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Abstract 

For the time-delay feedback control of chaos synchronization 

problem, an idea of Lyapunov functional with time-delay 

decomposition is presented. Some delay-dependent 

synchronization criteria are formulated in the form of matrix 

inequalities. The controller gain with maximum allowed time-

delay can be achieved by solving a set of linear matrix inequalities 

(LMIs). A simulation example is given to illustrate the 

effectiveness of the design method. 

Keywords: synchronization, chaos system, time-delay feedback, 

delay decomposition, linear matrix inequality (LMI). 

1. Introduction 

During the last two decades, chaotic synchronization has 

received considerable interests, e.g., [1–3] and references 

cited therein. It is found to be useful or has great potential 

in a variety of fields including physical, chemical and 

ecological systems, human heartbeat regulation, secure 

communications, and so on.  

Recently, the effect of delay on synchronization between 

two chaotic systems has been reported in many literatures 

due to the propagation delay frequently encountered in 

remote master–slave synchronization scheme. In particular, 

some delay-independent[4] and delay-dependent 

synchronization criteria was derived in [5,6]. Liao and Chen 

in [7] improved some results in [6] and gave some simple 

algebraic conditions which are easy to be verified. In [8] 

Cao et al. further generalized and improved the results in 

[6,7]. However, when deriving delay-dependent sufficient 

conditions for master-slave synchronization, Yalcin et al. [6] 

and Cao et al. [8] employed model transformation, which 

led to some conservative synchronization criteria for 

inducing additional terms. In order to avoid using model 

transformation, some new approaches had been employed 

to derive much less conservative synchronization 

conditions. Xiang et al. [9] and He et al. [10] used integral 

inequality and free weighting matrix approach in the 

derivative of Lyapunov functional respectively. It is 

interesting and valuable issue to proposed new method to 

obtain a larger delay threshold below which 

synchronization can be ensured theoretically. 

In this paper, we employ a delay decomposition approach 

recently proposed in [11,12] and fully use information from 

the nonlinear term of the error system to derive the 

synchronization criteria. Based on the synchronization 

criteria, we will give some sufficient conditions on the 

existence of a state error feedback controller. These 

sufficient conditions will be formulated in the form of matrix 

inequalities. Moreover, we will design the controller by 

solving a set of LMIs. We will use one simulation example 

to illustrate the effectiveness of synchronization criteria 

and the design method. 

2. Problem statement  

Consider a general master–slave synchronization scheme 

using time-delay feedback control. 

( ) ( ) ( ( ))
:

( ) ( )

x t Ax t B Cx t
M

p t x t

 


                  (1) 

         
( ) ( ) ( ( )) ( )

:
( ) ( )

y t Ay t B Cy t u t
S

q t y t

  



    (2) 

: ( ) ( ( ) ( ))C u t K p t q t                   (3) 

With master system M, slave system S and controller C, 

where the time-delay 0  . The master and slave system 

are chaos systems with state vectors , nx y R , and the 

output vector , lp q R , respectively. The matrices 

n nA R  ,
n mB R  ,

m nC R  ,
l nH R   are known 

constant matrices. The nonlinearity ( )  is time-invariant, 

decoupled, and satisfies a sector condition with 

( )( 1,2,...., )i i m   belonging to a sector[0, ]k , i.e., 
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( )( ( ) ) 0i i k          0t     R     (4) 

Now, define the synchronization error as ( ) ( ) ( )e t x t y t  . 

Then, an error dynamical system is obtained in the form: 

( ) ( ) ( ( ), ( )) ( )e t Ae t B Ce t y t Ke t              (5) 

where ( , ) ( ) ( )Ce y Ce Cy Cy     .  

