Fuzzy ideals of Dual QS-algebras

Samy M. Mostafa¹, Mokhtar A.Abdel Naby ² and Areej T. Hameed ³

¹ Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

² Department of Mathematics, Faculty of Education, Ain Shams University, Roxy, Cairo, Egypt

³ Department of Pure Mathematics, Faculty of Sciences, Ain Shams University, Cairo, Egypt . And ³ Department of Mathematics, College of Education for Girls, University of Kufa, Najaf , Iraq.

Abstract :

The aim of this paper is introduce the notion of fuzzy KUS-ideal in KUS-algebra, several theorems, properties are stated and proved. The fuzzy relations on KUS-algebras are also studied.

Keywords: KUS-algebra, fuzzy KUS-sub-algebra, fuzzy KUS-ideal, homomorphisms of KUS-algebras, image and pre-image of fuzzy KUS-ideals,

1. Introduction

The concept of fuzzy subset was introduced by L.A. Zadeh in [6], and was used afterwards by many authors in various branches of mathematics. Particularly in the area of fuzzy topology . Much research has been carried out since . In 1966 [9], Y. Imai and K. Is'eki introduced two classes of abstract algebras: BCK-algebras and BCI-algebras [4],[5]. It is known that the class of BCK-algebras is a proper subclass of the class of BCI-algebras. Xi [7] applied the concept of fuzzy subset to BCK-algebras and gave some of its properties . J. Neggers , S.S. Ahn and H.S. Kim [3] introduced a Q-algebra, which is a generalization of BCI/BCK-algebras and generalized some theorems discussed in BCIalgebra . Moreover, Ahn and Kim [8] introduced the notion of QS-algebra which is a paper subclass of Q-algebra. In 2013 [2], introduced a new notion called KUS-algebra, which is dual for QS-algebra and investigated severed basic properties which are related to KUS-ideal . In this paper, we introduce the notion of fuzzy KUS-ideals in KUS-algebras and then we investigate several basic properties which are related to fuzzy KUS-ideals. We describe how to deal with the homomorphism of image and inverse image of fuzzy KUS-ideals of KUSalgebras.

2. Preliminaries

Definition 2.1([2]). Let (X; *, 0) be an algebra with a single binary operation (*). X is called a KUS-algebra if it satisfies the following identities: for any x, y, $z \in X$,

 $\begin{array}{l} (kus_1):(z\ast y)\ \ast\ (z\ast x)=y\ast x\ ,\\ (kus_2):0\ \ast\ x=x\ ,\\ (kus_3):x\ \ast\ x=0\ ,\\ (kus_4):x\ \ast\ (y\ \ast z)=y\ast\ (x\ast z)\ .\\ \mbox{ In }X\ \mbox{we can define a binary relation}\ (\leq\)\ \mbox{by:} \end{array}$

 $x \le y$ if and only if y * x = 0. In what follows, let (X; *,0) denote a KUS algebra upless otherwise specified. For

KUS-algebra unless otherwise specified. For brevity we also call X a KUS-algebra.

Lemma 2.2 ([2]). In any KUS-algebra (X; *, 0), the following properties hold: for all x, y, z $\in X$;

- a) x * y = 0 and y * x = 0 imply x = y,
- b) y * [(y * z) * z] = 0,
- c) (0 * x) * (y * x) = y * 0,
- d) (x * y) * 0 = y * x,

Theorem 2.3([2]). Any KUS-algebra is equivalent to the dual QS- algebra.

Definition 2.4([2]). Let X be a KUSalgebra and let S be a nonempty subset of X. S is called a KUS-sub-algebra of X if $x * y \in S$ whenever $x \in S$ and $y \in S$. **Definition 2.5 ([2]).** A nonempty subset I of a KUS-algebra X is called a KUS-ideal of X if it satisfies: for x, y, $z \in X$,

- $(Ikus_1) (0 \in I)$,
- (Ikus₂) $(z * y) \in I$ and $(y * x) \in I$ imply $(z * x) \in I$.

Example 2.6. Let $X = \{0, a, b, c\}$ in which (*) is defined by the following table:

*	0	а	b	с
0	0	a	b	c
a	а	0	c	b
b	b	С	0	а
c	С	b	a	0

Then (X; *, 0) is a KUS-algebra. It is easy to show that $I_1 = \{0,a\}, I_2 = \{0,b\}, I_3 = \{0,c\},$ and $I_4 = \{0, a, b, c\}$ are KUS-ideals of X.

