

Efficient Algorithm for Near Duplicate Documents Detection

Gaudence Uwamahoro 1 and Zhang Zuping2

 1 School of Information Science and Engineering, Central South University

Changsha, 410083, China

2 School of Information Science and Engineering, Central South University

Changsha, 410083, China

Abstract
Identification of duplicates or near duplicate documents in a set

of documents is one of the major problems in information

retrieval. Several methods to detect those documents have been

proposed but their relevance is still an issue. In this paper we

propose an algorithm based on word position which provides a

reduced candidate size to search in and increases efficiency and

effectiveness for partial documents relevance. In our experiments

the results show that during search process for the query the

candidate size has reduced up to 12% of the size of set of

documents which leads to a decreased time in searching. The

results also have shown a higher accuracy thus helping help the

user not to waste time on waiting for a query and getting

unwanted documents.

Keywords: Inverted Index, Near-Duplicate Document, Partial

Document, Document Relevance, Duplicates Detection.

1. Introduction

The Internet as source of knowledge provides users with

access to the abundant information on current research in

different areas. To provide users with documents that

satisfy their needs is a goal of information retrieval. But

the relevance of documents containing that information is a

major issue. The relevance must be both efficient and

effective since many queries may need to be processed in

short time and effectively since the quality of ranking

determines whether the search engine accomplishes the

goal of finding relevant information. There are several

kinds of documents containing the targeted information

including academic publications. In order to rapidly

respond to the user’s query, inverted index as inherent file

structure is proposed. In this structure, one term records

the identifiers of the documents containing that term,

frequencies and sometimes position of the term in the

document.

Digital documents are easy to modify using operations

such as insertion, deletion and substitution which is the

reason most of documents are duplicates and near

duplicates to others. In those documents more paragraphs

or sentences of one document appear in other documents

and make it to be seen as near duplicates. Documents with

similar partial contents relate to the same area. It takes

time to get the information related to what the user needs

and sometimes the results don’t match the query. Several

approaches to detect duplicates and near duplicate

documents have been proposed but they still need

improvement. Lack of speed in searching for a query and

relevance ranking is an obstacle in research especially in

information retrieval which makes it necessary for a

powerful algorithm to be used to make the searching

process faster and provide better results. Inverted index

data structure with ability to increase the speed and

effectiveness of search in documents collection is used to

solve those problems using the ability of recording for

each terms occurred in each document and its position in

that document [1] In this paper our method “phrase query”

is used and we are interested in showing how the query is

processed efficiently and effectively. Some researchers

have proposed a method of using inverted index where

they first search all terms of query in the documents and

then apply intersection algorithm which takes time to

process. In our method, we propose the use of inverted

index and recursion. The query processing time will

decrease and accuracy will be established with more

attention.

2. Related works

Many researchers in information retrieval have worked on

duplicates detection. Recently, research on duplicates

detection has focused on issues of efficiency and

effectiveness. Duplicates and near duplicate documents

detection is an interesting subject in current research in

information retrieval.

2.1 Duplicates and near duplicates detection

 It is easy to make a copy of a document to produce its

duplicate. Minor changes like delete, insert and

substitution on the document make that document to be a

near document as in [2, 3]. There are several approaches to

detect those documents like edit distance, fingerprinting,

shingling, checksumming and bag of word. Similarity

measures also are used as in [4, 5]. Shingles are the most

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 12

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

features used by many researchers where more shingles

shared in two documents imply more likely that the

documents are near duplicates. Most of the methods used

have the same shortcoming of being efficient only for

small size documents. The research continued and the new

approach called fingerprinting to remediate to that

drawback has been proposed in [6, 7]. Heintze and Manku

invented the fingerprinting method where every shingle is

fingerprinted [8] and documents are near duplicates if one

of the fingerprints matches. Charikar in [9] proposed a

method based on random projection of words in documents

to detect near duplicate documents and improved the

overall precision and recall. Xiao, W, L and J in [10]

proposed new filtering technique by exploiting the

ordering information in prefix filtering. Lakkaraju, P.

