

Study of Online Bayesian Networks Learning in a Multi-Agent
System

Yonghui CAO1, 2
1, School of Economics & Management, Henan Institute of Science and Technology, Xin Xiang, 453003 ,China

2, School of Management, Zhejiang University, Hang Zhou,310058 ,China

Abstract
This paper introduces online Bayesian network learning in
detail. The structural and parametric learning abilities of the
online Bayesian network learning are explored. The paper starts
with revisiting the multi-agent self-organization problem and the
proposed solution. Then, we explain the proposed Bayesian
network learning, three scoring functions, namely Log-
Likelihood, Minimum description length, and Bayesian scores.

Keywords:Bayesian Network, Search Algorithms, Heuristic
Search, Exhaustive Search

1. Introduction

We attempt to find how a common task can be performed
by a multi-agent self-organizing system. The agents are
independent in terms of their model of environment and
their actions. Each agent explores the environment and
decides its actions by itself. Agents will have no
information about the environment at the beginning of
their exploration of the environment. They will explore
the environment, model the environment and take actions
to change the environment according to the common task.
We attempt to solve these problems by utilizing Bayesian
networks and influence diagrams.

Bayesian networks are employed to model the
environment. Because the agents have no or limited
information about the environment at the beginning of
their exploration, an online Bayesian network learning
method will be used. Influence diagrams will be employed
to obtain the agents’ actions. Bayesian networks and
influence diagrams are combined to produce a decision-
theoretic agent in a multi-agent system.

Bayesian network learning is examined broadly. There are
four cases of Bayesian network learning depending on the
availability of the network and the data. The unknown
structure and incomplete data case is the nearest case to
our problem. Our network structure is not defined in
advance and the sensor data may not be complete. On the

other hand, for simplicity we will assume the data is
complete during the simulations. The agents do not have
significant amounts of prior knowledge about the
environment. Therefore, the BN will be formed during the
agents’ exploration of the environment. Each new data
case will affect the structure of the network.

Online Bayesian network learning consists of two parts,
namely parameter learning and structural learning.
Parameter learning is the calculation of the conditional
probability table elements of each node in a given
Bayesian network. In this research, we use a modified
version of Maximum Likelihood Expectation method to
calculate the network parameters. Maximum likelihood
estimation method is modified so that it has a closed form
when the probabilities need to be updated.

Structural learning is the problem of finding the network
that represents the data the best. This involves two
parameters, complexity of the network and fitness of the
network to the data. The structural learning process tries
to find the optimal network that provides optimal
complexity and fitness. The main building block in
structural learning is the search algorithm that generates
the network with the highest score.

2 .The Parameter Learning

There are two types of parameter learning techniques used
in the literature, MLE and Bayesian estimation. It is
stated that with a database having a large number of data
cases, these two methods converge to each other. The
latter can take prior knowledge if it is available. Also, it is
shown that the latter has a closed form. In this section, we
have redefined the Maximum Likelihood calculation to
have a closed form calculation. Because MLE is
computationally simpler than Bayesian estimation, it is
employed in our parameter learning. The following
paragraphs explain how the parameter learning is
performed by modified MLE method.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 720

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:caoyonghui2000@126.com

Let { }1 2, , mX X X X= 
be the discrete variables

(nodes) in a Bayesian network, B. Assume that we know

that the node jX
is the child of the node iX , which

means i jX X→
.In this case, the parameter learning

has to calculate the values in the conditional probability

table in the node jX
. The conditional probability can be

calculated by utilizing using the fundamental formula for
probability calculus as in Equation (1)

(,)
()

()
i j

i j
i

P X X
P X X

P X
=

 (1)

Since MLE is employed in parameter learning, the
probabilities can be calculated by utilizing the natural
frequencies of the data cases. A natural frequency of a
data case is calculated by counting the number of
occurrences of the data case in the database. For
individual probabilities, we count the number of
occurrences of a state of a variable in the database. Let

ijn
 be the number of occurrences of the state j of the ith

variable in the database and n is the total number of data
cases in the database. Using these frequency values, we
can calculate the probabilities in the following way:

()
() i j ij

i j

n X x n
P X x

n n
=

= = =
 (2)

Thus, the conditional probabilities can be calculated by
using the individual probabilities in Equation (1). The

conditional probability
()i jP X X→

 can be obtained as
in the following equations.