Proposition 2.7([2]). Every KUS-ideal of KUS-algebra X is a KUS-sub-algebra.

3. Fuzzy KUS-ideals and **Homomorphism of KUS-algebras**

In this section, we will discuss a new notion called fuzzy KUS-ideals of KUSalgebras and study several basic properties which are related to fuzzy KUS-ideals .

Definition 3.1([6]). Let (X; *,0) be a nonempty set, a fuzzy subset μ in X is a function $\mu: X \rightarrow [0,1]$.

Definition 3.2. Let (X; *, 0) be a KUSalgebra , a fuzzy subset μ in X is called a fuzzy KUS-sub-algebra of X if for all x , $y \in X$, μ $(x * y) \ge \min \{\mu(x), \mu(y)\}.$

Definition 3.3. Let (X; *, 0) be a KUSalgebra, a fuzzy subset μ in X is called a fuzzy KUS-ideal of X if it satisfies the following conditions: , for all x , y, $z \in X$, $(Fkus_1) \quad \mu(0) \ge \mu(x),$

(Fkus₂) μ (z * x) \geq min { μ (z * y), μ (y * x)}.

Example 3.4.

1) Let $X = \{0, 1, 2, 3\}$ in which (*) is defined by the following table:

*	0	1	2	3
0	0	1	2	3
1	1	0	3	2
2	2	3	0	1
3	3	2	1	0

Then (X; *, 0) is a KUS-algebra. Define a fuzzy subset $\mu : X \rightarrow [0,1]$ by

$$\mu(\mathbf{x}) = \begin{cases} 0.7 & \text{if } \mathbf{x} \in \{0,1\} \\ 0.3 & \text{otherwise} \end{cases}$$

 $I_1 = \{0, 1\}$ is a KUS-ideal of X. Routine calculation gives that μ is a fuzzy KUS-ideal of KUS-algebras X.

2) Consider $X = \{0, a, b, c, d\}$ with(*) defined by the table :

*	0	а	b	с
0	0	а	b	c
a	а	0	С	b
b	b	c	0	а
c	c	b	a	0

Then (X; *, 0) is a KUS-algebra. Define a fuzzy subset $\mu: X \rightarrow [0,1]$ such that $\mu(0) = t_1$, $\mu(a) = \mu(b) = \mu(c) = \mu(d) = t_2$,where $t_1, t_2 \in [0, 1]$ and $t_1 > t_2$.

Routine calculation gives that μ is a fuzzy KUS-ideal of KUS- algebra X.

Definition 3.5 ([6]). Let X be a nonempty set and μ be a fuzzy subset in X, for $t \in [0,1]$, the set $\mu_t = \{ x \in X \mid \mu(x) \ge t \}$ is called a level subset of μ .

Theorem 3.6. Let μ be a fuzzy KUS-ideal in KUS-algebra X. µ is a fuzzy KUS-ideal of X if and only if, for every $t \in [0,1]$, μ_t is either empty or a KUS-ideal of X.

Proof: Assume that μ is a fuzzy KUS-ideal of X, by (Fkus₁), we have $\mu(0) \ge \mu(x)$ for all

 $x \in X \text{ therefore } \mu\left(0\right) \geq \mu\left(x\right) \geq t \text{ for } x \in \ \mu_t$

and so $\ 0 \in \ \mu_t \ .$ Let $x, \, y, \, z \in X \$ be such that

 $(z * y) \in \mu_t$ and $(y * x) \in \mu_t$, then

 $\mu \, (z \, {}^{*} \, y) \,{\geq}\, t$ and $\mu \, (y \, {}^{*} \, x) \,{\geq}\, t$, since μ is a fuzzy KUS-ideal, it follows that

 $\mu(z * x) \ge \min \{\mu(z * y), \mu(y * x)\} \ge t$

and we have that $\ x \ast z \in \ \mu_t \ .$ Hence $\ \mu_t \ is a$

KUS-ideal of X .

