
 
 

  
Abstract 

 In this paper, scheduling dependent threads in distributed real-time 
system where considered. We present a distributed real-time 
scheduling algorithm called (EOE-DRTSA (end-to-end distributed 
real time system Scheduling algorithm)). Now a day completed real-
time systems are distributed. One of least developed areas of real-
time scheduling is distributed scheduling where in Distributed 
systems action and information timeliness is often end-to-end. 
Designers and users of distributed systems often need to dependably 
reason about end-to-end timeliness. Our scheduling model includes 
threads and their time constraints depend on developed DTUF value 
and maintaining end-to-end prosperities of distributed real-time 
system. 
 
Keywords: Collaborative scheduling, end-to-end constraints, RMI 
java, Real-time Distributed system, Real-time scheduling algorithm, 
Time/utility function, DTUF. 

1.  INTRODUCTION 
Distributed real-time systems such as those found in industrial 
automation, and military surveillance must support for timely, 
end-to-end activities. Timeliness includes application-specific 
acceptability of end-to-end time constraint satisfaction, and of 
the predictability of that satisfaction. These activities may 
include computational, sensor, and actuator steps which levy a 
causal ordering of operations, contingent on interactions with 
physical systems. Such end-to-end tasks may be represented in 
a concrete distributed system as: chains of 
(a) nested remote method invocations;  
(b) publish, receive steps in a publish-subscribe framework; 
(c) event occurrence and event handlers [5]. 
 
 

Reasoning about end-to-end timeliness is a difficult and 
unsolved problem in such systems. A distinguishing feature of 
such systems is their relatively long activity execution time 
scales (e.g., milliseconds to minutes), which permits more 
time-costlier real-time resource management. Maintaining 
end-to-end properties (e.g., timeliness, connectivity) of a 
control or information flow requires a model of the flow's 
locus in space and time that can be reasoned about. Such a 
 
 

model facilitates reasoning about the contention for resources 
that occur along the flow's locus and resolving those 
contentions to optimize system-wide end-to-end timeliness. 
The distributable thread programming abstraction which first 
appeared in the Alpha OS, and later the Real-Time CORBA 
1.2 standard directly provides such a model as their first-class 
programming and scheduling abstraction. A distributable 
thread is a single thread of execution with a globally unique 
identity that transparently extends and retracts through local 
and remote objects [12]. 
 
When resource overloads occur, meeting deadlines of all 
application activities is impossible as the demand exceeds the 
supply. The urgency of an activity is typically orthogonal to 
the relative importance of the activity-e.g., the most urgent 
activity can be the least important, and vice versa; the most 
urgent can be the most important, and vice versa. Hence when 
overloads occur, completing the most important activities 
irrespective of activity urgency is often desirable. Thus, a clear 
distinction has to be made between the urgency and the 
importance of activities, during overloads  [3]. 

 

Deadlines by themselves cannot express both urgency and 
importance. Each thread's time constraint is specified using a 
time/utility function (or TUF) .. They were introduced by E. 
Douglas Jensen in 1977 as a way to overcome the limited 
expressiveness in classic deadline constraints in real-time 
systems. In a graphical interpretation, the utility (positive for 
reward, negative for penalty) is plotted over the time. A 
deadline then represents the point where the utility changes 
from positive to negative. In computer science and 
programming, this is when a task must be terminated. If not, 
an exception occurs, which usually leads to an abortion. As 
such, a TUF is a generalization of deadline constraints in 
everyday life. With TUF time constraints, timeliness 
optimality criteria can be specified [6]. 

Past efforts on thread scheduling can be broadly categorized 
into two classes: independent node scheduling and 
collaborative scheduling. In the independent scheduling 
approach, threads are scheduled at nodes using propagated 
thread scheduling parameters and without any interaction with 
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other nodes. Thread faults are managed by integrity protocols 
that run concurrent to thread execution. Integrity protocols 
employ failure detectors (or FDs), and use them to detect 
thread failures. In the collaborative scheduling approach, 
nodes explicitly cooperate to construct system-wide thread 
schedules, detecting node failures using FDs while doing 
so[5]. 