(,)
()

()
i j

i j
j

P X X
P X X

P X
=

 (3)
(,)

(,) i j
i j

n X X
P X X

n
=

 (4)
()

() j
i

n X
P X

n
=

 (4.5)
As can be seen in Equations (4) and (5), the denominators
are the same in the both terms. When we put these two
terms into Equation (3), the denominators cancel each
other as shown in the following equation.

(,)
(,)

() () ()

i j
i j

i j
j j

n X X
n X XnP X X n X n X

n

= =

 (6)

In the resulting equation, there are only two natural
frequencies. There is no need to involve the number of
elements in the database for conditional probability
calculations. This technique simplifies the computations
in the parameter learning. Equation (6) has a closed form
because if a new data case is encountered, we can easily
update the corresponding natural frequencies accordingly
to update the conditional probabilities. The following
example provides practical results to the conditional
probability calculation technique. For the cases that have
not seen yet, the uniform probability distribution is used
to fill the conditional probability tables in the nodes. For
online Bayesian network learning, the parameter learning
is not enough because the agents do not know the system
dynamics in advance. Thus, the structural learning part is
also necessary to discover the system dynamics.

3. The structural learning

Structural learning is finding the best network that fits the
available data and is optimally complex. This can be
accomplished by utilizing a search algorithm over the
possible network structures. In this research, a greater
importance is given to the search algorithm because we
have assumed that the data will be complete. That is, each
element of the database is a valid state of a variable. If
there are non-applicable entries in the database, then the
database is said to be incomplete.

The greedy search algorithm is employed to accomplish
the structural learning in the online Bayesian network
learning. The search algorithm is a score based searching
algorithm. The search algorithm is evaluated in terms of
the score function used and the technique used to create
the candidate networks, such as adding an edge and
removing an edge. The greedy search algorithm is also
upgraded to have some online properties such as updating
the network parameters and its structure adaptively.

The algorithm is a generic greedy search algorithm. How
the arc addition is done and which scoring method is used
are not specified in the above algorithm. We explore the
search algorithms used in this research. In the algorithms,
the arcs are added heuristically and exhaustively.

3.1 Search Algorithms

A Bayesian network is not allowed to have a cycle because
of the computational difficulties. A cycle in a Bayesian
network leads to a "circular reasoning" between the
variables. For example, if the dependencies in above

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 721

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

network are: 1 2X X→ , 2 3X X→ , and 3 1X X→ , a cycle

will be formed. If evidence is entered into the variable 1X ,

the Bayesian network will run the evidence to 2X , then

to 3X . Then, the evidence will travel to 1X because
1X depends on 3X . The evidence may run in the network

forever because all the variables depend on each other in a
circular way.

A heuristic arc addition is employed not to have a cycle in
the Bayesian network while generating the Bayesian
structure. An exhaustive arc addition is also employed to
explore more network possibilities without limitation. In
the exhaustive arc addition algorithm, a cycle check is
employed before and arc is added. The following section
presents the details of heuristic and exhaustive search
algorithms.

(1) Heuristic Search
In the heuristic search algorithm, the variables of the
system have to be ordered in a certain way to prevent
cycles from being created. The decision variables should
be in the last columns in the database; and, the first
columns of the database should be filled with the variables
without parents, independent variables. After placing the
independent variables in the first columns, the children of
the independent variables should be placed in the
following columns. The rest of the columns are filled with
the children of the previously placed variables. Ordering
of the variables is necessary because the heuristic arc
addition adds the arcs from the first variables to the last
variables. Because of the ordering, we need to have some
knowledge about the variables. This does not mean that
we need to know the dependencies between the variables.
For example, let B be a Bayesian network with three

variables, { }1 2 3, ,X X X .If we know the variable 1X is the

first variable and the variable 2X is the decision node.

Then the column order will be{ }1 2 3, ,X X X .