Conversely, we only need to show that (Fkus₁) and (Fkus₂) are true. If (Fkus₁) is false, then there exist $x \in X$ such that $\mu(0) < \mu(x')$. If we take $t' = (\mu(x') + \mu(0))/2$, then $\mu(0) < t'$ and $0 \le t' < \mu(x') \le 1$, then $x' \in \mu$ and $\mu \ne \emptyset$. As μ_{ij} is a KUS-ideal of X, we have

 $0 \in \mu_{t}$ and so $\mu(0) \ge t$. This is a

contradiction . Now , assume (Fkus₂) is not true ,then there exist $x^{,} y^{,} z^{,} \in X$ such that

 $\label{eq:main_state} \begin{array}{l} \mu \left(z^{\, \ast} \, \, x^{\, \ast} \right) < \, min \, \{ \mu \left(z^{\, \ast} \, \, x^{\, \ast} \right) \, , \, \mu \left(y^{\, \ast} \, \, x^{\, \ast} \right) \}. \\ \\ Putting \end{array}$

$$\begin{split} t &= (\mu \; (z \, \hat{} \, \ast \, x \, \hat{} \,) + \min \; \{ \mu(z \, \hat{} \, \ast \, y \, \hat{} \,), \; \mu \; (y \, \hat{} \, \ast \, x \, \hat{} \,) \} / 2 \;, \\ then \quad \mu \; (x \, \hat{} \, \ast \, z \, \hat{} \,) < t \, \hat{} \; and \\ 0 &\leq t \, \hat{} \; < \min \; \{ \mu \; (z \, \hat{} \, \ast \, x \, \hat{} \,) \;, \; \mu \; (y \, \hat{} \, \ast \, x \, \hat{} \,) \} \leq 1, \end{split}$$

hence

 $\label{eq:main_state} \begin{array}{ll} \mu\left(z^{`}~*~y^{`}\right)\right) > t^{`} \mbox{ and } \ \mu\left(y^{`}~*~x^{`}\right) > t^{`},$ which imply that

 $(z^* * y^*) \in \mu_{i^{1/2}}$ and $(y^* * x^*) \in \mu_{i^{1/2}}$.

Since $\mu_{,,i}$ is a KUS-ideal ,it follows that

 $(\mathbf{x} \ast \mathbf{z}) \in \boldsymbol{\mu}_{\mathcal{N}}$ and that $\boldsymbol{\mu}(\mathbf{x} \ast \mathbf{z}) \ge \mathbf{t}$, this

is also a contradiction . Hence μ is a fuzzy KUS-ideal of X . \bigtriangleup

Corollary 3.7. Let μ be a fuzzy subset in KUS-algebra X. If μ is a fuzzy KUS-ideal, then for every $t \in Im(\mu)$, μ_t is a KUS- ideal

of X when $\mu_t \neq \emptyset$.

Theorem 3.8. Let μ be a fuzzy subset in KUS- algebra X . If μ is a fuzzy KUS-sub-

algebra of X if and only if , for every $t \in [0,1]$, μ_t is either empty or a KUS-sub-algebra of X. **Proof:** Assume that μ is a fuzzy KUS-subalgebra of X ,let x, $y \in X$ be such that $x \in \mu_t$ and

 $y \in \mu_t$, then $\mu(x) \ge t$ and $\mu(y) \ge t$. Since μ is a fuzzy KUS-sub-algebra, it follows that $\mu(x * y) \ge \min \{\mu(x), \mu(y)\} \ge t$ and that $(x * y) \in \mu_t$.

Hence μ_{t} is a KUS-sub-algebra of X.

Conversely, assume $\mu (x * y) \ge \min \{\mu(x), \mu(y)\} \text{ is not true, then}$ there exist x` and y` \in X such that, $\mu (x`* y`) < \min \{\mu (x`), \mu (y`)\}.$ Putting t`=($\mu (x`* y`) + \min \{\mu(x`), \mu (y`)\}/2$, then $\mu (x`) < t` and$ $0 \le t` < \min \{\mu (x`), \mu (y`)\} \le 1$, hence $\mu (x`) > t` and \mu (y`) > t`, which imply that$ x` $\in \mu_{\lambda}$ and y` $\in \mu_{\lambda}$, since μ_{λ} is a

KUS-sub-algebra, it follows that

 $x * y \in \mu_{t^{i}}$ and that

Proposition 3.9. Every fuzzy KUS-ideal of KUS-algebra X is a fuzzy KUS-sub-algebra of X.