2. Contributions 
In this paper, we consider the problem of scheduling 
dependent threads. So we design a collaborative thread 
scheduling algorithm called EOE-DRTSA that has the 
following prosperities: 
 

1. Using RMI Java technique to build distributed system 
model. 

2. It makes decisions in each local scheduling dependently 
from the global scheduler. 

3. Each thread has DTUF value that has been calculated 
depending on Importance and urgency of the thread. 

4. The DTUF value makes the decision of which thread will 
be executed next. 

2. Related work 
Past works on developing scheduling algorithm for distributed 
real time system by Sherif F. Fahmy, Binoy Ravindran, and E. 
D. Jensen they considered the distributable threads abstraction 
for programming and scheduling such systems, and presented 
a collaborative thread scheduling algorithm called the 
Quorum-Based Utility Accrual scheduling (or QBUA). they 
showed that QBUA satisfies (end-to-end) thread time 
constraints in the presence of crash failures and message 
losses, has efficient message and time complexities, and lower 
overhead and superior timeliness properties than past thread 
scheduling algorithms [12]. 
 
Sherif Fahmy, Binoy Ravindran, and E. D. Jensen in year 
2010. They considered scheduling distributable real-time 
threads with  dependencies in partially synchronous systems in 
the presence of node failure. they present a collaborative 
distributed real-time scheduling algorithm called DQBUA. 
The algorithm uses quorum systems to coordinate nodes’ 
activities when constructing a global schedule. DBQUA 
detects and resolves distributed deadlock in a timely manner 
and allows threads to access resources in order of their 
potential utility to the system. Their main contribution is 
handling resource dependencies using a distributed scheduling 
algorithm [9].  
 

Binoy Ravindran, Edward Curley, Jonathan Anderson, and 
E. Douglas Jensenz, They considered  the problem of 
recovering from failures of distributable threads in distributed 
real-time systems that operate under run-time uncertainties 
including those on thread execution times, thread arrivals, and 
node failure occurrences. They presented a scheduling 
algorithm called HUA and a thread integrity protocol called 
TPR [4]. 

Jonathan S. Anderson, Binoy Ravindran, and E. Douglas 
Jensen, they demonstrated a consensus utility accrual 

scheduling algorithm for distributable threads with run-time 
uncertainties in execution time, arrival models, and node crash 
failures algorithm called DUA-CLA algorithm. The DUA-
CLA algorithm represents a unique approach to distributable 
thread scheduling in two respects. First, it unifies scheduling 
with a fault-tolerance strategy. Second, DUA-CLA takes a 
collaborative approach to the scheduling problem, rather than 
requiring nodes independently to schedule tasks without 
knowledge of other nodes' states. Global scheduling 
approaches where in a single, centralized scheduler makes all 
scheduling decisions have been proposed and implemented. 
DUA-CLA takes a via media, improving independent node 
scheduler decision making with partial knowledge of global 
system state [5]. 

 
Piyush Garyali, Matthew Dellinger, and Binoy Ravindran 
considered the problem of scheduling dependent real-time 
tasks for overloads on a multiprocessor system, yielding best-
effort timing assurance. they developed a class of polynomial-
time heuristic algorithms, called the Global Utility Accrual 
(GUA) class of algorithms and they developed a Linux-based 
real-time kernel called ChronOS [9]. 
 
Haisang Wu, Binoy Ravindran, and E. Douglas Jensen they 
extended  Jensen’s time/utility functions and utility accrual 
model with the concept of joint utility functions (or JUFs) that 
allow an activity’s utility to be described as a function of the 
completion times of other activities and their progress. they 
also specified the concept of progressive utility that 
generalizes the previously studied imprecise computational 
model, by describing an activity’s utility as a function of its 
progress. Given such an extended utility accrual model, they 
considered the scheduling criterion of maximizing the 
weighted sum of completion time, progressive, and joint 
utilities. they presented an algorithm called the Combined 
Utility Accrual algorithm (or CUA) for this criterion. 
Experimental measurements with an implementation of CUA 
on a POSIX RTOS illustrate the effectiveness of JUFs in a 
class of applications of interest to them [2]. 

