
 

 

Study of Online Bayesian Networks Learning in a Multi-Agent 
System 

Yonghui CAO1, 2  
1, School of Economics & Management, Henan Institute of Science and Technology, Xin Xiang, 453003 ,China 

2, School of Management, Zhejiang University, Hang Zhou,310058 ,China 
 

 
 

Abstract 
This paper introduces online Bayesian network learning in 
detail. The structural and parametric learning abilities of the 
online Bayesian network learning are explored. The paper starts 
with revisiting the multi-agent self-organization problem and the 
proposed solution. Then, we explain the proposed Bayesian 
network learning, three scoring functions, namely Log-
Likelihood, Minimum description length, and Bayesian scores. 
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1. Introduction 

We attempt to find how a common task can be performed 
by a multi-agent self-organizing system. The agents are 
independent in terms of their model of environment and 
their actions. Each agent explores the environment and 
decides its actions by itself. Agents will have no 
information about the environment at the beginning of 
their exploration of the environment. They will explore 
the environment, model the environment and take actions 
to change the environment according to the common task. 
We attempt to solve these problems by utilizing Bayesian 
networks and influence diagrams. 
 
Bayesian networks are employed to model the 
environment. Because the agents have no or limited 
information about the environment at the beginning of 
their exploration, an online Bayesian network learning 
method will be used. Influence diagrams will be employed 
to obtain the agents’ actions. Bayesian networks and 
influence diagrams are combined to produce a decision-
theoretic agent in a multi-agent system. 
 
Bayesian network learning is examined broadly. There are 
four cases of Bayesian network learning depending on the 
availability of the network and the data. The unknown 
structure and incomplete data case is the nearest case to 
our problem. Our network structure is not defined in 
advance and the sensor data may not be complete. On the 

other hand, for simplicity we will assume the data is 
complete during the simulations. The agents do not have 
significant amounts of prior knowledge about the 
environment. Therefore, the BN will be formed during the 
agents’ exploration of the environment. Each new data 
case will affect the structure of the network. 
 
Online Bayesian network learning consists of two parts, 
namely parameter learning and structural learning. 
Parameter learning is the calculation of the conditional 
probability table elements of each node in a given 
Bayesian network. In this research, we use a modified 
version of Maximum Likelihood Expectation method to 
calculate the network parameters. Maximum likelihood 
estimation method is modified so that it has a closed form 
when the probabilities need to be updated.  
 
Structural learning is the problem of finding the network 
that represents the data the best. This involves two 
parameters, complexity of the network and fitness of the 
network to the data. The structural learning process tries 
to find the optimal network that provides optimal 
complexity and fitness. The main building block in 
structural learning is the search algorithm that generates 
the network with the highest score.  

2 .The Parameter Learning 

There are two types of parameter learning techniques used 
in the literature, MLE and Bayesian estimation. It is 
stated that with a database having a large number of data 
cases, these two methods converge to each other. The 
latter can take prior knowledge if it is available. Also, it is 
shown that the latter has a closed form. In this section, we 
have redefined the Maximum Likelihood calculation to 
have a closed form calculation. Because MLE is 
computationally simpler than Bayesian estimation, it is 
employed in our parameter learning. The following 
paragraphs explain how the parameter learning is 
performed by modified MLE method. 
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Let { }1 2, , mX X X X= 
be the discrete variables 

(nodes) in a Bayesian network, B. Assume that we know 

that the node jX
is the child of the node iX , which 

means i jX X→
.In this case, the parameter learning 

has to calculate the values in the conditional probability 

table in the node jX
. The conditional probability can be 

calculated by utilizing using the fundamental formula for 
probability calculus as in Equation (1) 

( , )
( )

( )
i j

i j
i

P X X
P X X

P X
=

       (1) 
 

Since MLE is employed in parameter learning, the 
probabilities can be calculated by utilizing the natural 
frequencies of the data cases. A natural frequency of a 
data case is calculated by counting the number of 
occurrences of the data case in the database. For 
individual probabilities, we count the number of 
occurrences of a state of a variable in the database. Let 

ijn
 be the number of occurrences of the state j  of the ith 

variable in the database and n is the total number of data 
cases in the database. Using these frequency values, we 
can calculate the probabilities in the following way: 

( )
( ) i j ij

i j

n X x n
P X x

n n
=

= = =
      (2) 

Thus, the conditional probabilities can be calculated by 
using the individual probabilities in Equation (1). The 

conditional probability 
( )i jP X X→

 can be obtained as 
in the following equations. 

