

InfluenceInfluenceInfluenceInfluence of Project Duration constraintof Project Duration constraintof Project Duration constraintof Project Duration constraint on efforts in on efforts in on efforts in on efforts in

Constructive Cost Model and optimizing the efforts to obtain Constructive Cost Model and optimizing the efforts to obtain Constructive Cost Model and optimizing the efforts to obtain Constructive Cost Model and optimizing the efforts to obtain

accuracyaccuracyaccuracyaccuracy

Brajesh Kumar Singh1, A. K. Misra2

 1,2 Department of Computer Science and Engineering, MNNIT, Allahabad, India

Abstract
Software cost estimation accuracy is one of the biggest

challenges in the field of software development for developer and

customers. In general, many algorithmic models like

Constructive Cost Model (COCOMO) are used to estimate cost

but they have inability to deal with uncertainties related to

software development environment and other factors influencing

the software development process. The Evolutionary

computation approaches provide the solution for estimating the

effort along with handling these uncertainties. In this paper,

COCOMO is used as algorithmic model and an attempt is being

made to validate the soundness of genetic algorithm using NASA

project data. The main objective of this work is to analyze the

influence of project duration constraints on efforts and to

improve accuracy of system’s output when evolutionary

computation based approach is applied to the NASA dataset to

derive the software effort estimates. Proposed approach is

validated by using 63 NASA project dataset. Empirical results

show that application of the proposed approach for software

effort estimates resulted in smaller mean magnitude of relative

error (MMRE) for all cases and probability of a project(PRED)

having a relative error of less than or equal to 0.35 as compared

with results obtained with COCOMO is improved significantly

for most of the cases.

Keywords: Evolutionary Computation, Genetic Algorithm,

COCOMO, Effort estimation, Mean Magnitude of Relative Error,

Probability of a project.

1. Introduction

The software project management is a set of activities that

span all phases of the software development life cycle.

The most important part of the software project

management is to estimate a proposed project effort,

duration and cost more accurately [39]. Estimation of

effort and schedule of software development has

become a topic of growing importance of interest, which

is not so much surprising. It often happens that software

is more expensive than estimated cost and completion

is later than estimated time. Moreover it turns out that

most of the software do not meet the demands of the

customer[15]. It is due to the characteristics of software

and software development makes estimating difficult. For

example, the level of abstraction, complexity,

measurability of product and process, innovative

aspects, etc. A big number of factors have an influence

on the effort, cost and time to develop software.

These factors are widely known as ‘cost drivers’. Few of

them are size and complexity of the software,

commitment and participation of the user organization,

experience and expertise of the development team. In

general these cost drivers are difficult to determine

accurately in operation.

Several prerequisites must be fulfilled to address the

problems listed above and to guarantee a sound basis

for predicting effort, duration and the cost for software

development [15]. Many project managers like Team

leaders and system analysts have developed their own

intuitive techniques for dealing with the problems in real

world and they face and operate. Many of these techniques

are adequate but most of them provide far less precise

estimates and control than desired. There is no question

that the software development industry desperately needs

better techniques of estimating software project costs and

completion times, controlling the development process and

eliminating errors which are costlier [39]. Software project

Management process is used for carefully considering

costs and software benefits before committing the required

resources to that project or bidding for a contract [2].

In recent times, many quantitative models of software cost

estimation have been developed. Most of these models are

based on the size measure, such as Source Lines of Code

(SLOC) and Function Point (FP), obtained from size

estimation. Based on the context that the accuracy of size

estimation has direct impact on the accuracy of cost

estimation, a new alternative approach in soft computing

techniques such as evolutionary algorithms (EA) can be a

good choice for software development effort estimation

task.

Recently, many questions about the applicability of

using evolutionary computational methods to build

software estimation models have been introduced [14]. The

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 19

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

major objective of this study is to focus on building an

evolutionary model for estimating software effort using

genetic algorithms. Genetic algorithms will be used to

estimate the parameters of a COCOMO based effort

estimation model. Genetic algorithm is an adaptive search

algorithm based on the Darwinian theory of natural

selection. Genetic algorithm searches the space of all

possible solutions using a population of individuals

which is considered as potential solutions of the problem

under consideration. These solutions are computed based

on their fitness. The solutions that best fit to the

objective criterion survive in the upcoming generations

and produce “offspring” which are variations of their

parents[35]. Various papers [17, 21, 24, 27, 28, 29, 30, 31,

and 38] in a review of the literature show that there are two

major types of cost estimation methods i.e. Algorithmic

and Non algorithmic models are the records of the

conference. ACM hopes to give these conference by-

products a single, high-quality appearance. To do this, we

ask that authors follow some simple guidelines. In essence,

we ask you to make your paper look exactly like this

document. The easiest way to do this is simply to down-

load a template from [39], and replaces the content with

your own material.

