ∂

∂ + ∂ 

= −
( )0,1,

(1 ) ) .
t tc

t

t

g a
u

u
θ

+
+ − ∂

+ ⋅ ⋅
∂

 

As we mention above that 
(0,1, )

0t t

t

g a

u

+∂
=

∂
, thus 

0( , , )
0t t t t

t

g u x x

u

+ +∂
=

∂
.            (18) 

It is shown that 
t

u+  is a maximum point. 

 

Case 2, 
t

a = ∞ . As 
t

g  is non-decreasing, 
t

u+  is the 

right end point of its domain, thus 
t

u+  is the maximum 

point. 

 

Similarly, 
t

u−  is the maximum point when 

0

t t tb x x< .                                □ 

 

Thus, Theorem 2 gives the optimal strategies of the 

original problem (7) below. 

 

Theorem 2. If 
0 0

(1 )

t

t tT t

t

x
a b

x bc r
−≤ ≤

+
, then 0

t
u = , 

i.e. there will be no buying or selling the risky asset. 
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If 
0 0

(1 )

t

t T t

t

x
a

x bc r
−>

+
, then 

0 0

0 0 0

(1 )
,

1 (1 )

(1 ) (1 ) ,

,

T t

t t t t

t

t

T t

t t t

t t t

x a x bc r a
u

a

y x bc r u

y x u

θ
θ

−
+

+ − +

+ +

− + ⋅
=

+ +

= + − +

= +

ɶ

ɶ ɶ

ɶ

     (19) 

with 0( , )
t t t

y y+ + ∈ Φɶ ɶ  and 0

t t t
y y a+ + =ɶ ɶ . 

If 
0 0

(1 )

t

t T t

t

x
b

x bc r
−<

+
, then 

0 0

0 0 0

(1 )
,

1 (1 )

(1 ) (1 ) ,

,

T t

t t t t

t

t

T t

t t t

t t t

x b x bc r b
u

b

y x bc r u

y x u

θ
θ

−
−

− − −

− −

− + ⋅
=

+ −

= + − −

= +

ɶ

ɶ ɶ

ɶ

      (20) 

with 0( , )
t t t

y y− − ∈ Φɶ ɶ  and 0

t t t
y y b− − =ɶ ɶ . 

 

Proof. We know that 0 0 0(1 )T t

t t
x x bc r −= + , 

1,2, ,t T= ⋯ . Then, substituting 0 0 0(1 )T t

t t
x x bc r −= +  

into (15) and (17), we will get the optimal strategies of 

the original problem (7).                        □ 

 

Now, how to calculate 
t

a , 
t

b  and the indirect utility 

function are presented. 

 

Definition 3. V  is a piece-wise linear utility function 

with respect to the function U , if there is a sequence of 

increasing numbers 
j

q , 1, 2, ,j s= ⋯ , and non- 

negative constants 
ij

α  and  
ij

β  with respect to the 

underlying probability space { }; 1,2, ,
i

i Iω = ⋯  such 

that 

0 0

1

( , ) ( , ) Pr( )
I

ij ij i

i

V x x U x xα β ω
=

=∑ ,   (21) 

for 
0 1j j

q x x q +≤ ≤ .           (22) 

 

Assuming that 
t

V  is a piecewise linear utility function 

with respect to U . Let { }; 1, 2, ,
k

tr k K= ⋯  be all 

possible outcomes for 
t

r , and { }i
ω  be all possible 

outcomes from 
1 2

( , , , )
t t T

r r r+ + ⋯ , where { }i
ω  

represents the set of all future paths of the underlying 

tree structure starting at a node at time 1t + . Then 

starting at time t  all the paths of the underlying tree 

structure can be written as { }( , )
k

t ir ω . 

 

Now, calculate 
t

V  recursively starting at t T= . At 

t T= , 

1
0

0 0( , ) ( , )

c

T T

T T T T T

x x
V x x U x x a

c

−
 +

= =  
 

.  (23) 

Suppose that 

{ }

{ }

0 0

1 1 1 1 1

1

0 1

1 11
1

1

1 0 10

1

( , ) ( , ) Pr

     ( ) Pr ,

     , 0,1, , ; 0, .