( , )
( )

( )
i j

i j
j

P X X
P X X

P X
=

     (3) 
( , )

( , ) i j
i j

n X X
P X X

n
=

     (4) 
( )

( ) j
i

n X
P X

n
=

    (4.5) 
As can be seen in Equations (4) and (5), the denominators 
are the same in the both terms. When we put these two 
terms into Equation (3), the denominators cancel each 
other as shown in the following equation. 

( , )
( , )

( ) ( ) ( )

i j
i j

i j
j j

n X X
n X XnP X X n X n X

n

= =

   (6) 

In the resulting equation, there are only two natural 
frequencies. There is no need to involve the number of 
elements in the database for conditional probability 
calculations. This technique simplifies the computations 
in the parameter learning. Equation (6) has a closed form 
because if a new data case is encountered, we can easily 
update the corresponding natural frequencies accordingly 
to update the conditional probabilities. The following 
example provides practical results to the conditional 
probability calculation technique. For the cases that have 
not seen yet, the uniform probability distribution is used 
to fill the conditional probability tables in the nodes. For 
online Bayesian network learning, the parameter learning 
is not enough because the agents do not know the system 
dynamics in advance. Thus, the structural learning part is 
also necessary to discover the system dynamics. 

3. The structural learning 

Structural learning is finding the best network that fits the 
available data and is optimally complex. This can be 
accomplished by utilizing a search algorithm over the 
possible network structures. In this research, a greater 
importance is given to the search algorithm because we 
have assumed that the data will be complete. That is, each 
element of the database is a valid state of a variable. If 
there are non-applicable entries in the database, then the 
database is said to be incomplete. 
 
The greedy search algorithm is employed to accomplish 
the structural learning in the online Bayesian network 
learning. The search algorithm is a score based searching 
algorithm. The search algorithm is evaluated in terms of 
the score function used and the technique used to create 
the candidate networks, such as adding an edge and 
removing an edge. The greedy search algorithm is also 
upgraded to have some online properties such as updating 
the network parameters and its structure adaptively. 
 
The algorithm is a generic greedy search algorithm. How 
the arc addition is done and which scoring method is used 
are not specified in the above algorithm. We explore the 
search algorithms used in this research. In the algorithms, 
the arcs are added heuristically and exhaustively. 
 

3.1 Search Algorithms 

A Bayesian network is not allowed to have a cycle because 
of the computational difficulties. A cycle in a Bayesian 
network leads to a "circular reasoning" between the 
variables. For example, if the dependencies in above 
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network are: 1 2X X→ , 2 3X X→ , and 3 1X X→ , a cycle 

will be formed. If evidence is entered into the variable 1X , 

the Bayesian network will run the evidence to 2X , then 

to 3X . Then, the evidence will travel to 1X because 
1X depends on 3X . The evidence may run in the network 

forever because all the variables depend on each other in a 
circular way. 
 
A heuristic arc addition is employed not to have a cycle in 
the Bayesian network while generating the Bayesian 
structure. An exhaustive arc addition is also employed to 
explore more network possibilities without limitation.  In 
the exhaustive arc addition algorithm, a cycle check is 
employed before and arc is added. The following section 
presents the details of heuristic and exhaustive search 
algorithms. 
 
(1) Heuristic Search 
In the heuristic search algorithm, the variables of the 
system have to be ordered in a certain way to prevent 
cycles from being created. The decision variables should 
be in the last columns in the database; and, the first 
columns of the database should be filled with the variables 
without parents, independent variables.  After placing the 
independent variables in the first columns, the children of 
the independent variables should be placed in the 
following columns. The rest of the columns are filled with 
the children of the previously placed variables. Ordering 
of the variables is necessary because the heuristic arc 
addition adds the arcs from the first variables to the last 
variables. Because of the ordering, we need to have some 
knowledge about the variables. This does not mean that 
we need to know the dependencies between the variables. 
For example, let B be a Bayesian network with three 

variables, { }1 2 3, ,X X X .If we know the variable 1X is the 

first variable and the variable 2X is the decision node.  