 
3. Distributed real-time systems  
The vast majority of deployed distributed real-time computing 
systems employ at least one of the following programming 
models:  
 

control flow: movement of an execution point, with or 
without parameters, among application entities – e.g., remote 
procedure call (RPC) and remote method invocation (RMI)  
 

data flow: movement of data, without an execution point, 
among application entities – e.g., publish/ subscribe and bulk 
data transfers  
 

networked: asynchronous or synchronous movement of 
messages, without an execution point, among application 
entities – e.g., message passing IPC  
Other distributed system programming models – e.g., mobile 
objects, autonomous agents,  web services, etc.  
 
Control flow models are usually designed for multi-node – 
usually trans-node (linearly sequential) – behaviors that are 
synchronous, that is they request a remote execution and then 
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wait for a response. When a synchronous response is not 
needed, a one-way invocation can be spawned asynchronously 
(as in CORBA). An example of the distributed control 
approach is the distributed thread model. A distributed thread 
is a single thread, with a system-wide ID, that extends and 
retracts itself sequentially through an arbitrary number of local 
and remote objects. A distributed real-time thread 
transparently propagates its timeliness properties (and perhaps 
also resource ownership, transactional context, security 
attributes, etc.) when its execution point transits object (and 
perhaps node) boundaries.  
Almost all data flow models, including those for “real-time” 
publish/subscribe, are more oriented toward maximizing 
throughput than maintaining end-to-end timeliness properties 
(cf. OMG’s RFP for a Data Distribution Service for Real-
Time Systems). 
 
Java already includes a model for distributed systems – 
Remote Method Invocation (RMI) – and JSR-50 proposed to 
enhance it for real-time systems. RMI provides the familiar 
distributed object system control flow model of method 
invocations using abstract interfaces to define local stubs for 
remote objects. As in any distributed object system, a 
programming abstraction similar to asynchronous message 
passing can be provided by allowing asynchronous (one-way 
with no return parameters) method invocations. RMI also can 
transfer object instances by value. This allows messages to be 
passed as objects. It also supports a simple form of data flow – 
for point-to-point flow of modestly sized data, but not for 
effective publish/subscribe models. 
 
A distributed object system (as opposed to, for instance, web 
services) requires a well-defined architecture with stable 
interfaces between components and some level of system-wide 
agreement on infrastructure technology. In a real-time 
distributed object system that agreement includes the 
semantics of timeliness and sufficiently synchronized local 
clocks. Typically, such systems are found inside an enterprise 
– it is difficult to create the technical agreement and 
coordination needed to build a distributed object system 
between enterprises. This is consistent with the current normal 
deployment of distributed real-time computing systems. The 
scalability requirement for the DRTSJ is based on this 
presumption of intra-enterprise environments [1].  

 
4. RMI and JAVA 
The main components of RMI can be considered as follows:  
•the programming model, where objects that can be accessed 
remotely are identified via a remote interface,  
•the implementation model, which provides the transport 
mechanisms whereby one Java platform can talk to another in 
order to request access to its objects, and  
•the development tools (e.g., rmic or its dynamic 
counterpart), which take server objects and generate the 
proxies required to facilitate the communication.  

Key to developing RMI-based systems is defining the 
interfaces to remote objects. RMI requires that all objects that 
are to provide a remote interface must indicate so by 
extending the pre-defined interface Remote. Each method 

defined in an interface extending Remote must declare that it 
"throws RemoteException". Thus one of the key design 
decisions of RMI is that distribution is not completely 
transparent to the programmer. The location of the remote 
objects may be transparent, but the fact that remote access 
may occur is not transparent [7]. 
 
5. RMI applications 
RMI applications often comprise two separate programs, a 
server and a client. A typical server program creates some 
remote objects, makes references to these objects accessible, 
and waits for clients to invoke methods on these objects. A 
typical client program obtains a remote reference to one or 
more remote objects on a server and  then invokes methods on 
them. RMI provides the mechanism by which the server and 
the client communicate and  pass  information back and forth. 
Such an application is sometimes referred to as a distributed 
object application. 
 
Distributed object applications need  to do the following: 
Locate remote objects. Applications can use various 
mechanisms to obtain references to remote objects. For 
example, an application can register its remote objects with 
RMI's simple naming facility, the RMI registry. Alternatively, 
an application can pass and return remote object references as 
part of other remote invocations. 
Communicate with remote objects. Details of 
communication between remote objects are handled by RMI. 
To the programmer, remote communication looks similar to 
regular Java method invocations. 
Load class definitions for objects that are passed around. 
Because RMI enables objects to be passed back and forth, it 
provides mechanisms for loading an object's class definitions 
as well as for transmitting an object's data. 
 