The heuristic search starts with adding and removing arcs
from the each variable to the last variable. Let the
network have n variables. After adding an arc, the
algorithm calculates the network score, records the score
in a list, and removes the arc. The algorithm finds the arc
that gives the highest increase in the network score. Let
us assume that the arc from the kth variable to the last
variable, n , gives the highest increase in network score.
Then, the algorithm adds the arc from the kth variable to
the last variable. After the arc is added, the algorithm

adds and removes arcs from the remaining variables to
the last variable. Then, the algorithm chooses the arc
with the highest score increase and adds the arc to the
network. This continues until no increase in the network
score can be obtained by adding an arc to the last variable.
Then, the algorithm starts adding arcs from the

variables{ }1,2, 2n⋅⋅ ⋅ − to the (1)n th− node. The algorithm

adds arcs to (1)n th− node until there is no increase in the
network score. The algorithm stops when it adds an arc
from the first variable to the second variable. The
following is the heuristic search algorithm used in this
research.
(1)Collect data
(2)Define the variables from the available data
(3)Start with a network with no arc.
(4)Estimate the parameters (only independent
probabilities) of the BN using the MLE method using
initial data

(5)Add a new arc from the ith variable to the jth variable
to generate a network candidate and remove the arc.

Repeat the process with { }1, 2, 1i j= ⋅⋅ ⋅ − and generate

networks 1 2 1(, , ,)jB B B −⋅⋅ ⋅ . Start j from n and decrease j by
1.
(6)Calculate the scores of the candidate networks and
record them in a list.

(7)Find the network ()B with the maximum score and
keep it for the next step.
(8)Repeat the steps 5, 6, and 7 until there is no increase in
the network score.
(9)If 1j > , then go to step 5.
(10)Update the network parameters along with new data
(11)Update the network structure:

If enough new data obtained, go to step 1 and generate a
new network structure.

If no structural update is necessary go to step 10.

Consequently, the heuristic search algorithm adds arcs
only in the forward direction because this protects the
network from having cycles and complex network
structure. On the other hand, there is a price of arranging
the variables at the creation of the database in the
heuristic algorithm. Since the agents will not have much
knowledge about the environmental variables, it is hard to
arrange the variables at the beginning. There is a need for
a better search algorithm that explores more possibilities
in the network. The following paragraph introduces

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 722

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

another searching algorithm that eliminates the arranging
the variables, namely exhaustive search.

(2) Exhaustive Search
The exhaustive search algorithm explores all the possible
arcs in the network during its execution. The algorithm

starts adding arcs from the ith variable to the jth variable

where { }1,2, ,i n= ⋅⋅ ⋅ , { }1,2, ,j n= ⋅⋅ ⋅ , i j≠ . This covers
(1)n n⋅ − arcs throughout the network. The algorithm

calculates the network score for each arc addition. Then,
it chooses the arc with the highest increase in the network
score. The algorithm repeats the above steps until there is
no increase in the network score.

There are two major drawbacks in the exhaustive search
algorithm. First, the number of arcs to be tried might
become intractable when the number of variables is large.
Second, during the search, the algorithm might introduce
cycles to the network because it can add an arc in any
direction. An additional algorithm is incorporated to the
search algorithm to keep track of cycles. Using the
additional algorithm, the search algorithm checks
whether the new arc introduces a cycle or not. If the arc
introduces a cycle, the algorithm does not add the arc to
the network. The following is the exhaustive search
algorithm used in this research.

(1)Collect data
(2)Define the variables from the available data
(3)Start with an empty network
(4)Estimate the parameters (only independent
probabilities) of the BN using the MLE method using
initial data

(5)Add a new arc from the ith variable to the jth variable
to create a candidate network and remove the arc. Repeat
the process for every value of i and j where

{ }1,2, ,i n= ⋅⋅⋅ , { }1,2, ,j n= ⋅⋅ ⋅ , i j≠ .This step creates m

possible networks 1 2(, , ,)mB B B⋅⋅ ⋅ .Algorithm creates
(1)m n n= ⋅ − networks in first visit to step 5.

(6)Remove the network with cycles from the candidate fist.
(7)Calculate the scores of the candidate networks and
record it in a list.

(8)Find the network ()B with the maximum score and
keep it for the next step.
(9)Do step 5 through 8 until there is no increase in the
network score.
(10)Update the network parameters along with new data
(11)Update the network structure:

If enough new data obtained, go to step 1 and generate a
new network structure.
If no structural update is necessary go to step 10.
The search algorithms are explained in detail. There is a
need to analyze the complexity of the search algorithm
before there are implemented. The following section gives
the complexity analysis of both search algorithms.