Then the column order will be{ }1 2 3, ,X X X . 
 
The heuristic search starts with adding and removing arcs 
from the each variable to the last variable.  Let the 
network have n variables. After adding an arc, the 
algorithm calculates the network score, records the score 
in a list, and removes the arc. The algorithm finds the arc 
that gives the highest increase in the network score. Let 
us assume that the arc from the kth  variable to the last 
variable, n , gives the highest increase in network score. 
Then, the algorithm adds the arc from the kth  variable to 
the last variable. After the arc is added, the algorithm 

adds and removes arcs from the remaining variables to 
the last variable.  Then, the algorithm chooses the arc 
with the highest score increase and adds the arc to the 
network. This continues until no increase in the network 
score can be obtained by adding an arc to the last variable.  
Then, the algorithm starts adding arcs from the 

variables{ }1,2, 2n⋅⋅ ⋅ − to the ( 1)n th− node. The algorithm 

adds arcs to ( 1)n th− node until there is no increase in the 
network score.  The algorithm stops when it adds an arc 
from the first variable to the second variable. The 
following is the heuristic search algorithm used in this 
research. 
(1)Collect data 
(2)Define the variables from the available data 
(3)Start with a network with no arc. 
(4)Estimate the parameters (only independent 
probabilities) of the BN using the MLE method using 
initial data 

(5)Add a new arc from the ith variable to the jth variable 
to generate a network candidate and remove the arc. 

Repeat the process with { }1, 2, 1i j= ⋅⋅ ⋅ − and generate 

networks 1 2 1( , , , )jB B B −⋅⋅ ⋅ . Start j from n and decrease j by 
1. 
(6)Calculate the scores of the candidate networks and 
record them in a list. 

(7)Find the network ( )B with the maximum score and 
keep it for the next step. 
(8)Repeat the steps 5, 6, and 7 until there is no increase in 
the network score. 
(9)If 1j > , then go to step 5. 
(10)Update the network parameters along with new data 
(11)Update the network structure: 
 
If enough new data obtained, go to step 1 and generate a 
new network structure. 
 
If no structural update is necessary go to step 10. 
 
Consequently, the heuristic search algorithm adds arcs 
only in the forward direction because this protects the 
network from having cycles and complex network 
structure. On the other hand, there is a price of arranging 
the variables at the creation of the database in the 
heuristic algorithm. Since the agents will not have much 
knowledge about the environmental variables, it is hard to 
arrange the variables at the beginning. There is a need for 
a better search algorithm that explores more possibilities 
in the network. The following paragraph introduces 
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another searching algorithm that eliminates the arranging 
the variables, namely exhaustive search. 
 
(2) Exhaustive Search 
The exhaustive search algorithm explores all the possible 
arcs in the network during its execution. The algorithm 

starts adding arcs from the ith variable to the jth variable 

where { }1,2, ,i n= ⋅⋅ ⋅ , { }1,2, ,j n= ⋅⋅ ⋅ , i j≠ . This covers 
( 1)n n⋅ − arcs throughout the network. The algorithm 

calculates the network score for each arc addition. Then, 
it chooses the arc with the highest increase in the network 
score.  The algorithm repeats the above steps until there is 
no increase in the network score. 
 
There are two major drawbacks in the exhaustive search 
algorithm. First, the number of arcs to be tried might 
become intractable when the number of variables is large. 
Second, during the search, the algorithm might introduce 
cycles to the network because it can add an arc in any 
direction.  An additional algorithm is incorporated to the 
search algorithm to keep track of cycles. Using the 
additional algorithm, the search algorithm checks 
whether the new arc introduces a cycle or not. If the arc 
introduces a cycle, the algorithm does not add the arc to 
the network.  The following is the exhaustive search 
algorithm used in this research. 
 