I

t t t ij t ij t i

i

I
c

ij t ij t ic
i

t

j j s

t

V x x U x x

a
x x

c

x
q q j s q q

x

α β ω

α β ω

+ + + + +
=

−
+ +−

=

+
+ +

+

=

= +

≤ ≤ = = = ∞

∑

∑

⋯

  (24) 

Then, 

{ }

{ }

0 0 0

0 0

1 1

0 0 1

(1 )
1 1

(0, , ) ( , )

   ( , ) Pr ( , )

   ( ) Pr ( , ) .

t t t t t t t t

K I
k k

ij t ij t t t i

k i

K I
k c k

ij t ij t t t ic
k i

g x x E V x r x r

U r x r x r

a
r x r x r

c

α β ω

α β ω

= =

−
−

= =

=

=

= +

∑∑

∑∑

  (25) 

Let 
0

ij ij
rα α=ɶ , k

ij ij t
rβ β=ɶ , thus, when 0

t
u ≥ , 

{ } { }

0

1
0

(1 )
1 1

   ( , , )

[ (1 ) ] [ ] Pr ( , ) ;

t t t t

K I
c

k

ij t t ij t t t ic
k i

g u x x

a
x u x u r

c
α θ β ω

−

−
= =

= − + + +∑∑ ɶɶ

   (26) 

and when 0
t

u ≤ , 

{ } { }

0

1
0

(1 )
1 1

   ( , , )

[ (1 ) ] [ ] Pr ( , ) .

t t t t

K I
c

k

ij t t ij t t t ic
k i

g u x x

a
x u x u r

c
α θ β ω

−

−
= =

= − − + +∑∑ ɶɶ

   (27) 

Therefore, 
t

a  is a solution of one of the equations  
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{ }
1 1

1

( ) [ (1 )] Pr ( , ) 0,

, 0,1,2

K I
c k

ij ij t ij ij t i

k i

j t j

a r

q a q j

α β β θ α ω−

= =

+

+ − + =

≤ < =

∑∑ ɶ ɶɶ ɶ

ɶ ɶ ⋯

(28) 

and 
t

b  is a solution of one of the equations 

{ }
1 1

1

( ) [ (1 )] Pr ( , ) 0,

, 0,1,2

K I
c k

ij ij t ij ij t i

k i

j t j

a r

q a q j

α β β θ α ω−

= =

+

+ − − =

≤ < =

∑∑ ɶ ɶɶ ɶ

ɶ ɶ ⋯

(29) 

 

The indirect utility function can be calculated as follows: 

Rearrange all ( )0 k

t jr r q , 1,2 ,k K= ⋯ , 0,1,2j = ⋯ , 

from smallest to largest and relabeled them as 
h

qɶ  in 

order of magnitude. Thus, for 1,2, ,l I= ⋯ , 
0

lh lj
rα α=ɶ , 

1

lh lj t
rβ β=ɶ ,where ( ) ( )0 1 0 1

1 1t j h h t jr r q q q r r q+ +≤ ≤ ≤ɶ ɶ ; 

for 1, 2, , 2l I I I= + + ⋯ ,
0

,lh l I j
rα α −=ɶ , 2

lh l Ij t
rβ β −=ɶ , 

where ( ) ( )0 2 0 2

1 1t j h h t jr r q q q r r q+ +≤ ≤ ≤ɶ ɶ ; … ; for 

( 1) 1, ( 1) 2, ,l K I K I KI= − + − + ⋯ ,
0

( 1) ,lh l K I j
rα α − −=ɶ , 

( 1) ,

K

lh l K I j t
rβ β − −=ɶ , where 

( ) ( )0 0

1 1

K K

t j h h t jr r q q q r r q+ +≤ ≤ ≤ɶ ɶ . 

 

Change 
0

,lh l I j
rα α −=ɶ , 2

lh l Ij t
rβ β −=ɶ , where l  and h  

back to i  and j  to avoid too much notation, 

{ }0 0 1

(1 )
1 1

10

(0, , ) ( ) Pr ( , ) ,

.

K I
c k

t t t ij t ij t t ic
k i

t

j j

t

a
g x x x x r

c

x
q q

x

α β ω−
−

= =

+

= +

≤ ≤

∑∑ ɶɶ

ɶ ɶ

 

(30) 

 

From Theorem 1, we obtain 

0

0

0 0

0

0

0

(0, , ), ,

( , ) (0, , ), ,

(0, , ), .

t

t t t t

t

t

t t t t t t t t

t

t

t t t t

t

x
g y y a

x

x
V x x g x x a b

x

x
g y y b

x

+ +

− −


<


= ≤ ≤



>


   (31) 

Assume that 
1 2j t j t

q a q b< ≤ < ≤ <ɶ ɶ⋯ ⋯ . Define 

0 1 2 1 2 1 2 2 1 30, , , , ,t j j j t j jq q a q q q b q+ + + += = = = = ∞⋯ , 

and 

, 1 , 1

0
1 (1 )

i j t i j

i

t

a

a

α β
α

θ
+

=
+ +

ɶɶ

, 
0 0

(1 )
i i

β θ α= + ; 

, 1 1ij i j j
α α + −= ɶ , 

, 1 1ij i j j
β β + −= ɶ , 1, 2, , 2 1 1j j j= − +⋯ ; 

, 2 , 2

, 2 1 2
1 (1 )

i j t i j

i j j

t

a

a

α β
α

θ− +

+
=

+ −

ɶɶ

, 
, 2 1 2 , 2 1 2

(1 )
i j j i j j

β θ α− + − += − . 

