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Abstract 

The abstract A modified (G’/G)-expansion method is proposed 
for constructing exact travelling wave solutions of nonlinear 
wave equations, and this method finds travelling wave solutions 
in a straightforward manner and in a neat and helpful form than 
(G’/G)-expansion method. The abundant exact travelling wave 
solutions of nonlinear longitudinal wave equation(NLWE) with 
dispersion caused by the transverse Poisson's effect in a long 
magneto-electro-elastic(MEE) circular rod are successfully 
obtained by the modified (G’/G)-expansion method. The relation 
between solitary wave velocity with wave number are derived 
strictly. Numerical examples are further presented for the wave 
in a rod made of five different materials. The obtained results 
show that the solitary wave not only exists in such rods but also 
shows different features in different materials, which could have 
potential applications in non-destructive evaluation of structures 
made of the advanced MEE material. 
Keywords: magneto-electro-elastic(MEE), modified (G’/G)-
expansion method, Riccati like equation, travelling wave solution, 
exact solution. 

1. Introduction 

The In the last two decades, nonlinear elastic effects 
on solitary waves have received considerable attention in 
solid mechanics[1-6]. With increasing usage of magneto-
electro-elastic (MEE) structures in various engineering 
fields (such as sensors, actuators, etc), wave propagation 
in MEE media has also attracted many researchers[7-10]. 
Very recently, Xue et. al.[11] had derived the longitudinal 
wave equation with dispersion caused by the transverse 
Poisson's effect in a MEE circular rod, and the solitary 
waves had been successfully derived by Jacobi elliptic 
function method, the NLWE reads: 

22 2 2 2
2 20
02 2 2 22

cu u u
c u N

t z z t

⎛ ⎞∂ ∂ ∂ ∂
− = +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

,          (1) 

where 0c  is the linear longitudinal wave velocity for a 

MEE circular rod and N  is the dispersion parameter, both 

depending on the material properties as well as the 
geometry of the rod. 

Here, assume the infinite homogeneous MEE circular 

rod is mad of composite 3 2 4BaTiO -CoFe O with 

different volume fractions ( fv ) of 3BaTiO , The rod has 

a radius R =0.05m. The material properties of the 
composite are estimated using the simple rule of mixture 
according to the volume fraction[11]. Denoting for the 

composite the volume fraction of 3BaTiO  as fv , and 

that of 2 4CoFe O  as f1 v− , we then have E fCM M v=  

M f(1 )M v+ − ,where M  represents an arbitrary material 

constant, and the subscripts C, E, and M indicate the 
composite, piezoelectric phase and piezomagnetic phase, 
respectively. In the following, we consider three different 
cases of material combinations, by taking the volume 

fraction of 3BaTiO  as 0% (PM), 50% (MEE) and 100% 

(PE), respectively. Obviously, when fv =0, the composite 

is piezomagnetic (PM), whilst fv =100% corresponds to a 

piezoelectric (PE) material[14]. Another two purely elastic 
materials are also considered. One is the transversely 
isotropic elastic material (TI) taking from 50% (MEE) 
only the elastic coefficients. The other one is the effective 
elastic isotropy (EI) obtained from the TI by making it 

isotropic (i.e., letting 11 33c c=  and 12 13c c= ). Xue et 

al.[11] have calculated the linear wave velocity 0c , 

dispersion parameter N , as listed in table 1. 
On the other hand, searching for explicit solutions of 

nonlinear wave equations by using various methods has 
being a main goal for many authors, and many powerful 
methods to construct explicit solutions of nonlinear wave 
equations have been established and developed, such as 
the tanh-function expansion method, the extended tanh-
function method, the F-expansion method, the sub-ODE 
method, the Jacobi elliptic function expansion method, the 
homogeneous balance method, the Exp-function method, 
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the (G’/G)-expansion method, the sine-cosine method 
[12,15-24], and so on. The above methods derived many 
exact solutions from most nonlinear wave equations. 

Table 1: Linear wave velocity and dispersion 
parameter for different material 

fv  1
0 (ms )c −  4 2( 10 m )N −×  

0%(PM) 5.2131 1.7350 

50%(MEE) 5.1446 1.4890 

100%(PE) 5.0498 1.0560 

TI 4.8003 1.5700 

EI 4.8398 1.6200 

Based on the main idea of the (G’/G)-expansion 
method and the extended tanh-function method, we 
introduced a new method called modified (G’/G)-
expansion method. This new method contains more 
parameters than the (G’/G)-expansion method, and all the 
solutions obtained by the (G’/G)-expansion method can be 
obtained by the modified (G’/G)-expansion method. 
Moreover, the modified (G’/G)-expansion method can 
obtain some new exact solutions in a neat and helpful form, 
and some of them can not be obtained by (G’/G)-
expansion method. 