(3) Complexity Analysis for Search Algorithms
As stated earlier, the heuristic search algorithm needs
prior knowledge about the variables in terms of their
order in the database. On the other hand, the number of
iterations in the heuristic search algorithm may be
tractable. In the heuristic search, the algorithm

tries (1)n − arcs in the first trip from step 5 to step 7. The
algorithm repeats steps 5 through 7 until there is no
increase in the network score. Assuming the algorithm
adds an arc in every trip, the number of arcs tried will be
one less then the previous trip. Algorithm can repeat step

5 through 7 at most (1)n − times. In (1)n − trips, the

algorithm generates (1) (2) 1n n− + − + ⋅⋅⋅ + networks
candidates. When the algorithm reaches step 8, the
algorithm loops back to step 5 and repeats the same

process for the variables { }1 2 2, , ,n nX X X− − ⋅⋅ ⋅ .Therefore,
after the first loop, the algorithm

generates (1) (2) 1n n− + − + ⋅⋅⋅ + network candidates. The
complexity of the heuristic search algorithm is denoted

as hC .

In the following complexity analysis, each loop shows the
number of network candidates tried until the algorithm
reaches to the step 8. Since the algorithm will repeat itself

for (1)n − variables, the analysis has (1)n − loops as the
following.

Loop 1
(1) (2) 1 (1) (1 2 (1))n n n n n− + − + ⋅⋅ ⋅+ = − − + + ⋅⋅⋅ + −

(1) (1)(1)
2 2

n n n nn n − −
= − − =

Loop 2

(1)(2)(2) (3) 1
2

n nn n − −
− + − + ⋅⋅⋅ + =




Loop (n-1)
((1))((2)) 1

2
n n n n− − − −

=

If we add the number of candidate networks from each
loop, the following can be obtained:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 723

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

(1) (1)(2) ((1))((2))
2n

n n n n n n n nC − + − − + ⋅⋅⋅ + − − − −
=

2 2 22(1) 2(3) 2((2))

2n
n n n nC − + − + ⋅⋅⋅ + − −

=

Then, we can further modify the equation as follows:
2 2 2(1) (3) 2((2))nC n n n n= − + − + ⋅⋅ ⋅+ − − (7)

Since each element in nC is less than
2n . We can state that

2 3(3)nC n n n< − < (8)
Equation (8) illustrates the complexity of the heuristic
search. The following paragraphs will explore the
complexity of the exhaustive search algorithm.
The exhaustive search algorithm tries every possible arc
in the network during its first visit to step 5. In a graph

with n nodes, there can be (1)n n − possible directed edges
in the graph. Therefore, the algorithm

generates (1)n n − network candidates and the complexity

of the first visit is (1)n n − .Then the algorithm continues
until it reaches to step 9 and loops back to step 5 until
there is no increase in the network score.

After the first loop, the complexity decreases by 1 in each
step because the algorithm will not try the arc added in
the previous step. The following presents the complexity
analysis of the exhaustive search algorithm. First, the
complexity is calculated for each loop. Then, they are
added to obtain the complexity of the algorithm.

Loop 1 (1)n n −

Loop 2 (1) 1n n − −


Loop N (1) 1n n N− − +

The exhaustive search algorithm does not perform a
certain number of loops. The algorithm will continue until
there is no increase in the network score. Therefore, we
will assume that the algorithm end after N loops for the
complexity calculations. If we add the complexities of all
the loops together, the complexity of the exhaustive

search, eC , becomes the following.
(1) (1 2 (1))eC n n N N= − − + + ⋅⋅ ⋅+ − (9)

(1)(1)
2e

N NC n n N −
= − −

 (10)
If the network has great number of arcs, then the
complexity of the algorithm becomes large. For example,

if the algorithm ends in step N n= , the complexity
becomes

2
2 (1) 2 (1) (1)(1)

2 2e
n n n n n nC n n − − − −

= − − =
 (11)

(1) (2 1)
2e

n n nC − −
=

 for n N= (12)

In general, number of nodes in a Bayesian network, n , is
much larger than 1. Therefore, we can reevaluate the
complexity by assuming n >>1 .The following equation
represents the computational complexity of the exhaustive
search algorithm when the number of steps is equal to the
number of variables.

3
32 2

2 2e e
n n n nC C n⋅ ⋅

≅ = ⇒ ≅
 (13)

As can be seen above, the complexity of the exhaustive
algorithm is larger than the complexity of the heuristic
algorithm when N n= .