Gauch, S., Speretta and M, proposed a method based on

conceptual tree where they presented each document as a

tree [11]. Research on partial copy detection is done in

[12], in that research the method of calculation of sentence

level similarity by comparing word overlap invented.

2.2 Inverted index

The inverted index also called inverted file is an efficient

data structure used recently by search engines for indexing

large volumes of text documents with increasing speed and

provides efficiency searching in documents collection. An

inverted index contains a list of documents that contain the

index term for every term. It is inverted in the sense of

being the opposite of document file that lists for every

document the index terms it contains, hence the name

“Inverted index”. Inverted index is a powerful technique

used in information retrieval because of its efficiency and

effectiveness in document relevance as it has been used in

duplicates detection [13, 14, 15]. Many researchers have

used inverted index as in [16] where the method proposed

uses sentence based on inverted index but the word

position data is dropped and considers only the existence

of each word in each sentence. In [17, 18, 19] inverted

index has been used in document detection based on a

sentence level. The search method proposed in this paper

is based on word position in the document. A sentence

level and recursion to achieve document relevance

effectively and efficiently is proposed. The words position

will lead to the location of terms in the document. A

posting list as one of the main components of inverted

index shows documents in which the term appears

frequencies and its position. The Intersection of the posting

lists can be used to find sentences that appear in different

documents. The space used by the inverted index varies in

range of 5-100% of the total size of the document indexed.

That range is due to the implementation of inverted index,

where some try to reduce the size of documents using

compression methods like Delta coding, Golomb-Rice and

Elias gamma and some store positions whereas others

don’t.

There are several variations on inverted indexes. The

simplest form of inverted list stores just the documents that

contain each word. If you want to support phrase query

you need to store word positions for each document and

also it is possible to add word frequency for each

document. The typical example of inverted index of a set

of four documents is shown in table 1. Those documents

are:
d1: Old people like green tea than porridge

d2: Children like hot maize porridge or cold soya porridge

d3: Some like it hot others like it cold

d4: Mothers keep maize porridge in big pot

Table 1: Inverted index from documents

Token Documents Word position in

document

Children d2 d2, 1

cold d2 d2, 7

green d1 d1, 4

hot d2,d3 [d2, 3], [d3, 4]

in d4 d4,5

it d3 d3, 3, 7

keep d4 d4, 2

like d1, d2, d3 [d1, 3], [d2, 2], [d3, 2]

maize d2, d4 [d2, 4], [d4, 3]

mothers d4 d4, 1

old d1 d1, 1

or d2 d2, 6

people d1 d1, 2

porridge d1, d2, d4 [d1,7], [d2,5], [d2, 8],

[d4, 4]

some d3 d3, 1

soya d2 d2, 8

tea d1 d1, 5

than d1 d1, 6

When looking for matches for query “maize porridge”, the

posting lists of those two words of query are considered,

and intersection of two lists is used as follows:

 maize: [d2, 4], [d4, 3]

 porridge: [d1, 7], [d2, 5], [d2, 8], [d4, 4]

From the lists above we see that maize porridge appears in

document d2 where the word maize comes on position four

and porridge on position five in the same document. The

document d4 also matches the query where maize is on

position 3 and porridge on position four in the same

document.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 13

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

3. Word Positional Based Approach for

Document Selection (WPBADS).

We propose a new approach which is based on term

position in inverted index, phrase query and recursion to

make the text document search fast and effective. The user

will be able to submit the query to the system, and the

system will display all the documents having the parts that

match the query. Our method comes to support the

improvement of document relevance ranking by decreasing

searching process time and increase accuracy during

partial document copy detection in order to reach the goal

of relevant information. Recursion is one of the methods

used in our approach. It is a method where the solution to a

problem depends on the solution to smaller instances of the

same problem.

Our method focuses on word position and recursion.

Storing a mapping from words to their locations in

documents make inverted index efficient and flexible and

provides a good full search. Manipulating well inverted

index can speed up and increase effectiveness of searching.