So far, however, there has been no report on exact 
travelling wave solution of nonlinear wave equations of a 
MEE circular rod, which motivates this study, we will 
apply the modified (G’/G)-expansion method to construct 
the exact travelling wave solutions of nonlinear wave 
equations of a MEE circular rod. Therefore, this paper is 
organized as follows, in section 2, we describe the basic 
idea of the modified (G’/G)-expansion method. In Section 
3, we apply the modified (G’/G)-expansion method to 
solve nonlinear wave equations of a MEE circular rod for 
exact traveling wave solution. Numerical examples are 
given in section 4 and conclusions are drawn in section 5. 

2. Basic idea of the modified (G’/G)-expansion 
method 

In this section, according to Wang's work [22], we 
describe basic idea of the (G’/G)-expansion method for 
finding travelling wave solutions of nonlinear partial 
differential equations. Suppose that a nonlinear equation, 
say in two independent variables x  and t , is given by 

( , , , , , , ) 0t x tt xt xxF u u u u u u = ,                         (2) 

where ( , )u u x t=  is an unknown function, F  is a 

polynomial in ( , )u u x t=  and its various partial 

derivatives, in which the highest order derivatives and 

nonlinear terms are involved. In the following steps, we 
give the main steps of the modified (G’/G)-expansion 
method. 

Step 1. Use the travelling wave transformation: 

0( , ) ( ), ( )u u x t u k x Vtξ ξ ξ= = = − + ,      (3) 

where k  and V  is a constant to be determined later, 0ξ  

is an arbitrary constant. The travelling wave variable (3) 
permits us to reduce (2) to an ODE for ( )u u ξ=  

2 2 2 2( , , , , , , ) 0F u kVu ku k V u k Vu k u′ ′ ′′ ′′ ′′− − = . (4) 

Step 2. Suppose that the solution of ODE (4) can be 

expressed by a polynomial in ( )
2

G

G

λ′
+  as follows: 

( ) ( )
2

m
i

i
i m

G
u

G

λξ α
=−

′
= +∑ ,                                     (5) 

where 0m mα α− + ≠ , and ( )G G ξ=  satisfies the 

second order LODE in the form 
  0G G Gλ μ′′ ′+ + = ,                                           (6) 

where prime denotes derivative with respect to ξ , 

( 1, 2, , )i i mα = ± ± ± , λ  and μ  are constants to be 

determined later. The positive integer m  can be 
determined by considering the homogeneous balance 
between the highest order derivatives and nonlinear terms 
appearing in ODE (4). 

From the second order LODE (6), after some 
manipulation we find that 

2( ) ( )
2 2

G G
h

G G

λ λ′ ′
′+ = − + ,                                 (7) 

where 2( 4 ) / 4h λ μ= − , and the h  is determined by 

λ  and μ .  

So, ( )
2

G

G

λ′
+  now satisfies the Riccati like equation 

(7). It is found that the Riccati like equation (7) admits 
several types of solutions[16] 
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>⎪
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⎪ − − <⎩

                

(8) 
Step 3. By substituting (5) into (4) and using first 

order ODE (7), collecting all terms with the same order of 
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( )
2

G

G

λ′
+  together, the left-hand side of Eq. (4) is 

converted into another polynomial in ( )
2

G

G

λ′
+ . 

Equating each coefficient of this polynomial to zero, 
yields a set of algebraic equations for 

( 1, 2, , )i i mα = ± ± ± , V , λ  and μ . 

Step 4. Assume that the constants 

( 1, 2, , )i i mα = ± ± ± , V , λ  and μ  can be obtained 

by solving the algebraic equations in Step 3. And the 
general solutions of the Riccati like equation (7) has been 
well known for us, as (8). And then substituting 

( 1, 2, , )i i mα = ± ± ± , V  and the general solutions (8) 

into (5) we have more travelling wave solutions of (2). 