For the networks with large number of variables (nodes),
the algorithm does not stop when N n= .Let us calculate
the worst case scenario for the exhaustive algorithm. The
algorithm might explore all possible arcs in the network,

which is equal to (1)n n − .This is true because a complete

graph with n nodes has (1)n n − possible directed edges.

Therefore, we will replace N with (1)n n − in the
complexity analysis. Then, the complexity of the
exhaustive search algorithm becomes the following.

(1) (1)((1) 1)(1) (1) (1)
2 2e

N N n n n nC n n N n n n n− − − −
= − − = − − −

 (14)
2 2 2 2 2 22 (1) (1) (1) (1) (1)

2 2e
n n n n n n n n n nC − − − − − − − −

= =
 (15)

We can simplify the equation above by assuming n >>1.
In this case, the complexity of the algorithm becomes the
following.

2 2 2 2 2 4(1)
2 2 2e e

n n n n n nC C⋅ − −
≅ = ⇒ ≅

 (16)

Two search algorithms are introduced to learn the
structure of a Bayesian network in the previous sections.
The heuristic search algorithm is simple and explores a
limited number of network structures. On the other hand,
the exhaustive search algorithm is complex and explores
many possible network structures. The complexity of the
exhaustive algorithm is approximately n -fold larger than
the complexity of the heuristic search algorithm.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 724

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3.2 Network scoring functions

Three scoring functions are employed in this research,
namely Log-Likelihood, Minimum description length
(MDL), and Bayesian (BDE) scores. The Log-Likelihood
method measures the likelihood of the network given the
available data. The MDL also uses likelihood of the
network but it includes the measure of the network's
complexity. The Bayesian score involves the calculation
of the probability of a network given the data. Bayesian
scoring method also penalizes complex networks as the
MDL scoring. If the length of the database is large
enough these two methods converge to each other. The
following sections provide the details of the scoring
methods used in the research.

(1) Log-Likelihood Scoring
The Log-Likelihood score of a network, B , is obtained by
calculating the likelihood of the data, D , given the

network, B, and the network parameters, Bθ . After
calculating the likelihood of the data, a natural logarithm
is applied to get the Log-Likelihood of the data. The
following formulas explain the details of the Log-
Likelihood calculation.

(:) (,)L BScore B D L D B θ= (17)
[](,) (,)B B

m
L D B P d m Bθ θ= ∏

 (18)

In the above formula, []d m represents the mth data case
in the database. Let us take the logarithm of the likelihood.
The logarithm converts the multiplication in to a
summation.

(,) log (,)B Bl D B L D Bθ θ= (19)
[](,) log (,)B B

m
l D B P d m Bθ θ= ∑

 (20)
This is basically equal to calculating the probability of
each data case in the database, taking their logarithms
and adding them together. For example, assume that the
network given in the previous section has the

relations 1 3X X→ and 3 2X X→ . Then, we can calculate
the log-likelihood of the data with the following equation.

[]

[] []

[] []

1

2 3

2 30 2 31

1

3 10 3 11

2 30 2 31

(,) log ()

log (,) log (,)

log (,) log (,)

X

X X

X x X x

B
m

m m

m m

l D B P X m

P X m x P X m x

P X m x P X m x

θ θ

θ θ

θ θ

=

+ +

+ +

∑

∑ ∑

∑ ∑
 (21)

In the log-likelihood approach, the score of the network

increases as long as the length of the database and the

number of arc in the network increase. Therefore, the
search algorithm tries to add as many arcs as possible to
the network to get the highest scoring network. At the end
of the search, the algorithm ends up with almost a
complete network. For the networks with a large number
of nodes, this might cause a great increase in complexity
of the network. To overcome the complexity problem, we
need to find out a way to include the complexity of the
network to the scoring function. If the network gets
complex, the scoring function should decrease
accordingly. The following scoring method handles the
complexity problem by introducing the complexity
parameter in the scoring function.

(2) Minimum Description Length Scoring
The MDL method combines the likelihood of the data and
the complexity of the network to find optimally complex
and accurate networks. The MDL method penalizes
networks with complex structures. The MDL has two

parts, the complexity of the network, NETWORKL , and the

likelihood of the data, DATAL . Then, the MDL score can be
calculated by the following.