With word position, we have to consider the order and

position of each term in the query to find all documents

that match the query. Before indexed, all documents in

collection must be preprocessed by tokenization, stemming

and removal of all stopwords. In our method we only

consider tokenization and stopwords removal. After

preprocessing, all tokens are indexed in vocabulary and a

posting list that shows for each term in vocabulary and the

list of documents it appears in is then established. As the

vocabulary contains many terms, positions are very

important to locate the term in each document. Not only

word position in document is needed, but also the order of

the terms of query is the key in the search process used in

our method. Our method supports phrase query. When a

user submits the query, the system will search in the

vocabulary and will display all documents that match the

query by order of relevance and score. The top high

relevant documents are presented to the user.

3.1 Minimize candidate size for fast searching

Most of the methods used before search in every document

each term of the query use intersection algorithm. Those

methods increase the time of searching. We realized that

even when a document contains a term of the query it

doesn’t mean it must be selected to serve the searching of

query. We have also realized that all documents without

the first term of query during searching do not serve for

search of next term of query in a set of documents. There is

no chance to get other next terms of the query in

documents without the first term and that is the reason all

documents that don’t contain the first term are no longer

used to find next terms of the query. The proposed method

WPBADS allows selecting a document with importance

during the search of a certain query and that leads to the

decreasing in time because of the size of documents to

search in decreases during searching process. To find the

second term, the system must search from documents that

have the first term. There is one condition to find the

second term which is being next to the first term in

document. After getting documents that contain those two

terms, we concatenate them to get the new string which

will be the base of our algorithm determined by the first

two terms in the same order as in the query. The

importance of considering the base is that if we consider

only one condition of being next to the second, we can get

wrong results because the second term can be in different

documents next to the second term but the previous term of

second term (first term) is different from the first term in

the query. The documents used for searching in are the

ones that contain only the base.

To continue our search for our query, WPBADS will be

based on the previous base. The next term of the query to

search must be next to the base and as a result the system

displays all documents that contain the base and term to

search. The next search continues to the next term of the

query but we must concatenate the base with the previous

term used to get the new base. Base is changed as we

continue the search.

3.2 Algorithm description

Let the collection of documents Dn be an n-tuple made of n

documents, where n is an integer number. Therefore

Dn=<d1, d2, d3 …dn>, where di | n≥I is the i
th

 document and

documents may have different sizes. Hence for each

document di | n≥i, we associate its size Si such that we now

have the couple (di | i<n, Si|n≥i). The tuple Dn becomes Dn=<

(di | i<n, Si|n≥i)>, the total size of Dn being

1 |

n

T i n iS S Let UQk be the user query made of k

strings, where k is an integer number (number of terms of

the query). Therefore UQk=UQ1+ UQ2+ UQ3+ UQ4+

UQ5+…+UQk. The proposed algorithm is described as

follows: we query the presence of UQh | 1≤h≤k string in every

document, the first round of search having started with

UQ1. If the string is in a document, then the document is

kept for the next round of search of UQh+1 | 1≤h≤k. The

search contains k number of rounds at most since each

string must be found in each document that had been kept.

Hence for each round we may keep j documents where j is

an integer number less than n. The algorithm is as follows:

Initially we query the presence of UQ1 for each document

in Dn. For subsequent searches, let IS j | 1≤j≤n be the tuple of

j documents in which the UQh | 1≤h≤k had been found at h
th

round. Therefore, we keep the tuple IS j | 1≤j≤n, and search

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 14

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

UQh+1 | 1≤h≤k in it. Therefore, if the tuple dimension is not

zero for all rounds, the search goes on until h=k. The

string to search is divided into terms and all documents are

represented by their roots in a list. The algorithm searches

a particular term in all the documents, if the term is not

found then the document is deleted in the list of documents

having that term.

3.3 Time and space complexity

The time complexity is measured by the number of

elementary operations carried out during execution of

program and space complexity is the computer memory

used by our algorithm. In our algorithm, the operations

considered are the ones done by binary search on the input

size n used to search term in a document. The amount of

work done during a single execution before and after loop

is constant. The time of our algorithm is proportional to the

number of time the loop executed. It is possible to reduce

running time of our algorithm by reducing the number of

candidate size to search in. That leads to the increasing

speed of algorithm.