3. Exact travelling wave solution of NLWE in 
a MEE circular rod 

To construct exact travelling wave solution of the 
nonlinear longitudinal wave equation in a magneto-
electro-elastic circular rod by the modified (G’/G)-
expansion method. By using the transformation 

0( , ) ( ), ( )u u z t u k z Vtξ ξ ξ= = = − + ,          (9) 

where k  and V  are the wave number and wave velocity, 

respectively, 0ξ  is an arbitrary real constant. Then Eq. (1) 

can be converted into an ordinary differential equation 
(ODE) for ( )u ξ , we have 

2 2 2
2 20 0

2 2
( ) 0

2

c V c
k u u u

NV NV
′′−′′′′ ′′+ + = ,         (10) 

where prime denotes derivative with respect to ξ . 

Integrating Eq.(10) twice with respect to ξ , and 

letting the integral constants be zero, we then have 
2 2 2

2 20 0
2 2

0
2

c V c
k u u u

NV NV

−′′ + + = .                   (11) 

Balancing u′′  with 2u  in Eq. (11) gives 2m = . 
This means that we can write (5) as 

2
2 1 0

1 2
1 2

( ) ( ) ( )
2 2

( ) ( )
2

,
2

G G
u

G G
G G

G G

λ λξ α α α

λ λα α− −
− −

′ ′
= + + + + +

′ ′
+ + +

    (12) 

where 2 2 0α α−+ ≠ . 

Substituting (12) into (11), collecting the coefficients 

of ( ) ( 1, 2, , 4)
2

iG
i

G

λ′
+ = ± ± ± , and solving the 

resulting system with the aid of MATHEMATICA, we 
have the following sets of solutions: 

The 1th solutions set: 
2 2

0 22 2

12 12
, ,

1 4 1 4

hk N k N

hk N hk N
α α −

= =
− −

     

2
2 0

2 1 12
, 0;

1 4

c
V

hk N
α α α− −= = = =

−
           (13) 

The 2 th solutions set: 
2 2

0 22 2

4 12
, ,

1 4 1 4

hk N k N

hk N hk N
α α −

= =
+ +

  

2
2 0

2 1 12
, 0;

1 4

c
V

hk N
α α α− −= = = =

+
          (14) 

The 3th solutions set: 
2 2 2

0 22 2

12 12
, ,

1 4 1 4

hk N h k N

hk N hk N
α α−

−
= =

− −
  

2
2 0

2 1 12
, 0;

1 4

c
V

hk N
α α α−= = = =

−
             (15) 

The 4 th solutions set: 
2 2 2

0 22 2

4 12
, ,

1 4 1 4

hk N h k N

hk N hk N
α α−

−
= =

+ +
  

2
2 0

2 1 12
, 0;

1 4

c
V

hk N
α α α−= = = =

+
             (16) 

The 5 th solutions set: 
2 2 2

0 22 2

24 12
, ,

1 16 1 16

hk N h k N

hk N hk N
α α−

−
= =

− −
  

22
2 0

2 2 2

12
, ,

1 16 1 16

ck N
V

hk N hk N
α −

= =
− −

 

1 1 0;α α− = =                                                       (17) 

The 6 th solutions set: 
2 2 2

0 22 2

8 12
, ,

1 16 1 16

hk N h k N

hk N hk N
α α−

− −
= =

+ +
  

22
2 0

2 2 2

12
, ,

1 16 1 16

ck N
V

hk N hk N
α −

= =
+ +

 

1 1 0;α α− = =                                                        (18) 

where 2( 4 ) / 4 0h λ μ= − ≠ , λ  and μ  are 

arbitrary real constants. 
Substituting (13)-(18) into (12) and recall the general 

solutions (8), we have the solutions of  (11) as follows: 
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When 2 4 0λ μ− > , we have the hyperbolic 

function travelling wave solutions 
2

2
1 2

12
( ) sech ( ),

1 4

hk N
u h

hk N
ξ ξ=

−
    

2
1/20

02
( ) ;
1 4

[ ]c
k z t

hk N
ξ ξ= ± +

−
            (19) 

2
2

2 2

4
( ) [1 3tanh ( )],

1 4

hk N
u h

hk N
ξ ξ= −

+
  

2
1/20

02
( ) ;
1 4

[ ]c
k z t

hk N
ξ ξ= ± +

+
           (20) 

2
2

3 2

12
( ) csch ( ),

1 4

hk N
u h

hk N
ξ ξ=

− +
  

2
1/20

02
( ) ;
1 4

[ ]c
k z t

hk N
ξ ξ= ± +

−
            (21) 

2
2

4 2

4
( ) [1 3coth ( )],

1 4

hk N
u h

hk N
ξ ξ= −

+
  

2
1/20

02
( ) ;
1 4

[ ]c
k z t

hk N
ξ ξ= ± +

+
           (22) 