(1)Collect data 
(2)Define the variables from the available data 
(3)Start with an empty network 
(4)Estimate the parameters (only independent 
probabilities) of the BN using the MLE method using 
initial data 

(5)Add a new arc from the ith variable to the jth variable 
to create a candidate network and remove the arc. Repeat 
the process for every value of i and j where 

{ }1,2, ,i n= ⋅⋅⋅ , { }1,2, ,j n= ⋅⋅ ⋅ , i j≠ .This step creates m 

possible networks 1 2( , , , )mB B B⋅⋅ ⋅ .Algorithm creates 
( 1)m n n= ⋅ − networks in first visit to step 5. 

(6)Remove the network with cycles from the candidate fist. 
(7)Calculate the scores of the candidate networks and 
record it in a list. 

(8)Find the network ( )B with the maximum score and 
keep it for the next step. 
(9)Do step 5 through 8 until there is no increase in the 
network score. 
(10)Update the network parameters along with new data 
(11)Update the network structure: 

If enough new data obtained, go to step 1 and generate a 
new network structure. 
If no structural update is necessary go to step 10. 
The search algorithms are explained in detail. There is a 
need to analyze the complexity of the search algorithm 
before there are implemented. The following section gives 
the complexity analysis of both search algorithms. 
 
(3) Complexity Analysis for Search Algorithms 
As stated earlier, the heuristic search algorithm needs 
prior knowledge about the variables in terms of their 
order in the database. On the other hand, the number of 
iterations in the heuristic search algorithm may be 
tractable. In the heuristic search, the algorithm 

tries ( 1)n − arcs in the first trip from step 5 to step 7. The 
algorithm repeats steps 5 through 7 until there is no 
increase in the network score. Assuming the algorithm 
adds an arc in every trip, the number of arcs tried will be 
one less then the previous trip. Algorithm can repeat step 

5 through 7 at most ( 1)n − times. In ( 1)n − trips, the 

algorithm generates ( 1) ( 2) 1n n− + − + ⋅⋅⋅ +  networks 
candidates. When the algorithm reaches step 8, the 
algorithm loops back to step 5 and repeats the same 

process for the variables { }1 2 2, , ,n nX X X− − ⋅⋅ ⋅ .Therefore, 
after the first loop, the algorithm 

generates ( 1) ( 2) 1n n− + − + ⋅⋅⋅ +  network candidates.  The 
complexity of the heuristic search algorithm is denoted 

as hC . 
 
In the following complexity analysis, each loop shows the 
number of network candidates tried until the algorithm 
reaches to the step 8. Since the algorithm will repeat itself 

for ( 1)n − variables, the analysis has ( 1)n − loops as the 
following. 
 
Loop 1                  
( 1) ( 2) 1 ( 1) (1 2 ( 1))n n n n n− + − + ⋅⋅ ⋅+ = − − + + ⋅⋅⋅ + −  

( 1) ( 1)( 1)
2 2

n n n nn n − −
= − − =

 
Loop 2                        

( 1)( 2)( 2) ( 3) 1
2

n nn n − −
− + − + ⋅⋅⋅ + =

 
  
  

Loop (n-1)                      
( ( 1))( ( 2)) 1

2
n n n n− − − −

=
 

If we add the number of candidate networks from each 
loop, the following can be obtained: 
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( 1) ( 1)( 2) ( ( 1))( ( 2))
2n

n n n n n n n nC − + − − + ⋅⋅⋅ + − − − −
=

 
2 2 22( 1) 2( 3) 2( ( 2))

2n
n n n nC − + − + ⋅⋅⋅ + − −

=
 

Then, we can further modify the equation as follows: 
2 2 2( 1) ( 3) 2( ( 2))nC n n n n= − + − + ⋅⋅ ⋅+ − −    (7) 

Since each element in nC is less than
2n . We can state that 

2 3( 3)nC n n n< − <     (8) 
Equation (8) illustrates the complexity of the heuristic 
search. The following paragraphs will explore the 
complexity of the exhaustive search algorithm. 
The exhaustive search algorithm tries every possible arc 
in the network during its first visit to step 5. In a graph 

with n nodes, there can be ( 1)n n − possible directed edges 
in the graph.  Therefore, the algorithm 

generates ( 1)n n − network candidates and the complexity 

of the first visit is ( 1)n n − .Then the algorithm continues 
until it reaches to step 9 and loops back to step 5 until 
there is no increase in the network score. 
 