Proof: Since μ is fuzzy KUS-ideal of a KUS-algebra X, then by theorem (3.6), for every

 $t \in [0,1]$, $\,\mu_t\,$ is either empty or a KUS-ideal

of X . By proposition(2.7), for every

 $t \in [0,1], \ \mu_t$ is either empty or a KUS-sub-

algebra of X .Hence μ is a fuzzy KUS-subalgebra of KUS-algebra X by theorem (3.8). \triangle

Definition 3.10 ([1]). Let (X ; *, 0) and (Y; *`, 0`) be nonempty sets. The mapping $f : (X; *, 0) \rightarrow (Y; *`, 0`)$ is called a homomorphism if it satisfies: f (x * y) = f (x) *` f (y), for all x, $y \in X$.

The set $\{x \in X \mid f(x) = 0'\}$ is called the Kernel of f denoted by Ker f. **Definition 3. 11 ([1]).** Let f : (X;*,0)

 \rightarrow (Y;*',0') be a mapping nonempty sets X and Y respectively. If μ is a fuzzy subset of X, then the fuzzy subset β of Y defined by:

 $f(\mu)(y) = \begin{cases} \sup \{\mu(x) : x \in f^{-1}(y)\} & \text{if } f^{-1}(y) = \{x \in X, f(x) = y\} \neq \phi \\ 0 & \text{otherwise} \end{cases}$

is said to be the image of μ under f.

Similarly if β is a fuzzy subset of Y, then the fuzzy subset $\mu = (\beta \circ f)$ in X (i.e the fuzzy subset defined by $\mu(x) = \beta(f(x))$ for all $x \in X$) is called the pre-image of β under f.

Theorem 3.12. An into homomorphic preimage of a fuzzy KUS-ideal is also a fuzzy KUS-ideal .

Proof: Let $f : (X; *, 0) \to (Y; *', 0')$ be an into homomorphism of KUS-algebras, β a fuzzy KUS-ideal of Y and μ the pre-image of β under f, then $\beta(f(x)) = \mu(x)$, for all $x \in X$. Since $f(\mathbf{x}) \in \mathbf{Y}$ and β is a fuzzy KUSideal of Y, it follows that $\beta(0') \ge \beta(f(x)) = \mu(x)$, for every $x \in X$, where 0' is the zero element of Y. But $\beta(0') = \beta(f(0)) = \mu(0)$ and so $\mu(0) \ge \mu(x)$ for $x \in X$. Now let $x, y, z \in X$, then we get $\mu(\mathbf{z} \ast \mathbf{x}) = \beta(f(\mathbf{z} \ast \mathbf{x})) = \beta(f(\mathbf{z}))$ *` f (x)) $\geq \min \{\beta (f(z) * f(y)),$ $\beta(f(y) * f(x))$ $= \min \{\beta (f (z * y)), \beta (f (y + y))\}$ * x)) } $= \min\{\mu(z * y)), \mu(y * x)\}$ i.e., $\mu(z * x) \ge \min{\{\mu(z * y)\}, \mu(y * x)\}}$, for

all x, y, $z \in X$. \triangle

Definition 3.13 ([1]). A fuzzy subset μ of a set X has sup property if for any subset T of X, there exist $t_0 \in T$ such that $\mu(t_0) = \sup \{\mu(t) | t \in T\}$.

Theorem 3.14. Let

 $f : (X; *, 0) \rightarrow (Y; *', 0')$ be a

homomorphism between KUS-algebras X and Y respectively. For every fuzzy KUS-ideal μ in X with sup property, $f(\mu)$ is a fuzzy KUS-ideal of Y.

Proof: By definition $\beta(y') = f(\mu)(y')$

 $:= \sup\{\mu(\mathbf{x}) | \ \mathbf{x} \in f^{-1}(\mathbf{y}^{\setminus}) \}, \text{for all } \mathbf{y}' \in \mathbf{Y}$ (sup $\emptyset = 0$).

We have to prove that $\beta(z'*'x') \ge \min \{\beta(z'*'y'), \beta(y'*'x')\}$, for all x', y', z' \in Y. (I) Let $f : (X; *, 0) \rightarrow (Y; *', 0')$ be a onto homomorphism of KUS-algebras, μ is a fuzzy KUS-ideal of X with sup property and β the image of μ under f. Since μ is a fuzzy KUS-ideal of X, we have $\mu(0) \ge \mu(x)$ for all $x \in X$. Note that $0 \in f^{-1}(0')$, where 0 and 0' are the zero elements of X and Y respectively. Thus

 $\beta(0^{i}) = \sup_{t \in f^{-1}(x^{i})} \mu(t) = \mu(0) \ge \mu(x) = \mu(0) \ge \mu(x)$

for all $x \in X$, which implies that

 $\beta(0^{\vee}) \ge \sup_{t \in f^{-1}(x^{\vee})} \mu(t) = \beta(x^{\vee}) \text{ for any } x^{\vee} \in Y$