MDL DATA NETWORKScore L L= − (22)
The complexity part involves the dimension of the

network, ()Dim B , and structural complexity of the

network, ()DL B .The dimension of the network can be

calculated using the number of states in each node, iS .
The following equation illustrates the dimension of the
network.

1 ()

() (1)
i

N

i j
i j pa x

Dim B S S
= ∈

= −∑ ∏
 (23)

Where N is the number of nodes in the network. Let M be
the number of data cases in the database. Using the
central limit theorem, each parameter has a variance

of M .Thus, for each parameter in the network, the
number of bits required is given by the following.

loglog
2
Md M d= ⇒ =

 (24)
The structural complexity of the network depends on the
number of parents of the nodes. The following formula
calculates the structural complexity.

2
1

() log ()
N

i
i

DL B k N
=

= ∑
 (25)

Where ik is the number of parents the node iX has. Finally,
the following formula presents the complexity part of the
MDL score by combining the dimension of the network
and the structural complexity.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 725

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

log () ()
2NETWORK
ML Dim B DL B= +

 (26)

2
1 1()

log (1) log ()
2

i

N N

NETWORK i j i
i ij pa x

ML S S k N
= =∈

 
= − + 

 
∑ ∑∏

 (27)

The likelihood of the data needs to be defined after
presenting the network complexity part of the MDL score.
The likelihood of the data given a network can be
calculated by using cross-entropy. The difference between

the distribution of the data ()P and the estimated

distribution ()Q is from the network. Kullback-Leiber and
Euclidean distance are the commonly used cross-entropy
methods. Therefore, the likelihood of a data can be
calculated by measuring the distance between two
distributions. If we use the Kullback-Leiber cross-entropy,
the likelihood of the data can be calculated by the
following.

1

(,) log
M

i
B i

i i

p
l D B p

q
θ

=

= ∑
 (28)

1

log
M

i
DATA i

i i

pL p
q=

= ∑
 (29)

Where ip is the probability of data case i using the

database and iq is the estimate of the probability of data
case i from the network parameters. If Euclidean distance
measure is employed to calculate the distance between the
distributions, the likelihood of the data is calculated by
the following.

2

1

ˆ(,) ()
M

B i i
i

l D B p qθ
=

= −∑
 (30)

2

1

()
M

DATA i i
i

L p q
=

= −∑
 (31)

After defining the likelihood and complexity parts, the
MDL score can be given as

log(:) (,) () ()
2MDL B
MScore B D l D B Dim B DL Bθ= − −

 (32)

(3) Bayesian Scoring
Another commonly used scoring method is Bayesian score.
Now, we will provide the details of the Bayesian scoring
technique. Bayesian scoring is calculated by utilizing the
Dirichlet parameters of the network.
Bayesian statistics tells us that we should rank a prior
probability over anything we are uncertain about. In this
case, we put a prior probability both over our parameters
and over our structure. The Bayesian score can be
evaluated as the probability of the structure given the data:

() ()
(:) ()

()BDE

P D B P B
Score B D P B D

P D
= =

 (33)

The probability ()P D is constant. Therefore, it can be
ignored when comparing different structures. Thus, we

can choose the model that maximizes () ()P D B P B .Let us
assume that we do not have prior over the network
structures. Assume that we have uniform prior over the
structures. One might ask whether we get back to the
maximum likelihood score. The answer is 'no' because the

maximum likelihood score for B was (,)BP D B θ , i.e. the
probability of the data in the most likely parameter
instantiation. In Bayesian scoring, we have not given the
parameters. Therefore, we have to integrate over all
possible parameter vectors:

() (,) ()B B BP D B P D B P B dθ θ θ= ∫ (34)
This is, of course, different from the maximum likelihood
score. To understand the Bayesian scoring better, consider
two possible structures for a two-node network,

where []1B A B= and []2B A B= → .Then, the probability
of the data given the network structures can be calculated
by the following equations.