Using binary search in the proposed algorithm after each

iteration, the input size to search in is decreased and it is

less than the one for previous iteration. That it is why the

time complexity of our algorithm is logarithmic and is

O (log2 n). Since each comparison binary search uses

halves of the search space, search process will never use

more than O (log N) comparisons to find the target term in

a document. It is the same calculation for its space

complexity. The more space we allocate for the algorithm,

the faster it runs. The work space cannot exceed the

running time. We know that writing in each memory cell

requires at least a constant amount of time.

Thus if we let T(n), time complexity and S(n) space

complexity of our algorithm, then S(n) = O(T(n)).The

space complexity of our algorithm is then O (1).The

function of our algorithm is logarithmic. As the number of

documents to search in increases the time used to search in

is decreased. The algorithm WPBADS is listed in table 2.

We are based on a collection of 8 documents in table 3

with different sizes and those documents are preprocessed

by tokenizing their text, removing all stopwords,

punctuations and lowercase all letters. Let 1391 bytes be

the size of the collection of 8 documents with different

sizes. Let 100 bytes be the size of d1, 109 the size of d2,

188 bytes the size of d3, 171 bytes the size of d4, 181 the

size of d5, 329 the size of d6, 146 bytes the size of d7 and

167 bytes the size of d8. The user query is “freshwater

tropical fish tank and saltwater tropical tank”.

Table 2: WPBADS algorithm

Algorithm: WPBADS

Input: D a set of documents to search in

 User query: phrase containing terms

Output: Documents that match the query presented by order of relevance

List of Documents D ={d1, d2, d3, d4, ……, dn}

List of Query terms T = {t1, t2, t3, t4, ………..,tn}

FOR each node ti in T

 Get the term ti

 FOR each node di in D

 FOUND = searchTerm (ti in di)

 IF Not FOUND THEN

 DELETE di in D

 ELSE

 Pos get the position of di

 IF Pos is not 0 and Pos is different to di.position + 1 THEN

 different to di.position + 1 THEN different to di.position + 1 THEN

 DELETE di in D

 ELSE

 di.position Pos

 END IF

 END IF

 NEXT node in D

NEXT Node in T

FUNCTION searchTerm Parameters root: pointer to the root, term: string

BEGIN

 IF root.info == term THEN

 Return (root)

 ELSE

 IF root.info > term THEN

 Return searchTerm (Right Son of root, term)

 ELSE

 Return searchTerm (Left Son of root, term)

 END IF

 END IF

END

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 15

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The proposed algorithm follows different steps and the

number of those steps depends on the number of terms of

query. We have used Vector Space Model to represent the

text document. In that model a document is represented by

a vector of keywords extracted from the document with

associated weights representing the importance of

keywords in the document within the whole documents set.

Table 3: Ranking of documents in order by score

d1: tropical fish include fish found tropical environments word

including freshwater salt water species

d2: fishkeepers use term tropical fish to refer requiring

freshwater saltwater tropical fish referred marine fish

d3: tropical fish popular aquarium fish due bright coloration

fishkeepers use term tropical fish refer particularly requiring

freshwater tropical saltwater tropical fish referred marine fish

d4: freshwater fish coloration typically derives iridescence salt

water fish generally pigmented marine tropical fish interest

fishkeepers fish live close relation coral reefs

d5: articles library contains large sections cichlids beta fish

aim offer articles targeting beginners experienced tropical fish

keepers training tropical fish disease aquariums general

d6: saltwater aquarium complicated handle basic freshwater

tropical fish tank invested time efforts rewarded possibility keep

remarkably beautiful fascinating saltwater fish species find

freshwater tropical fish tank saltwater tropical fish tank

beginner guides help pet fish way hopefully aquarium beginner

guides help learn basics

d7: ac tropical fish started out site tropical aquarium fish

keepers has grown include areas such coldwater species set

maintenance saltwater aquarium

d8: find freshwater tropical fish tank and saltwater tropical fish

tank beginner guides help pet fish way hopefully aquarium

beginner guides help learn basics buying fish

To weigh a term the tf idf method is used where the term

frequency tfi,j and document frequency dfj are the main

factor for weighting the term. The weight of term j in

document I is: wij = tfi,j idfj = tfi,j log N/dfj where N is

the number of the documents collection and idfj is the

inverse document frequency. The term weight helps us for

documents ranking. The ranking function is necessary to

measure similarity between document vectors and the user

query. Cosine similarity measure is used to determine

angle between query and document vectors. The similarity

between query Q and document Di is given by:

 1 , ,

2 2

1 , 1 ,

,

v

j q j i j

i
v v

j q j j i j

w w
sim Q D

w w

Where Wq,j is the weight of term j in the query and is

defined in the same way as in wi, j (tfq,j idfj). In our

documents set the table 4 shows the results:

Table 4: Ranking of documents in order by score

D.ID R.Q(score) D.R.Sc

(traditional)

R.D.P.Us.Sc using

WPBADS

 Order1 D.ID Order2 D.ID

d1 0.511890 1 d6 1 d8

d2 0.578541 2 d8 2 d6

d3 0.604367 3 d3 3 d3

d4 0.361961 4 d2 4 d2

d5 0.367404 5 d1 5 d1

d6 0.695353 6 d7 6 d4

d7 0.406181 7 d5 7 d5

d8 0.622375 8 d4 8 d7

The following abbreviations are used in table 4 above. RQ

represents result to the query by score which is similarity

to the query; D.R.Sc represents documents ranking in order

by score. This is the traditional method where documents

are presented to the user by their score to the query.

R.D.P.Us.Sc is used to represent relevant documents

presented to the user in order by score using WPBDS. The

similarity measure like cosine is used to know how

documents are similar to the query and high relevant

documents are presented to the user by order of score. The

typical example shown is the order 1 in the table 4 above.

Represent relevant documents considering only order of

score traditionally as in order 1 doesn’t interest the user

who needs documents containing the information he needs.

Using WPBADS for partial document detection, the order

of high relevant documents presented to the user is

different from the one in order 1. The user judges the

relevance of retrieved documents according to what he

wants. The user will be interested in order by score in

order 2 column where high relevant documents contain

more information he wants. For partial documents,

documents are near similar when they contain more query

terms in the same order they are presented in the query. In

our method, the size of documents to search in is decreased

during search process and that leads to a higher efficiency

because the size of the documents to search in is

decreased. That will have effect on effectiveness of the

results wanted. The methods used before like inverted

index, and others considered as traditional methods they

use intersection algorithm after they search every term of

the query in each document in a collection, and that takes

time. The proposed method provides a higher efficiency as

the size of documents to search in is reduced according to

the number of terms in the query and that leads to a

reduced time of query processing as shown in figure 1.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 16

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Figure 1: Comparison of WPBADS, inverted index and traditional

approaches

4. Conclusion

Although research on duplicate documents detection is

going on until now, efficiency and effectiveness for

document relevance is still an issue and needs

improvement. In this paper we proposed an efficient

algorithm for near duplicate documents detection by

exploiting position and order of term in documents. With

this method we show that words position plays great role in

documents relevance where it is the base for documents

candidate selection. The results show that the proposed

method provides effectiveness and high efficiency by

reducing the documents size to search in up to 12% and

that leads to the decreased computation time in partial

document detection. In future we intend to investigate

compression methods in our method for the query

efficiency.

Acknowledgments

We are grateful to the support of the National Natural

Science Foundation of China (Grant No. 60970095,

M1121008) and Research Fund for the Doctoral Program

of Higher Education of China (Grant No.

20120162110077).

References
[1] Ajik Kumar Mahapatra, Sitanath Biswas, “Inverted index

Techniques”, International Journal of Computer Science

Issues, Vol. 8, Issue 4, No. 1, July 2011.

[2] De Carvalho, M. G., Laender, A. H. F., Goncalves, M. A., &

da Silva, A. S., “A genetic programming approach to record

deduplication”, IEEE Transactions on Knowledge and Data

Engineering, Vol. 24, No. 3, 2012, pp. 399–412.