After the first loop, the complexity decreases by 1 in each 
step because the algorithm will not try the arc added in 
the previous step. The following presents the complexity 
analysis of the exhaustive search algorithm. First, the 
complexity is calculated for each loop. Then, they are 
added to obtain the complexity of the algorithm. 
 

Loop 1                   ( 1)n n −  

Loop 2                   ( 1) 1n n − −  
  
  
Loop N                   ( 1) 1n n N− − +  
 
The exhaustive search algorithm does not perform a 
certain number of loops. The algorithm will continue until 
there is no increase in the network score. Therefore, we 
will assume that the algorithm end after N loops for the 
complexity calculations. If we add the complexities of all 
the loops together, the complexity of the exhaustive 

search, eC , becomes the following. 
( 1) (1 2 ( 1))eC n n N N= − − + + ⋅⋅ ⋅+ −    (9) 

( 1)( 1)
2e

N NC n n N −
= − −

   (10) 
If the network has great number of arcs, then the 
complexity of the algorithm becomes large. For example, 

if the algorithm ends in step N n= , the complexity 
becomes 

2
2 ( 1) 2 ( 1) ( 1)( 1)

2 2e
n n n n n nC n n − − − −

= − − =
    (11) 

( 1) (2 1)
2e

n n nC − −
=

 for n N=     (12) 
 

In general, number of nodes in a Bayesian network, n , is 
much larger than 1. Therefore, we can reevaluate the 
complexity by assuming n >>1 .The following equation 
represents the computational complexity of the exhaustive 
search algorithm when the number of steps is equal to the 
number of variables. 

3
32 2

2 2e e
n n n nC C n⋅ ⋅

≅ = ⇒ ≅
  (13) 

As can be seen above, the complexity of the exhaustive 
algorithm is larger than the complexity of the heuristic 
algorithm when N n= . 
 
For the networks with large number of variables (nodes), 
the algorithm does not stop when N n= .Let us calculate 
the worst case scenario for the exhaustive algorithm. The 
algorithm might explore all possible arcs in the network, 

which is equal to ( 1)n n − .This is true because a complete 

graph with n nodes has ( 1)n n − possible directed edges. 

Therefore, we will replace N with ( 1)n n − in the 
complexity analysis. Then, the complexity of the 
exhaustive search algorithm becomes the following. 

( 1) ( 1)( ( 1) 1)( 1) ( 1) ( 1)
2 2e

N N n n n nC n n N n n n n− − − −
= − − = − − −

   (14) 
2 2 2 2 2 22 ( 1) ( 1) ( 1) ( 1) ( 1)

2 2e
n n n n n n n n n nC − − − − − − − −

= =
   (15) 

We can simplify the equation above by assuming n >>1. 
In this case, the complexity of the algorithm becomes the 
following. 

2 2 2 2 2 4( 1)
2 2 2e e

n n n n n nC C⋅ − −
≅ = ⇒ ≅

  (16) 
 

Two search algorithms are introduced to learn the 
structure of a Bayesian network in the previous sections. 
The heuristic search algorithm is simple and explores a 
limited number of network structures.  On the other hand, 
the exhaustive search algorithm is complex and explores 
many possible network structures. The complexity of the 
exhaustive algorithm is approximately n -fold larger than 
the complexity of the heuristic search algorithm.   
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3.2 Network scoring functions 

Three scoring functions are employed in this research, 
namely Log-Likelihood, Minimum description length 
(MDL), and Bayesian (BDE) scores. The Log-Likelihood 
method measures the likelihood of the network given the 
available data. The MDL also uses likelihood of the 
network but it includes the measure of the network's 
complexity. The Bayesian score involves the calculation 
of the probability of a network given the data. Bayesian 
scoring method also penalizes complex networks as the 
MDL scoring. If the length of the database is large 
enough these two methods converge to each other. The 
following sections provide the details of the scoring 
methods used in the research. 
 