Let
1 2[ , ,... ]T

mC c c c with , 1,2,...n

ic R i m  .The 

nonlinearity ( , )Ce y  is assumed to belong to the sector 

[0, ]k , i.e., for 0t  , ,e y  

( , )( ( , ) ) 0i i i i ic e y c e y kc e                            (6) 

The purpose of this paper is to study the master-slave 

synchronization of chaos systems and design the 

controller (3), i.e., to find the controller gain K, such that 

the system described by (5)-(6) is globally asymptotically 

stable, which means that the master system and the slave 

system synchronizes. 

The following lemma is useful in deriving synchronization 

criteria. 

Lemma1.(Ding [3]) For any constant matrix 0R  , 
T n nR R R   ,scalar 0  ,and vector function 

 and :[0, ] ne e R  such that the following inequality 

is well defined, then 

0

( ) ( )
( ) ( )

( ) ( )

T

T
e t R R e t

e s Re s ds
e t R R e t




 

    
      

      
  

3. Main results 

Then we are in the position to give the main result. 

Theorem 3.1. For a given scalar 0  ,the error system (5) 

is globally asymptotically stable if there exist 

matrices 0TP P  , 0T

i iQ Q  , 0( 1,2,... )T

i iR R i N   , 

and positive diagonal matrices
1 2( , ,..., ) 0mdiag      ,  

and any matrices 1 2,G G  such that  

11 1 1 1 2 1
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* * * * * * *

T

N
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T T

N N

N
T

i

i

N

i

i
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R
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 





     
 

 
 
 
 
 
 

    
 

       
 

  
 

 
 





(7) 

where  

11 1 1 1 1

T TA G G A Q R     ,
1 1ii i i i iR R Q Q       ,  

1 1N N N NQ R     , 
1 2 1 2

T T

N G A G P      

Proof. Consider the following Lyapunov-Krasovskii 

function candidate for system (5) as : 

 
1 2 3( ( )) ( ( )) ( ( )) ( ( ))V e t V e t V e t V e t                            (8) 

with 

      
1

0
1

( ( )) 2 ( )
T
i

m c e
T

i i

i

V e t e Pe s ds


    

      
( 1)

2

1
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N t i h

T

i
t ih

i

V e t e s Qe s ds
 



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      ( 1)

3

1

( ( )) ( ) ( )
N i h t

T

i
ih t

i

V e t e s hRe s dsd



 

 


         

where /h N , N is the positive integer of division on 

the interval ,0 and h is the length of each division. 

According to (5), for any appropriately dimensioned 

matrices 
1 2,G G , the following equations are true: 

1 22[ ( )   ( ) ][    ] [ ( ) ( )

( ( ), ( )) ( ) ]=0

T T Te t e t G G e t Ae t

B Ce t y t Ke t 

  

  
           (9) 

From (4), (5) and Ti=diag
1 2( , ,..., )i i imt t t > 0(i=1,2), we have  

2 2 0T T Tke C                                (10) 

Taking the derivative of ( ( ))V e t  with respect to t along 

the trajectory of (5) yields 

1( ( )) 2 TV e t e Pe                                                  (11) 

 
2

1

1

( ( )) ( ( 1) ) ( ( 1) )

( ) ( )

N
T

i

i

N
T

i

i

V e t e t i h Q e t i h

e t ih Q e t ih





    

  





     (12) 

2

3

1

( 1)

1

( ( )) ( ) ( )

( ) ( )

N
T

i

i

N t i h
T

i
t ih

i

V e t h e t R e t

h e s R e s ds



 










 

                      (13) 

Adding the left side of (9)-(10) to the right side of ( ( ))V e t , 

and using Lemma 1we have 

ˆ( ( )) ( ) ( )TV e t q t q t   

Where  

( ) [ ( )  ( )  ( 2 )  ......  

( ( 1) )  ( )  ( )  ( )]

T T T

T T T T

q t e t e t h e t h

e t N h e t Nh e t t

  

  
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It follows from Schur complement that ˆ 0   is equivalent 

to (7), then ( ( )) ( ) ( ) 0TV e t q t q t   for ( ) 0q t  , 

which means that the system described by (5)-(6) is 

globally asymptotically stable. This completes the proof.  