[] []
1

1
0

() (,) (,) ,A B A B A BP D B P P D dθ θ θ θ θ θ= ∫
 (35)

1 1 10 0 0

1

2
0

() (, ,) (, ,) , ,A A ABa Ba BaBa Ba BaP DB P P D dθ θ θ θ θ θ θ θ θ   =    ∫
 (36)

The latter is a higher dimensional integral, and its value
is therefore likely to be somewhat lower. This is because
there are more numbers less than 1 in the multiplication.
Multiplying the numbers less than 1 results in a number
smaller than any of the number in the multiplication. For
example, multiplying three small numbers (less than 1)is
likely to be smaller than the number obtained by
multiplying two small numbers (less than 1). Since the
probabilities in the integrals are less than 1, the above
argument applies to the integrals. Therefore, it can be said
that the higher dimensional integral is likely to have
lower value that the lower dimensional integral. This idea
presents preference to the networks with fewer parameters.
This is an automatic control in the complexity of the
network.

Let us analyze ()P D B a little more closely to understand
the Bayesian score calculations. It is helpful to first
consider the single parameter case even though there is no
structure learning to learn there. In that case, there is a

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 726

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

simple closed form solution for the probability of the data
given by the following.

0 0 1 1

0 1

() ()()()
() ()

n n
P D

n
α αα

α α α
Γ + ⋅ Γ +Γ

= ⋅
Γ + Γ + (37)

Where ()mΓ is equal to (1)!m − for an integer m , n is the

number of data cases in the database, 0n and 1n are the

number of zeros and ones, respectively, and 0 1α α α= + .
Let us assume we have 40 zeros and 60 ones in the
database. Assuming that we have uniform priors,

0 1 3α α= = , the probability of data is
(6) (3 40) (3 60)()

(3) (3) (6 100)
P D Γ Γ + ⋅ Γ +

= ⋅
Γ Γ Γ + (38)

The probability for a structure with several parameters is
simply the product of the probabilities for the individual
parameters. For example, in our two-node network, if the
same priors are used for all three parameters, and we have
45 zeros and 55 ones for the variable B , then, the

probability of the data for the network 1B can be calculated
as

1
(6) (43) (43) (6) (48) (58)()

(3) (3) (106) (3) (3) (106)
P D B Γ Γ ⋅Γ Γ Γ ⋅Γ

= ⋅ ⋅
Γ Γ Γ Γ Γ Γ

 (39)
For the second network, let us assume

that 00 23α = , 01 22α = , 10 29α = and 11 26α = ,

where (,)ij i jn a bα = is the number of cases

with iA a= and jB b= . Then, we can compute the

probability of the data for the network 2B using following
equation.

2
(6) (43) (43) (6) (23 3) (22 3)()

(3) (3) (106) (3) (3) (45 3)
(6) (29 3) (26 3)

(3) (3) (55 3)

P D B Γ Γ ⋅Γ Γ Γ + ⋅Γ +
= ⋅ ⋅

Γ Γ Γ Γ Γ Γ +
Γ Γ + ⋅Γ +

⋅
Γ Γ Γ + (40)

The intuition is clearer. The analysis shows that we get a
higher score by multiplying a smaller number of bigger
factorials rather than a larger number of small ones.
It turns out that if we approximate the log posterior
probability, and ignore all terms that do not grow with M ,
we can obtain

loglog () (,) ()
2B
MP D B l D B Dim Bθ= −

 (41)
i.e, as M grows large, the Bayesian score and the MDL
score converge to each other using Dirichlet priors. In fact,
if we use a good approximation to the Bayesian score, and

eliminate all terms that do not grow with M , then we are
left exactly with MDL score. Therefore, it can be
concluded that the Bayesian score gives us, automatically,
a tradeoff between network complexity and fit to the data.
The Bayesian score is also decomposable like the MDL
score since it can be expressed as a summation of terms
that corresponds to individual nodes. In this research, we
have decomposed the Bayesian score to make efficient
calculations and a uniform distribution is employed for
Dirichlet priors. The simulation results will show that the
Bayesian score provides optimally complex and accurate
network structures.

4 .Conclusions

Structural learning is finding the best network that fits the
available data and is optimally complex. This can be
accomplished by utilizing a search algorithm over the
possible network structures. A greater importance is given
to the search algorithm because we have assumed that the
data will be complete. That is, each element of the
database is a valid state of a variable. If there are non-
applicable entries in the database then the database is said
to be incomplete. We explore the search algorithms used
in this research. In the algorithms, the arcs are added
heuristically and exhaustively.We calculate the quality
(score) of the networks to find the best network. In this
paper, three scoring functions are employed, namely Log-
Likelihood, Minimum description length (MDL), and
Bayesian (BDE) scores. The Log-Likelihood method
measures the likelihood of the network given the available
data. The MDL also uses likelihood of the network but it
includes the measure of the network's complexity. The
Bayesian score involves the calculation of the probability
of a network given the data.