(1) Log-Likelihood Scoring 
The Log-Likelihood score of a network, B , is obtained by 
calculating the likelihood of the data, D , given the 

network, B, and the network parameters, Bθ . After 
calculating the likelihood of the data, a natural logarithm 
is applied to get the Log-Likelihood of the data. The 
following formulas explain the details of the Log-
Likelihood calculation. 

( : ) ( , )L BScore B D L D B θ=        (17) 
[ ]( , ) ( , )B B

m
L D B P d m Bθ θ= ∏

    (18) 

In the above formula, [ ]d m  represents the mth  data case 
in the database. Let us take the logarithm of the likelihood. 
The logarithm converts the multiplication in to a 
summation. 

( , ) log ( , )B Bl D B L D Bθ θ=    (19) 
[ ]( , ) log ( , )B B

m
l D B P d m Bθ θ= ∑

   (20) 
This is basically equal to calculating the probability of 
each data case in the database, taking their logarithms 
and adding them together. For example, assume that the 
network given in the previous section has the 

relations 1 3X X→ and 3 2X X→ . Then, we can calculate 
the log-likelihood of the data with the following equation. 

[ ]

[ ] [ ]

[ ] [ ]

1

2 3

2 30 2 31

1

3 10 3 11

2 30 2 31

( , ) log ( )

log ( , ) log ( , )

log ( , ) log ( , )

X

X X

X x X x

B
m

m m

m m

l D B P X m

P X m x P X m x

P X m x P X m x

θ θ

θ θ

θ θ

=

+ +

+ +

∑

∑ ∑

∑ ∑
    (21) 

 
In the log-likelihood approach, the score of the network 

increases as long as the length of the database and the 

number of arc in the network increase. Therefore, the 
search algorithm tries to add as many arcs as possible to 
the network to get the highest scoring network. At the end 
of the search, the algorithm ends up with almost a 
complete network. For the networks with a large number 
of nodes, this might cause a great increase in complexity 
of the network. To overcome the complexity problem, we 
need to find out a way to include the complexity of the 
network to the scoring function. If the network gets 
complex, the scoring function should decrease 
accordingly. The following scoring method handles the 
complexity problem by introducing the complexity 
parameter in the scoring function. 

 
(2) Minimum Description Length Scoring 
The MDL method combines the likelihood of the data and 
the complexity of the network to find optimally complex 
and accurate networks.  The MDL method penalizes 
networks with complex structures. The MDL has two 

parts, the complexity of the network, NETWORKL , and the 

likelihood of the data, DATAL . Then, the MDL score can be 
calculated by the following. 

MDL DATA NETWORKScore L L= −    (22) 
The complexity part involves the dimension of the 

network, ( )Dim B , and structural complexity of the 

network, ( )DL B .The dimension of the network can be 

calculated using the number of states in each node, iS . 
The following equation illustrates the dimension of the 
network. 

1 ( )

( ) ( 1)
i

N

i j
i j pa x

Dim B S S
= ∈

= −∑ ∏
   (23) 

Where N is the number of nodes in the network. Let M be 
the number of data cases in the database. Using the 
central limit theorem, each parameter has a variance 

of M .Thus, for each parameter in the network, the 
number of bits required is given by the following. 

loglog
2
Md M d= ⇒ =

  (24) 
The structural complexity of the network depends on the 
number of parents of the nodes. The following formula 
calculates the structural complexity. 