[3] Valls, E. & Rosso, P., “Detection of near-duplicate user

generated contents: the SMS spam collection”, in

Proceedings of the 3rd international workshop on search

and mining user-generated contents, 2011, pp. 27–34

[4] Yung-Shen Lin, Ting-Yi Liao, Shie-Jue Lee, “Detecting near-

duplicate documents using sentence-level features an

supervised learning”, 2012, pp. 1467-1476

[5] B. Karthikeyan, V. Vaithiyanathan, C. V. Lavanya,

“Similarity Detection in Source Code Using Data Mining

Techniques”, European Journal of Scientific Research ISSN

1450-216X Vol.62, No.4, 2011, pp. 500-505.

[6] Gurmeet Singh Manku, Arvind Jain and Anish Das Sarma,

“Detecting near-duplicates for web crawling”, in

Proceedings of the 16th international conference on World

Wide Web, Banff, Alberta, Canada, 2007, pp. 141 – 150

[7] M. Charikar, “Similarity Estimation Techniques from

Rounding Algorithm”, in Proc. of 34th Annual Symposium

on Theory of Computing (STOC), 2008, pp. 380-388

[8] N. Heintze, “Scalable document fingerprinting”, in Proc. of

the 2nd USENIX Workshop on Electronic Commerce 216,

1996, pp. 191–200

[9] M. S. Charikar, “Similarity estimation techniques from

rounding algorithms”, In Proceedings of 34th Annual ACM

Symposium on Theory of Computing, (Montreal, Quebec,

Canada, 2002, pp. 380–388

[10] C. Xiao, W.Wang, X.Lin, J.X.Yu, “Efficient Similarity Join

for Near Duplicate Detection”, Beijing, China, 2008

[11] Lakkaraju, P. Gauch, S., Speretta, M., “Document similarity

Based on Concept Tree Distance”, Proceedings of Nineteeth

ACM conference on Hypertext and Hypermedia. Pitteburgh,

PA, USA, 2008, pp.127-132

[12] Metzler, D., Bernstein, Y., Croft, W.B., Moffat, A., Zobel,

J., “Similarity Measures for Tracking Information Flow”, In:

The 14th ACM Conference on Information and Knowledge

Management (CIKM 2005), 2005, pp.517–524

[13] Zobel, J and Moffat, “Inverted files for text search engines”,

ACM Computing Surveys, Vol. 38, No. 2, article, 2006, pp.

1-55

[14] Justin Zobel, Alistair Moffat, and Ron Sacks- Davis, “An

efficient indexing technique for full text databases”, 1992,

pp.352–362

[15] Ajik Kumar Mahapatra, Sitanath Biswas “Inverted index

Techniques”, International Journal of Computer Science

Issues, Vol. 8, Issue 4, No. 1, 2011.

[16] James P. Callan “Proximity Scoring Using Sentence-Based

Inverted Index for Practical Full-Text Search”, 2008

[17] Yerra, R., and Yiu Kai, NG., "A sentence-Based Copy

Detection Approach for Web Documents", Lecture Notes in

Computer Science, Springer Berlin / Heidelberg, Vol. 3613,

2005, pp.557-570.

[18] Allan, J., Wade, C., Bolivar, A., “Retrieval and novelty

detection at the sentence level”, in: Proc. SIGIR-2003, the

26th ACM Conference on Research and Development in

Information Retrieval, Toronto, Canada, ACMPress, New

York, 2003, pp. 314–323.

[19] Li, X., Croft, B.: “Novelty detection based on sentence level

patterns”. In: Proc. CIKM-2005. ACM Conf. on

Information and Knowledge Management, ACM Press, New

York, 2005.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 17

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

First Author: Gaudence Uwamahoro received Master Degree of
Engineering in Computer Science and Technology from Central

South University in 2010. She is currently working towards her
Ph.D. Degree at the School of Information Science and
Engineering, Central South University, China. Her research
interests include information system, database technology and
data mining.

Second Author: Zuping Zhang received the Ph.D. degree in
Information Science and Engineering, Central South University in
2005. He is now a Professor in School of Information Science and
Engineering, Central South University. His current research
interests include information fusion and information system,
parameter computing and biology computing.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 18

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