Remark 3.2: In order to reduce the conservative, the 

delay-decomposition is proposed in the Lyapunov 

functional. Therefore, the delay-dependent stability 

criterion is expected to be less conservative than the 

existing ones, which will be illustrated through an example 

in the next section. 

In order to get the controller gain we let 

2 1 1, TG G Y G K   ,then we can establish the 

following synchronization criterion. 

Corollary 3.3.For a given scalar 0h  ,the error system (5) 

is globally asymptotically stable if there exist 

matrices 0TP P  , 0T

i iQ Q  , 0( 1,2,... )T

i iR R i N   , 

and positive diagonal matrices
1 2( , ,..., ) 0mdiag      ,  

and any matrices 1,Y G  such that  

11 1 1 2 1

22 2

33

1 1

1 1 1

1

1

ˆ0 0 0

* 0 0 0 0 0

* * 0 0 0 0 0

* * * 0 0 0

0* * * * 0 0

* * * * *

* * * * * * 2 0

* * * * * * *

T

N
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N N

N
T

i

i

N

i

i

R Y G B kC

R

R

Y
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R



 





    
 

 
 
 
 
 
 

   
 

       
 

  
 
  
 





(14) 

Where 
1 2 1 1

ˆ T T

N G uA G P      

Moreover, the delay feedback controller gain matrix is 

given by 
1

TK G Y  . This completes the proof. 

4. An example 

Consider the following Chua’s circuit  

( ( )),

,

,

x y h x

y x y z

z y





 


  
  

 

with nonlinear characteristic：  

1 0 1( ) 0.5( )( )h x m x m m x c x c      ,  

and parameters 
0 1/ 7m   , 

1 2/7m  , 9  , 14.28   

and 1c  . The system can be represented in Lur’e form by 

Yalcin et al.[5] with 

1 0

1 1 1

0 0

m

A

 



 
 

  
  

, 
0 1( )

0

0

m m

B

  
 

  
 
 

,  1 0 0C H   

and ( ) 0.5( 1 1)       belonging to the sector 

[0, ]k  with 1k  , 0.36, 3N   . Applying Matlab LMI-

toolbox to the inequality (11) with different , it is obtained 

that the gain matrix : 

2.1502 2.1683 -1.0209

0.6802 0.6112 0.2531

-0.2862 -1.2154 2.6651

K

 
 

  
 
 

 

Which can stabilize the error system (5) for [0,0.229]  . 

No feasible point is found for 0.229  .  

The initial conditions of the master and slave systems 

are (0) [-0.2,-0.3,0.2]x   and (0) [0.5,0.1,-0.6]y  . The 

simulation result with 0.229   is shown in Fig.1-6. The 

behaviors of the master system and slave system are 

shown in Fig.1 and Fig.2. The state variables of the master 

system and slave system are described in Fig.3-Fig5. In 

Fig.6, the error of the variables are shown. From the figures, 

we can see that the designed controller realize the 

synchronization of the two systems.  
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Fig.1 Master system 
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Fig.2 Slave system 
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Fig.3 x1 and y1 

0 5 10 15 20
-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
x2andy2

t

 

 

x2

y2

 

Fig.4 x2 and y2 
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Fig. 5 x3 and y3    
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Fig.6 Error system 

5. Conclusion 

In this Letter, we have addressed the problem of master-

slave synchronization criterion of Lur’e systems with time-

delay feedback control. We have employed a delay 

decomposition approach to derive the synchronization 

criteria. Based on the synchronization criteria ,we have 

derived some sufficient conditions on the existence of a 

delayed error feedback controller. Moreover, we have 

designed the controller by solving a set of LMIs. An 

example has shown that the new sufficient conditions 

improve some of the previous results in the earlier 

references. 
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