2
1

( ) log ( )
N

i
i

DL B k N
=

= ∑
   (25) 

Where ik is the number of parents the node iX has. Finally, 
the following formula presents the complexity part of the 
MDL score by combining the dimension of the network 
and the structural complexity. 
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log ( ) ( )
2NETWORK
ML Dim B DL B= +

   (26) 

2
1 1( )

log ( 1) log ( )
2

i

N N

NETWORK i j i
i ij pa x

ML S S k N
= =∈

 
= − + 

 
∑ ∑∏

  (27) 
 

The likelihood of the data needs to be defined after 
presenting the network complexity part of the MDL score. 
The likelihood of the data given a network can be 
calculated by using cross-entropy.  The difference between 

the distribution of the data ( )P and the estimated 

distribution ( )Q is from the network. Kullback-Leiber and 
Euclidean distance are the commonly used cross-entropy 
methods.  Therefore, the likelihood of a data can be 
calculated by measuring the distance between two 
distributions. If we use the Kullback-Leiber cross-entropy, 
the likelihood of the data can be calculated by the 
following. 

1

( , ) log
M

i
B i

i i

p
l D B p

q
θ

=

= ∑
    (28) 

1

log
M

i
DATA i

i i

pL p
q=

= ∑
   (29) 

Where ip is the probability of data case i using the 

database and iq is the estimate of the probability of data 
case i from the network parameters. If Euclidean distance 
measure is employed to calculate the distance between the 
distributions, the likelihood of the data is calculated by 
the following. 

2

1

ˆ( , ) ( )
M

B i i
i

l D B p qθ
=

= −∑
  (30) 

2

1

( )
M

DATA i i
i

L p q
=

= −∑
  (31) 

After defining the likelihood and complexity parts, the 
MDL score can be given as 

log( : ) ( , ) ( ) ( )
2MDL B
MScore B D l D B Dim B DL Bθ= − −

   (32) 
 

(3) Bayesian Scoring 
Another commonly used scoring method is Bayesian score. 
Now, we will provide the details of the Bayesian scoring 
technique. Bayesian scoring is calculated by utilizing the 
Dirichlet parameters of the network. 
Bayesian statistics tells us that we should rank a prior 
probability over anything we are uncertain about. In this 
case, we put a prior probability both over our parameters 
and over our structure.  The Bayesian score can be 
evaluated as the probability of the structure given the data: 

( ) ( )
( : ) ( )

( )BDE

P D B P B
Score B D P B D

P D
= =

   (33) 
 

The probability ( )P D is constant. Therefore, it can be 
ignored when comparing different structures. Thus, we 

can choose the model that maximizes ( ) ( )P D B P B .Let us 
assume that we do not have prior over the network 
structures. Assume that we have uniform prior over the 
structures. One might ask whether we get back to the 
maximum likelihood score. The answer is 'no' because the 

maximum likelihood score for B was ( , )BP D B θ , i.e. the 
probability of the data in the most likely parameter 
instantiation. In Bayesian scoring, we have not given the 
parameters. Therefore, we have to integrate over all 
possible parameter vectors: 

( ) ( , ) ( )B B BP D B P D B P B dθ θ θ= ∫    (34) 
This is, of course, different from the maximum likelihood 
score. To understand the Bayesian scoring better, consider 
two possible structures for a two-node network, 

where [ ]1B A B= and [ ]2B A B= → .Then, the probability 
of the data given the network structures can be calculated 
by the following equations. 

[ ] [ ]
1

1
0

( ) ( , ) ( , ) ,A B A B A BP D B P P D dθ θ θ θ θ θ= ∫
   (35) 

1 1 10 0 0

1

2
0

( ) ( , , ) ( , , ) , ,A A ABa Ba BaBa Ba BaP DB P P D dθ θ θ θ θ θ θ θ θ   =    ∫
   (36) 

 
The latter is a higher dimensional integral, and its value 
is therefore likely to be somewhat lower.   This is because 
there are more numbers less than 1 in the multiplication. 
Multiplying the numbers less than 1 results in a number 
smaller than any of the number in the multiplication. For 
example, multiplying three small numbers (less than 1)is 
likely to be smaller than the number obtained by 
multiplying two small numbers (less than 1). Since the 
probabilities in the integrals are less than 1, the above 
argument applies to the integrals. Therefore, it can be said 
that the higher dimensional integral is likely to have 
lower value that the lower dimensional integral. This idea 
presents preference to the networks with fewer parameters. 
This is an automatic control in the complexity of the 
network. 
 