2. About The Problem

2.1 Algorithmic models
Since, at the early stages of the software project

development process, all the earned information is not

adequately available, the predictions may be inaccurate

and this problem is seen in most of the software projects

rather than the other project types.

The first idea for software effort estimation was introduced

in 1950 by presenting the manual rule of thumb [23]. The

late 1970s produced a flowering of more robust models for

estimation. In 1965, by increasing the number of software

projects and need of user society to earn high quality

software, some models based on the linear equations were

presented as the software effort techniques [5]. We can

consider the name of Larry Putnam, Barry Boehm and Joe

Aron, as the ancestors of software estimation methods [23].

Onwards in 1973, the IBM researchers presented the first

automated tool, interactive productivity and quality (IPQ)

[23]. Barry Boehm proposed a new method based on

computing some of the software project factors by means

of several mathematical equations called COCOMO [4]. In

addition, Boehm explained several algorithms in his book

“Software Engineering Economics” [4] that are still used

by researchers. Other models such as Putnam Lifecycle

Management (SLIM) [27] and software evaluation and

estimation of resources – software estimating model

(SEER - SEM) [22] were influenced by the principals of

COCOMO [5]. Albrecht and Gaffney [1] introduced the

function point (FP) as a metric for software size estimation

which was the other important event in that decade.

Analogy based method was proposed in 1997 [33].

These Traditional algorithmic techniques require long term

estimation process. Algorithmic models are based on the

statistical analysis of historical data (past projects) [19,

37]. All of them need inputs, which are accurate estimate

of specific attributes, such as Line Of Code (LOC),

number of user screens, interfaces and complexity,

which are not easy to acquire at the early stages of

software development. Besides, attributes and

relationships used to predict software development

effort could change over time and/or vary for different

software development environments [36].

Understanding and calculation of algorithmic techniques

based past projects are different due to implicit complex

relationship between the related attributes. Attributes and

relationships used to estimate software development effort

could change overtime and differ for software development

environment and hence may create problems to software

developers in committing resources and controlling costs.

Although most of these pioneers started working on

developing models of software cost estimation at about the

same time, they all faced the same dilemma: as the

software size increases and importance there is also a

growth in complexity, which makes it very difficult to

accurately predict the cost of software development. In

order to address and overcome these problems, a new

model with accurate estimation is always desirable. This

dynamic field of software cost estimation sustained the

researcher's interests who succeeded in setting the

stepping-stones of software engineering cost models.

2.1.1 Constructive Cost Model (COCOMO)
COCOMO[4,8] is the best documented and most

transparent model currently available. The main focus

in COCOMO is upon estimating the influence of 15

cost drivers on the development effort. Before this can

be done, an estimate of the software size must be available.

COCOMO does not support the sizing estimation stage:

it only gives several equations based on 63 completed

projects at TRW. The equations represent the

relationships between size and effort and between effort

and development time. Estimation is dependent on the

various modes of projects which are shown in table-1.

Table 1: Describing the values of a and b for intermediate COCOMO

Project modes A B

Organic 3.2 1.05

Semidetached 3.0 1.12

Embedded 2.8 1.20

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 20

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

A distinction is made between three development

modes: the organic mode (stable development

environment, less innovative, relatively small in size);

the semi-detached mode (between organic and

embedded mode) and the embedded mode (developing

within tight constraints, innovative, complex, high

volatility of requirements). The effort estimation is

adjusted by the influence of 15 cost drivers.