2
2

5 2

48
( ) csch (2 ),

1 16

hk N
u h

hk N
ξ ξ=

− +
  

2
1/20

02
( ) ;
1 16

[ ]c
k z t

hk N
ξ ξ= ± +

−
          (23) 

2 2 2
6

2 2 1

( ) 8 12 [tanh ( )

coth ( )] (1 16 ) ,

{
}

u hk N k hN h

h hk N

ξ ξ

ξ −

= − + +

+
  

2
1/20

02
( ) ;
1 16

[ ]c
k z t

hk N
ξ ξ= ± +

+
           (24) 

and when 2 4 0λ μ− < , then we have the trigonometric 

solutions 
2

2
7 2

12
( ) sec ( ),

1 4

hk N
u h

hk N
ξ ξ= −

−
  

2
1/20

02
( ) ;
1 4

[ ]c
k z t

hk N
ξ ξ= ± +

−
            (25) 

         
2

2
8 2

4
( ) [1 3tan ( )],

1 4

hk N
u h
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ξ ξ= + −

+
  

2
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02
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+
           (26) 

2
2

9 2

12
( ) csc ( ),

1 4

hk N
u h

hk N
ξ ξ= −

−
  

2
1/20

02
( ) ;
1 4

[ ]c
k z t
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−
            (27) 

2
2

10 2

4
( ) [1 3cot ( )],

1 4

hk N
u h

hk N
ξ ξ= + −

+
  

2
1/20

02
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1 4
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+
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2
2
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48
( ) csc (2 ),

1 16

hk N
u h
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−
  

2
1/20

02
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1 16
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hk N
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−
             (29) 

2 2 2
12

2 2 1

( ) 8 12 [tan ( )

cot ( )] (1 16 ) ,

{
}

u hk N k hN h

h hk N

ξ ξ

ξ −

= − + − +

− +
  

2
1/20

02
( ) .
1 16

[ ]c
k z t

hk N
ξ ξ= ± +

+
          (30) 

where 2( 4 ) / 4h λ μ= − , λ , μ  and 0ξ  are arbitrary 

real constants, wave number k  is a arbitrary positive real 
constant. 

The obtained solutions existence must meet the 
following condition, Eqs. (19), (21), (25) and (27) must 

satisfied 2 0.25hk N < , Eqs. (20), (22), (26) and (28) 

must satisfied 2 0.25hk N > − , Eqs. (23) and (29) must 

satisfied 2 0.0625hk N < , Eqs. (24) and (30) must 

satisfied 2 0.0625hk N > − . 
Here, comparing our obtained results with Xue's 

exact solitary wave solution in Ref.[11]. Xue et al. only 
obtained one solitary wave solution in Ref.[11]. We 
obtained twelve exact traveling wave solutions of Eq. (1). 
Not only the solitary wave solutions have been given, but 
also many other period exact travelling wave solutions of 
the NLWE in a MEE circular rod are successfully 
obtained by the modified (G’/G)-expansion method in this 
work. And the obtained solutions Eqs. (19)-(24) are 
soliton solutions, and Eqs.(25)-(30) are periodic solutions. 
All the exact travelling wave solutions reported in this 
paper have been checked with MATHEMATICA. 

4. Numerical results and discussion 

In section 3, the exact travelling wave solution have 
been successfully constructed. In the obtained solutions, 

the parameters 0c  and N  are both depending on the 

material properties as well as the geometry of the rod, 0c  
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and N  have been listed in table 1, wave number k , 
2( 4 ) / 4h λ μ= −  and 0ξ  are free real constants. 

For example, the first exact travelling wave solution 
(19) is a solitary wave solution of Eq.(1). The solitary 
wave amplitude A  and wave velocity V of Eq. (19) can 
be expressed as: 

2
2 1/2

02

12
, (1 4 )

1 4

hk N
A V c hk N

hk N
−= = −

−
.         (31) 

Furthermore, from Eq.(31) we can obtain that the 

maximum wave number maxk  must satisfy 

1
max (2 )k Nh −= .                                              (32) 

Hence, the maximum wave number maxk  for five 

different materials in table 1 sequence are 37.959, 40.975, 
48.656, 39.904 and 39.284, respectively. For a solitary 

wave solution, the wave number k  must satisfy maxk k< . 

If parameters k , h  and 0ξ  are given special value. 