For any x', y', z' \in Y , let $x_0 \in f^{-1}(x^{\setminus})$,

 $y_0 \in f^{-1}(y^{\setminus}), \ z_0 \in f^{-1}(z^{\setminus})$ be such that:

 $\mu(z_0 * y_0) = \beta[f(z_0 * y_0)] = \beta[f(z^{\setminus} * y^{\setminus})]$ = $\sup_{z_0 * y_0 \in f^{-1}(z^{-1} * y^{\setminus})} \mu(y_0 * x_0) = \beta[f(y_0 * x_0)] = \beta[f(y^{\setminus} * x^{\setminus})]$ = $\sup_{y_0 * x_0 \in f^{-1}(y^{-1} * x^{\setminus})} \mu(y_0 * x_0)$

$$\beta(z^{\setminus} * x^{\setminus}) =$$

$$\sup \mu(t) = \mu(z_0 * x_0)$$

$$\geq \min_{t \in f^{-1}(z^{\setminus *}x^{\setminus})} \{ \mu(z_0 * y_0), \mu(y_0 * x_0) \}$$

=
$$\min \left\{ \sup_{t \in f^{-1}(z^{\setminus *}y^{\setminus})} \mu(t), \sup_{t \in f^{-1}(y^{\setminus *}x^{\setminus})} \mu(t) \right\}$$

=
$$\min \left\{ \beta(z^{\setminus *}y^{\setminus}), \beta(y^{\setminus *}x^{\setminus}) \right\}$$

Hence β is a fuzzy KUS-ideal of Y.

(II) If f is not onto: For every $x^{\setminus} \in Y$, we define $X_{x^{\setminus}} \coloneqq f^{-1}(x^{\setminus})$. Since f is a

homomorphism ,we get

$$\begin{split} & X_{z^{\backslash}} * X_{y^{\backslash}} \subset X_{z^{\backslash *}y^{\backslash}} \text{ and } X_{y^{\backslash}} * X_{x^{\backslash}} \subset X_{y^{\backslash *}x^{\backslash}}, \text{ for} \\ & \text{all x', y', z' } \in Y \text{ error (*).} \\ & \text{Let x', y', z' } \in Y \text{ be arbitrarily given. If} \\ & (z^{\backslash} * y^{\backslash}) \notin \text{Im}(f) = f(X) \text{ , then by} \\ & \text{definition } \beta(z^{\backslash} * y^{\backslash}) = 0 \text{ . But if} \\ & (z^{\backslash} * y^{\backslash}) \notin f(X), \text{ i.e. , } X_{z^{\backslash *}y^{\backslash}} = \phi \text{ , then by} \end{split}$$

(*) at least one of $z^{\setminus}, y^{\setminus}, x^{\vee} \notin f(X)$ and

hence $\beta(z'^*x') \ge 0 = \min \{\beta(z'^*y'), \beta(y'^*x')\}$. \triangle

References

- A. Rosenfeld , Fuzzy group, J. Math. Anal. Appl., Vol.35 ,1971, pp.512-517.
- [2] A.T. Hameed and S.M. Mastafa , KUS-algebra is equivalent to dual QS-algebra, To appear in International Journal of Computational

Science and Mathematics, 2013.

- [3] J. Neggers , S.S. Ahn and H.S. Kim , On Qalgebras, Int. J. Math. Sci. , Vol.27, No12 , 2001, pp.749-757.
- [4] K. Is'eki and S. Tanaka, An introduction to the theory of BCK-algebra, Math. Japon., 23 (1) (1978), pp.1-26.
- [5] K. Is´eki, On BCI-algebras, Math. Seminar Notes, Vol. 8, 1980, pp.125-130.
- [6] L.A. Zadeh, Fuzzy sets, inform. and control, Vol.8, 1965, pp.338-353.
- [7] O.G. Xi, Fuzzy BCK-algebras, Math. Japon., Vol.36, 1991, pp- 935- 942.
- [8] S. S. Ahn and H.S. Kim, On QS-algebras, J. Chungcheong Math. Sco., Vol. 12, 1999, pp. 1-7.
- [9] Y. Imai, K. Iseki, On axiom systems of propositional calculi, XIV Proceedings of Japan Academy, Vol.42, 1966, pp.19-22.