In Table 2, the 15 COCOMO cost drivers are listed with

the adjustment for each driver value. For example: where

the complexity of the software is determined to be extra

high, the effort has to be calculated by multiplicative factor

of 1.65. Furthermore COCOMO provides tables to

apportion the adjusted estimated effort and

development over the project phases and, in the detailed

version of the model, to refine the adjustment for each

phase. For example: the quality of the programmer has

less influence in the feasibility phase than in the design

phase. Thus phase dependent adjustment factors are

used in the detailed model.

Table 2: Describing fifteen cost drivers

The three ways of estimating software project effort/cost

with increasing levels of accuracy are simple, intermediate

and complex models. These three models are defined by

increasing the details in mathematical relationship between

the developed time, the effort and the maintenance effort

[9]. The software cost estimation accuracy is significantly

improved when we adopt models such as the Intermediate

and Complex COCOMOs [6]. The COCOMO for effort

estimation has the form given in Equation 1.

Effort = a (KLOC)
b
 * EAF (1)

The software effort is computed in person-months. The

values of the parameters a and b depend mainly on the

class of software project. Software projects were classified

based on the complexity of the project into three categories

EAF is Effort Adjustment factor which depends on the

values 15 cost drivers. In this paper, the intermediate

COCOMO is used. The effort multipliers fall into three

groups: those that are positively correlated to more effort;

those that are negatively correlated to more effort; and a

third group containing just schedule information. In

COCOMO-I, cost driver "SCED" has a U-shaped

correlation to effort; i.e. giving programmers either too

much or too little time to develop a system can be

disruptive [7]. This exhibits some nonlinearity

characteristics.

The limitations of the algorithmic models led to the

exploration of the non-algorithmic techniques which are

soft computing based. So, based on these contexts, new

alternative approaches like soft computing techniques are

required for better solutions.

3. Solution of the Problem

3.1 Non-Algorithmic Models

Newer computation techniques, to estimate the software

effort are non-algorithmic approaches. Most of them came

in 1990s are soft computing based, and drew the attention

of researchers towards them. This section discusses a few

of such non-algorithmic models for software development

effort estimation. Soft computing consists of various

approaches like evolutionary algorithm (EA), fuzzy logic

(FL) and artificial neural networks (ANN). These

methodologies use flexible data processing mimicking

human behavior to deal with real life problems. Soft

computing techniques have been widely used by

researchers for software development effort prediction,

with an objective to manage the imprecision in data and

uncertainty in data. The Evolutionary Algorithms have to

been effectively used to search the optimal solution for a

given problem. The first model based on fuzziness of

several aspects is one of the best known [10], most

successful and widely used model for cost estimation,

COCOMO, was that of Fei and Liu [40]. They observed

that is not feasible before starting the project to accurately

estimate the delivered source instruction (KDSI); and it is

unreasonable to assign a finite number for it.

Cost

Driver

Ratings

Very

Low Low Nominal High

Very

High

Extra

High

product

attribute

RELY 0.75 0.88 1.00 1.15 1.4 -

DATA - 0.94 1.00 1.08 1.16 -

CPLX 0.70 0.85 1.00 1.15 1.3 1.65

Computer

Attribute

TIME - - 1.00 1.11 1.3 1.66

STOR - - 1.00 1.06 1.21 1.56

VIRT - 0.87 1.00 1.15 1.3 -

TURN - 0.87 1.00 1.07 1.15 -

Personnel

Attribute

ACAP 1.46 1.19 1.00 0.86 0.71 -

AEXP 1.29 1.13 1.00 0.91 0.82 -

PCAP 1.42 1.17 1.00 0.86 0.7 -

VEXP 1.21 1.10 1.00 0.9 - -

LEXP 1.14 1.07 1.00 0.95 - -

Project

Attribute

MODP 1.24 1.10 1.00 0.91 - -

TOOL 1.24 1.10 1.00 0.91 - -

SCED 1.23 1.08 1.00 1.04 - -

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 21

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

In summary, the previous research reveals that all of the

software effort prediction models based on soft computing,

have it own pros and cons. Therefore Selecting a suitable

technique for the given problem is a difficult decision. It

itself requires some ranking for each computing technique

so as to decide when a particular approach is to be applied

to any prediction problem. In the present study an effective

model based on Genetic Algorithm has been proposed to

heuristically search the various values of the parameters in

the given search space.