Let us analyze ( )P D B a little more closely to understand 
the Bayesian score calculations. It is helpful to first 
consider the single parameter case even though there is no 
structure learning to learn there.  In that case, there is a 
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simple closed form solution for the probability of the data 
given by the following. 

0 0 1 1

0 1

( ) ( )( )( )
( ) ( )

n n
P D

n
α αα

α α α
Γ + ⋅ Γ +Γ

= ⋅
Γ + Γ +   (37) 

Where ( )mΓ is equal to ( 1)!m − for an integer m , n is the 

number of data cases in the database, 0n and 1n are the 

number of zeros and ones, respectively, and 0 1α α α= + . 
Let us assume we have 40 zeros and 60 ones in the 
database. Assuming that we have uniform priors, 

0 1 3α α= = , the probability of data is 
(6) (3 40) (3 60)( )

(3) (3) (6 100)
P D Γ Γ + ⋅ Γ +

= ⋅
Γ Γ Γ +   (38) 

The probability for a structure with several parameters is 
simply the product of the probabilities for the individual 
parameters. For example, in our two-node network, if the 
same priors are used for all three parameters, and we have 
45 zeros and 55 ones for the variable B , then, the 

probability of the data for the network 1B can be calculated 
as 

1
(6) (43) (43) (6) (48) (58)( )

(3) (3) (106) (3) (3) (106)
P D B Γ Γ ⋅Γ Γ Γ ⋅Γ

= ⋅ ⋅
Γ Γ Γ Γ Γ Γ

   (39) 
For the second network, let us assume 

that 00 23α = , 01 22α = , 10 29α = and 11 26α = , 

where ( , )ij i jn a bα = is the number of cases 

with iA a= and jB b= . Then, we can compute the 

probability of the data for the network 2B using following 
equation. 

2
(6) (43) (43) (6) (23 3) (22 3)( )

(3) (3) (106) (3) (3) (45 3)
(6) (29 3) (26 3)

(3) (3) (55 3)

P D B Γ Γ ⋅Γ Γ Γ + ⋅Γ +
= ⋅ ⋅

Γ Γ Γ Γ Γ Γ +
Γ Γ + ⋅Γ +

⋅
Γ Γ Γ +    (40) 

 
The intuition is clearer. The analysis shows that we get a 
higher score by multiplying a smaller number of bigger 
factorials rather than a larger number of small ones. 
It turns out that if we approximate the log posterior 
probability, and ignore all terms that do not grow with M , 
we can obtain 
 

loglog ( ) ( , ) ( )
2B
MP D B l D B Dim Bθ= −

  (41) 
i.e, as M grows large, the Bayesian score and the MDL 
score converge to each other using Dirichlet priors. In fact, 
if we use a good approximation to the Bayesian score, and 

eliminate all terms that do not grow with M , then we are 
left exactly with MDL score. Therefore, it can be 
concluded that the Bayesian score gives us, automatically, 
a tradeoff between network complexity and fit to the data. 
The Bayesian score is also decomposable like the MDL 
score since it can be expressed as a summation of terms 
that corresponds to individual nodes. In this research, we 
have decomposed the Bayesian score to make efficient 
calculations and a uniform distribution is employed for 
Dirichlet priors. The simulation results will show that the 
Bayesian score provides optimally complex and accurate 
network structures. 

4 .Conclusions 

Structural learning is finding the best network that fits the 
available data and is optimally complex. This can be 
accomplished by utilizing a search algorithm over the 
possible network structures. A greater importance is given 
to the search algorithm because we have assumed that the 
data will be complete. That is, each element of the 
database is a valid state of a variable. If there are non-
applicable entries in the database then the database is said 
to be incomplete. We explore the search algorithms used 
in this research. In the algorithms, the arcs are added 
heuristically and exhaustively.We calculate the quality 
(score) of the networks to find the best network. In this 
paper, three scoring functions are employed, namely Log-
Likelihood, Minimum description length (MDL), and 
Bayesian (BDE) scores. The Log-Likelihood method 
measures the likelihood of the network given the available 
data. The MDL also uses likelihood of the network but it 
includes the measure of the network's complexity. The 
Bayesian score involves the calculation of the probability 
of a network given the data. 
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