To facilitate our study, we set 0 0ξ = , h =1 or 2, k =5 or 

6. According to the data of table 1 and Eq. (31), we can 
obtain the solitary wave amplitude and wave velocity, the 
obtained solitary wave amplitude and wave velocity are 
list in table 2. 

The relations between the solitary wave velocity V  

and wave number k  for the five different materials when 

h =1 are plotted in Fig.1. If wave number maxk k> , the 

solitary wave velocity V  will break. 

It is observed that when the wave number k  is small, 
the wave velocity in the coupled class (PM, MEE, and PE) 
is higher than that in the purely elastic class (EI and TI). 
However, with increasing wave number k , these five 
materials form three new classes: PM is the first with the 

highest velocity; in the middle, we have MEE, EI and TI; 
and finally PE has the lowest velocity.Eq. (19) is a bell-

shaped 2sech  solitary wave solution, and it is a soliton 
solution. 

Solitons are special kinds of solitary wave. The 
soliton solution is spatially localized solution, hence 

( )u ξ′ , ( )u ξ′′  and ( )u ξ′′′ → ±∞ , ( )k z Vtξ = − . 

Soliton have a remarkable soliton property in that it keeps 
its identity upon interacting with other soliton. And 

soliton's graph is a bell-shaped 2sech  soliton solution 
characterized by infinite wings or infinite tails. Fig.2 
shows the solitary wave u  in the 50% MEE rod versus 

the variable time t  and z  of Eq. (19) with 1h = and 

5k = . It is clear that the maximum of u  is reached at the 

center 0t =  and 0z = . Obviously, the solitary wave 
amplitude is symmetrical about the center.  

In the same way, Fig.3 shows the solitary wave u  in 
the 50% MEE rod versus the variable time t  and z  of Eq. 

(24) with 1h =  and 5k = . It is clear that the minimum 

of u  is reached at the center 0t =  and 0z = . And it 
shape like a cone, obviously, the solitary wave amplitude 
is symmetrical about the center. To the best of our 
knowledge, the obtained exact solitary solution (24) is a 
new solution, it have not been reported. 

Similarly, we can give the numerical result and figure 
of other four materials and other exact travelling wave 
solution of Eq. (1), which are omitted for convenience. 

 
 

Table 2: The solitary wave amplitude and wave velocity for different k  and h  

fv  h  k  0%(PM) 50%(MEE) 100%(PE) TI EI 

(m)A  1 5 0.05297 0.04535 0.03202 0.04785 0.04940 

(m/s)V  1 5 5258.92 5183.33 5076.68 4838.43 4879.49 

(m)A  2 5 0.10784 0.09208 0.06473 0.09725 0.10045 

(m/s)V  2 5 5305.97 5222.96 5103.99 4877.49 4920.16 

(m)A  2 6 0.15779 0.13441 0.09410 0.14207 0.14682 

(m/s)V  2 6 5348.44 5258.59 5128.39 4912.65 4956.81 

(m)A  1 6 0.07687 0.06573 0.04632 0.06939 0.07166 

(m/s)V  1 6 5279.47 5200.66 5088.64 4855.50 4897.26 
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Fig. 1 Wave velocity V  governing by (31) versus wave number 

k  in a rod  with 1h = . 

 
Fig. 2 Soliton versus t  and z  in a 50% MEE rod of Eq.(19) with 

1h =  and 5k = . 

 
Fig. 3 Solitary waves versus t  and z  in a 50% MEE rod of Eq.(24) 

with 1h =  and 5k = . 

5. Conclusion 

In this paper, we present a modified (G’/G)-
expansion method based on (G’/G)-expansion method. We 
have applied the new method to find the exact travelling 
wave solutions of nonlinear solitary wave equation in a 
long MEE circular rod. And the obtained exact travelling 
wave solutions are expressed by the hyperbolic functions, 

the rational functions and the trigonometric functions. 
When the parameters are taken as special values, the 
solitary wave solutions are derived from the hyperbolic 
functions. The obtained results show the modified (G’/G)-
expansion method is direct, concise and effective with the 
help of MATHEMATICA, and this method can be applied 
to many other nonlinear partial differential equations in 
mathematical physics. Some numerical examples are 
further presented for the wave in a rod made of five 
different materials: the three-phase fully coupled MEE, 
coupled piezoelectric PE, coupled piezomagnetic PM, 
purely elastic but transverse isotropy TI and purely elastic 
isotropy EI. It is demonstrated that the solitary wave not 
only exists in such rods but also shows different features 
in different materials, which could have potential 
applications in non-destructive evaluation of structures 
made of the advanced MEE material. 
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