4. Proposed Approach for Solving

Problem

4.1 Dataset Description
We have considered the data from 63 NASA projects from

different centers for projects sourced from Boehm's 1981

text, p.496-497 Table 29-1, transcribed by Srinivasan and

Fisher [7]. Dataset consists of 15 cost drivers, 1 attribute of

the 3 development modes, Project Size (in KLOC), and

Actual effort used to evaluate the prediction done by

different approaches.

4.2 Proposed Approach

A brief overview of the binary genetic algorithm is as

follows:

4.2.1Genetic Algorithms
A genetic algorithm (GA) is a search heuristic method that

imitates the process of natural evolution. This heuristic is

routinely used to generate useful solutions to optimization

and search problems [26]. Genetic algorithms belong to the

larger class of evolutionary algorithms (EA), which

generate solutions to optimization problems using

techniques inspired by natural evolution, such as

inheritance, mutation, selection, and crossover, based on

the Darwin theory of natural selection. This concept was

first introduced by John Holland [20] and considerably

studied by Goldberg [18], De Jong [12, 13] and back [3].

GAs search the space of all possible solutions using a

population of individuals which is taken as potential

solutions of the problem under study. These solutions are

computed based on their fitness. The solutions that best fit

to the objective criterion survive in the upcoming

generations and produce “offspring” which are

transformations of their Parents [34].

GAs has been successfully used in a wide range of

difficult numerical optimization problems. They have

been successfully used to solve system identification,

signal processing and path searching problems [11, 16, 24

and 32]. String representation of genetic algorithms was

evolved by Holland [20].

4.2.2 Evolutionary Process of Genetic

Algorithm
In all Evolutionary Algorithms (EAs) techniques, it is

required to map the problem from its real domain to the

Evolutionary algorithms domain. GAs offers various kinds

of representations. The evolutionary process starts with the

evaluation of the fitness for each individual belonging to

initial population set. Until the stopping criterion is not

reached, the following tasks are to be preformed;

• Select the good individuals for reproduction in matting

pool using some selection approach (like. roulette wheel,

tournament, rank, etc.).

• Use crossover and mutation operators to generate new

offspring's. The probability of crossover and mutation are

selected based on the application.

• Evaluate the fitness function for offspring's.

This Stopping condition for above steps is either the

optimal solution required or the maximum numbers of

iteration specified are completed.

To see, how the ideas of evolutionary algorithms is

implemented on function optimization, It is assumed that

without any loss in generality we are desired to

minimize/maximize a function of n arguments f(a1, a2,,

an). Each argument ai of the function has it range from αi

to γi, which is used as search space for each parameter that

can be given by equation below:

(){ }niD iii ≤≤= 1:,γα
 (2)

f(a1, a2,, an) is positive function, Such that ai always

in there domain Di. Candidate solutions are represented

by n-dimensional vectors of argument of the form: a1,

a2,..., an which is known as “Chromosomes” and these

chromosomes the order pair of the arguments of the

functions which can independently called as “genes”. For

each such vector of arguments, have associated functions

Figure 1: General Scheme of Evolutionary Process

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 22

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

to serves a single value that behaves as fitness value. These

small values are used for minimization problems.

The GA search process works on population of individuals

each of which is assigned a fitness value. Individuals with

higher fitness value are transferred to the mating pool to

generate the offspring's which posses many but not all of

the features of their parents. This is done using genetic

operators like mutation and crossover [23, 28].

5. Evaluation Method

The performance of an effort predicting algorithm can be

evaluated in many ways but the most commonly used are

Mean Magnitude of Relative Error (MMRE) and

probability of a project having a relative error of less than

or equal to L (PRED(L)).

MMRE and PRED are computed from the Magnitude

relative error, or MRE, which is the relative magnitude of

the difference between the actual and estimated value of

individual effort i.

i

ii
i

effortactual

effortactualeffortEstimated
MRE

_

|_`_| −
=

The MRE value is calculated for each observation i of actual and

predicted effort where i range from 1 to N. Then the mean of

MRE over multiple observations (N) can be achieved through the

formula of Mean MRE (MMRE) as follows:

∑=
N

i

iMRE
N

MMRE
1

Another criterion is the prediction at level L, Pred(L) = k/N, Here

k is the number of observations where MRE is less than or equal

to L and N is the total number of observations. Thus, Pred(35)

gives the percentage of projects which were predicted with a

MRE less than or equal to 0.35.