The following illustration depicts an RMI distributed 
application that uses the RMI registry to obtain a reference to 
a remote object. The server calls the registry to associate (or 
bind) a name with a remote object. The client looks up the 
remote object by its name in the server's registry and then 
invokes a method on it. The illustration also shows that the 
RMI system uses an existing web server to load class 
definitions, from server to client and from client to server, for 
objects when needed [12]. 

 

 
 

Fig.1: RMI Applications 

PDF created with pdfFactory Pro trial version www.pdffactory.com

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 1, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 409

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

http://www.pdffactory.com


 
 

 
 
6. Models and Objectives 
 
6.1. The System Model 
The model of our system architecture is shown in Figure 2. 
We consider a distributed system architecture model 
consisting of heterogeneous processors; a set of client nodes; 
and a set of server nodes. These nodes were interconnected via 
a communication network. There is a single Global Scheduler 
for the system, responsible for computing the initial priorities 
for the tasks and its utility is checked. based  on information  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
provided by the application programmer. As new tasks were 
introduced to the system, the Global Scheduler distributes the 
Tasks to the client processors. A Local Scheduler on each 
processor was responsible for specifying The order of 
executing threads on a node. Thus, scheduling decisions made 
by a node scheduler were independent from that made by 
other node schedulers. 
 
Client Node schedulers make scheduling decisions using 
thread scheduling attributes, which typically include threads' 
time constraints (e.g., importance, urgency). When a new job 
arrives at Client Node, If the new job has maximum utility 

than the currently executing, the current job will be preempted 
and the new job will be scheduled immediately. 
 
6.2 Task Model 
We define a thread as a basic unit of CPU utilization. It 
comprises a thread ID, a program counter, a register set, and a 
stack. It shares with other threads belonging to the same 
process its code section, data section, and other operating-
system resources, such as open files and signals. Our Real-
Time distributed application is comprised of a set of threads, 
denoted as T ={ T1; T2; T3; . ..}. All threads are assumed to be: 
 

1. Aperiodic and their arrival time is not known a priori. 
2. Preemptable and, therefore, can be preempted at any time 

during their execution. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. Do not share any non-CPU resources or have precedence 

relations with other threads and, are independent of each 
other.  

We pointed to the thread by task in paper sections, and Each 
thread has the following parameters: 

 
1. Deadline (DL): the time interval which the thread should 

be completed, the Developer will specify it’s value.  
2. Importance (I): a metric that represents the relative 

importance of the thread. As the Developer will specify 

Fig. 2: Our System Model 
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it’s value we consider that the value of the importance be 
between (1-9).  

3. Computation Time (C): the amount of time required for 
the task to complete the execution.  

4. Urgency (U): the difference between Deadline(DL) and 
Computation Time(C).   

 
6.3 Timeliness Model 
We develop the TUF function depending on the concept of a 
Time Management Matrix for prioritizing. It is a simple tool 
which helps to priorities’ tasks, based on whether they are 
Urgent or Important, or both, or neither, introduced by 
Stephen Covey [11].  
 

The Time Management Matrix advocates the use of four 
quadrants to determine the tasks  need  to do immediately  and 
the other which need to eliminated, the four quadrants are 
shown in figure(3): 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. Quadrant 1 (Deadline): There are important, urgent 
tasks need to be delt with immediately. 

2. Quadrant 2 (Planning): There are important, but not 
urgent tasks. They do not require immediate 
attention, and need to be planned for.   

3. Quadrant 3 (Illusion): There are urgent, but 
unimportant tasks which should be minimized or 
eliminated.  

4. Quadrant 4 (Waste): There are unimportant and also 
not urgent tasks that don’t have to be done anytime soon, 
and also should be minimized or eliminated. These are 
often wasting time. 