Hence, 

0 0 (1 )

(1 )
1 1

10

( , ) ( ) Pr{( , )},

, 0,1, .

K I
c k

t t t ij t ij t t ic
k i

t

j j

t

a
V x x x x r

c

x
q q j

x

α β ω−
−

= =

+

= +

≤ ≤ =

∑∑

⋯

(32) 

 

Based on the above discussion, the problem (7) can be 

solved by the following procedures: 

First, choose the proper distribution of the 
t

r  and 

construct the scenario tree to determine the scenario’s 

paths. 

Secondly, use (28) and (29) to calculate the boundaries 

of the no-transaction region. 

Finally, determine whether the portfolio lies in the 

no-transaction region. If it is, the portfolio is the optimal 

strategy; if not, take the optimal strategies as (19) and 

(20) shown. 

4. NUMERICAL EXAMPLE 

The model and the solution procedure presented in 

section 3 will be illustrated in this section by the 

numerical examples. We assume 5T =  and consider 

the case in which the rate of return for the risky asset in 

each period is dependent of t  and has only two states 

u  and d . The Boyle and Lin [13] parameterization for 

u  and d is used in this section, via, hu eσ= , 

hd e σ−= , 0 hr eδ=  that 1σ = , 0.25h = , 0.05δ = . 
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Thus 0 1.0126r =  and the scenario data for the risky 

asset’s return is shown in table 1. 

Table 1: The risky asset’s return 

i th 

Scenario 
1

r  
2

r  
3

r  
4

r  

1 1.0205 1.6825 2.7739 4.5733 

2 1.0205 1.6825 2.7739 1.6824 

3 1.0205 1.6825 1.0204 1.6823 

4 1.0205 1.6825 1.0204 0.6189 

5 1.0205 0.6189 1.0204 1.6823 

6 1.0205 0.6189 1.0204 0.6189 

7 1.0205 0.6189 0.3754 0.6189 

8 1.0205 0.6189 0.3754 0.2277 

 

Suppose that 1a = , 5b = , 2c = , we can calculate the 

boundaries of no-transaction region recursively 

backwards from the last period by using the procedures 

in the last section. Table 2 shows the values, when 

0.001θ =  and 0.01θ = , respectively. 

Table 2: The no-transaction bounds 

 0.001=θθθθ  0.01=θθθθ  

a1 0.559342 0.405368 

b1 0.795427 1.07235 

a2 0.587316 0.35647 

b2 0.774512 1.5798 

a3 0.526971 0.158935 

b3 0.817125 2.547631 

a4 0.501839 0.083563 

b4 0.835976 2.963258 

As shown in table 2, the transaction costs have a 

dramatic impact on the no transaction region. When the 

transaction costs increase, the no-transaction region has 

become wider. If we set the initial proportion of the risky 

asset is 0.05 and the initial proportion of the riskless 

asset is 0.95, then the investor should buy the risky asset 

to reach the boundary 
1

0.559342a = . Allowing for 

transaction costs, the amount of the risky asset to be 

purchased at time 1 is 0.5276, which is larger than the 

one using the power utility function as the terminal 

utility function in [13]. It shows that the power utility 

function is more risk aversion than the HARA utility 

function, when the two type of function have the same 

parameter c . 

 

To interpret the role of the boundaries of no-transaction 

region, we assume that the initial wealth is 1000 dollars, 

of which initial proportion of risky asset is 10% and that 

of riskless asset is 90%. Optimal investment decisions 

for problem (7) are shown in Table 3 and Table 4. For 

each entry in these tables, the first number 
t

γ  

represents 
0 0

(1 )

t

T t

t

x

x bc r
−+

. According to Theorem 2, it 

should be compared with 
t

a  and 
t

b  in Table 2, then 

we can determine how to calculate 
t

u . The second 

number stand for the amount of risky asset one should 

buy or sell, while the third and forth numbers give the 

amount of riskless asset and risky asset one should hold, 

respectively. Comparing the results in table 3 with the 

one in table 4, we can see that the investors facing the 

higher transaction costs will behave more risk aversion. 

 

Table 5 gives the optimal investment strategies in each 

period with different transaction costs. It shows that the 

investors will change his strategies according to his 

forecasting of the rate of the risky asset’s return. Take 

the first scenario as an example, the scenario shows the 

up-up tendency while the proportion of the risky asset 

increases. Anyway, the above results show the efficiency 

of the method we proposed in this paper. 

5. CONCLUSION 

Multi-period investment problems with HARR utility 

function and proportional transaction costs are 

investigated in this paper. We have developed the 

analytical expressions for the indirect utility function and 

the boundary of the no-transaction region and given the 

optimal strategy of the investment problem. From the 

analysis, we can see that the results are independent with 

the time spacing, thus our researches are also valid for 

unequal time spacing. The numerical example indicates 

the efficiency of the method. 
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