Acknowledgments

This work is financially supported by the National Natural
Science Foundation of China (Project No. 90718038).
Thanks for the help.

References
[1] S. Russell and P. Norvig, Artificial Intelligence: A modern

Approach, New Jersey: Prentice Hall, 1995.
[2] F. V. Jensen, an Introduction to Bayesian Networks. London,

UK: University College London Press, 1996.
[3] D. Heckerman, "A tutorial on learning Bayesian networks,"

Technical Report MSR-TR-95-06, Microsoft Research, 1995.
[4] Y. Shoham, "Agent-oriented programming," Artificial

intelligence, vol. 60(1), pp. 51-92, 1993.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 727

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[5] J. Pearl, "Bayesian networks", in M. Arbib (Ed.), Handbook
of Brain Theory and Neural Networks, MTT Press, pp. 149-
153, 1995

[6] J. Pearl, "Bayesian networks," Technical Report R-246,
MTT Encyclopedia of the Cognitive Science, October 1997.

[7] F.V. Jensen, "Bayesian network basics," AISB Quarterly, vol.
94, pp. 9-22, 1996.

[8]W. Lam and F. Bacchus, "Learning Bayesian belief networks:
an approach based on the MDL principle," Computational
Intelligence, vol. 10, pp. 269-293, 1994.

[9] N. Friedman, M. Goldszmidt, D. Heckerman, and S. Russell,
"Challenge: Where is the impact of the Bayesian networks
in learning?" In Proceedings of the 15th International Joint
Conference on Artificial Intelligence (IJCAI), pp.10-15,
1997.

[10] N. Friedman, K. Murphy, and S. Russell, "Learning the
structure of dynamic probabilistic networks," in G.F. Cooper
and S. Moral (Eds.), Proceedings of Fourteenth Conference
on Uncertainty in Artificial Intelligence (UAI '98), San
Francisco, CA: Morgan Kaufmann, 1998.

[11]G. F. Cooper and E. Herskovits, "A Bayesian method for
constructing Bayesian belief networks from databases," in
Proceedings the Conference on Uncertainty in AI, pp.88-94,
1990.

[12] B. Theisson, C. Meek, and D. M. Chickering, and D.
Heckerman, "Learning mixtures of Bayesian networks," in
G.F. Cooper and S. Moral (Eds.), Proceedings of Fourteenth
Conference on Uncertainty in Artificial Intelligence (UAI
'98), San Francisco, CA: Morgan Kaufmann, 1998.

[13] N. Friedman, "The Bayesian structural EM algorithm," in
G.F. Cooper and S. Moral (Eds.), Proceedings of Fourteenth
Conference on Uncertainty in Artificial Intelligence (UAI
'98), San Francisco, CA: Morgan Kaufmann, 1998.

[14] D. Spiegelhalter, P. Dawid, S. L. Lauritzen, and R. Cowell,
"Bayesian analysis in expert systems," Statistical Science,
vol. 8, pp. 219-282, 1993.

[15] D. Heckerman, D. Gieger, and M. Chickering, "Learning
Bayesian networks: The combination of knowledge and
statistical data," Technical Report MSR-TR-94-09,
Microsoft Research, Redmond, WA, 1994.

[16] C. Claus, "Dynamics of multi-agent reinforcement learning
in Cooperative multi-agent systems," Ph.D. Dissertation,
Univ. of British Colombia, Canada, 1997.

[17] S. Sen and M. Sekaran, "Multi-agent coordination with
learning classifier systems," in Proceedings of the IJCAI
Workshop on Adaptation and Learning in Multi-agent
Systems, Montreal, pp. 84-89, 1995.

[18] C. Boutilier, "Planning, learning and coordination in multi-
agent decision processes," in Sixth conference on
Theoretical Aspects of Rationality and Knowledge
(TARK'96), The Netherlands, 1996

Author Yonghui Cao received the MS degree
in business management from Zhejiang
University in 2006. He is currently a doctorate
candidate in Zhejiang University. His research
interest is in the areas of management
information systems.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 1, No 3, January 2013
ISSN (Print): 1694-0784 | ISSN (Online): 1694-0814
www.IJCSI.org 728

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