We consider the DTUF (Developed TUF) function to be three 
dimensional function that decouples importance and urgency 
of a thread, urgency is measured on the X-axis, and 
importance is measured on the Y-axis. The Benefit is denoted 
by DTUF and is measured on the Z-axis figure(4) . The 
equation of our DTUF function is: 
  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 4: 3D Time/Utility Functions 

 

7. Scheduling Objectives 
Our primary objective is to design a thread scheduling 
algorithm to maximize the total utility accrued by all threads 
as much as possible in the presence of dependencies. Further, 
the algorithm must provide assurances on the satisfaction of 
thread termination times in the presence of crash failures. 
Moreover, the algorithm must bounds the time threads remain 
in a deadlock. 
 
8.Algorithm Description 
EOE-DRTSA algorithm was designed to overcome the 
shortcomings of independent scheduling algorithms by taking 
into account global information while constructing  schedule. 
In EOE-DRTSA scheduling when a thread arrives, it first 
arrives to the Global Scheduler server. The Global Scheduler 
will compute the initial Urgency and DTUF value. After the 

Fig. 3: Time Management Matrix 
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computation was done the Global Scheduler will pass the 
threads to the target node to be executed there. 
 
When the thread reaches the Local Scheduler node. The node 
will schedule the thread depending on it’s local scheduling  
algorithm. EOE_integrity protocol will send report to the 
Global Scheduler server to analyze the report and monitor  the 
scheduling work on the node. If the server detects any failure 
on any node, it will run the EOE_Failure protocol. 
 
 

Algorithm 1: EOE-DRTSA Distributed scheduling 
algorithm On Global scheduling Server side: 

 

 

1: Input: Thread set to be distributed to client. 
 
2: Output: Feasible Scheduling produced from the 
Distributed Real-time system. 
 
3: Thread (in the task queue) was ordered depending on 
their arrival time. 
 
4: If (not empty thread queue) 
 

Repeat 
 
Calculate Urgency of each thread by using:  
 

Calculate the DTUF value for each thread by suing: 
 

 
 
Send task to its related client to be executed. 
 

 Until (no thread in the task queue) 
 
EndIf 
 

5: Repeat 
  

Read monitoring report for each client 
 

If any Fault on the client 
 

Start EOE_Failure protocol 
 

Until (all clients in the system finished execution) 
 

6:End 
 
 

Algorithm 2: EOE-DRTSA Distributed scheduling 
algorithm On local scheduling  Client side: 

 

 

1: Input: Thread Set to be executed. 
 
2: Output: Execute Thread Set and meet their deadline. 
 

3: Thread (in the task queue) was ordered depending on 
their DTUF value. 
 
4: If (not empty task queue) 
 

Repeat 
 

Execute task with high DTUF value. 
 
If (any Task arrived with highest DTUF value) 
 
Preempt the current Task. 
 
Reorder the Task queue. 
 
EndIf 
 
Until (no task in the task queue) 

 
5:End 
 
9. Simulation 
We performed a series of simulation experiments on a set of 
threads (Table (1)) to measure the performance of our 
algorithms. The results are summarized in Section IX.  

 
Table 1: Threads set example. 

 
Task Deadline Importance Urgency Cost DTUF 

p1 7 8 3 4 8886111 

p2 9 6 4 5 162809.4 

p3 5 6 3 2 162754.8 

p4 4 4 1 3 2980.958 

p5 3 3 0 3 403.4288 

p6 6 2 2 4 54.59815 

p7 8 1 2 6 7.389056 

p8 2 2 -1 3 0 
 

 
We compare the utilization of all threads in the system with 
the utilization of all threads depending on DTUF. Figure (4) 
shows that the utilization of threads without using DTUF was 
equal until (no. task=5) where the DTUF of p5=0 which 
effects the total utilization of the system using DTUF which 
be smaller than the utilization of system without using DTUF. 

 

10. Conclusion 
We have implemented a dynamic scheduling algorithm that 
examines the computation times, real time requirements of the 
tasks to produce a feasible schedule for Distributed Real-Time 
system. The schedule was driven by using DTUF function of 
the urgency (laxity), and importance of the tasks. The 
decisions are made on a system-wide basis because tasks were 
represented as distributed threads that have end-to-end timing 
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requirements. We conclude that the TUF Function has 
significantly advanced and the scheduling algorithm is generic 
and can be used in other distributed soft real-time systems. 
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