6. Result and Discussion

Initially the data set is divided into different categories

according to the different values of SCED. The 80 percent

of each set will be used for evaluating MMRE as the

fitness function of binary genetic algorithm. The initial

population is randomly created having the chromosome as

SCED. This population is assigned a fitness value and

transferred to matting pool, where crossover and mutation

are used. After the stopping criterion is reached, the best

individual will be used for testing the result on the

complete set. The details about the various genetic

algorithm operator and parameters are provided below in

Table 3.

Table 3: Genetic algorithm operator and parameters

Population Size 10

SCED range 0.9 to 1.4

Selection Operator Tournament Selection

Cross over Single point crossover

Probability of Crossover 0.8

Mutation Single bit mutation

Probability of Mutation 0.3

Fitness Function MMRE

Number of Generations 10

The result obtained at evaluation phase of new values of

SCED are described and compared with COCOMO values

on the basis of MMRE and PRED in the Table 4.

Table 4: Describing COCOMO SCED, NEW SCED, MMRE, PRED

SCED

OLD

SCED

NEW

MMRE

COCOMO

MMRE

NEW

PRED(35)

COCOMO

PRED(35)

NEW

1 0.9 0.3382421 0.29053524 21 25

1.04 0.9 0.4004661 0.35403361 7 7

1.08 1.31935 0.2975117 0.26223239 6 7

1.23 1.10968 0.1808959 0.18040218 8 6

The Graph 1, Graph 2, Graph 3 and Graph 4 are describing

the change in the value of MMRE for the various values in

the range that is from 0.9 to 1.4.

Graph 1: MMRE Chart for SCED Nominal

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 23

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

7. Conclusion

Paper presented the optimized values of duration

parameter there by increasing the accuracy of the estimated

effort. This work has further shown that accurate effort

estimation is possible by evaluating algorithmic and non

algorithmic software effort estimation models. The

proposed model showed better software effort estimates in

view of the MMRE, Pred(0.35) evaluation criteria as

compared to the traditional COCOMO.

The various graph for different values of SCED ie

Nominal, high, low and very low were plotted as described

in Graph 1, Graph 2, Graph 3, Graph 4 to show their

change in MMRE according to the different values of

SCED. From Table 2 we can see that the MMRE has

significantly reduced and also for most of the cases, the

value of PRED (35) has come down. The utilization of

Soft computing based approaches for searching the optimal

values software engineering field can also be explored in

the future.

References
[1] Albrecht AJ, Gaffney JA (1983). Software function,

source lines of 6392 Sci. Res. Essays codes, and development

effort prediction: a software science validation. IEEE Trans

Software Eng. SE. 9(6): 639-648.

[2] B. Boehm and et all, Software Cost Estimation with

COCOMO II. Prentice Hall PTR, 2000.

[3] Back, T. and H.P. Schwefel, 1993. An overview of

evolutionary

[4] Boehm BW (1981). Software engineering economics.

Englewood Cliffs, NJ: Prentice Hall.

[5] Boehm BW, Valerdi R (2008). Achievements and

Challenges in Cocomo-Based Software Resource Estimation.

IEEE Softw.,25(5): 74-83

[6] Boehm, B. Cost models for future software life cycle

processes: COCOMO 2.0. Ann. Software Eng. 1: 45-60. ,1995

[7] Boehm, 1981 text,p.496-497, Table 29-1, "Software

Engineering Economics", "Prentice Hall",

[8] Boehm, B W ‘Software engineering economics' IEEE

Trans. Soft. Eng. Vol 10 No 1 (January 1984)

[9]]C. F. Kemere, “An empirical validation of software

cost estimation models,” Communication ACM, vol. 30, pp.

416–429, 1987.

[10] C. Kirsopp, and M. J. Shepperd, “Making inferences

with small numbers of training sets”, Sixth International

Conference on Empirical Assessment & Evaluation in Software

Engineering, Keele University, Staffordshire, UK, 2002.

[11] Chipperfield, A.J. and P.J. Fleming, 1996. Genetic

algorithms

[12] De Jong, K., 1992. Are genetic algorithms function

optimizers? Proc. Sec. Parallel Problem Solving From Nature

Conference, pp:3-14. The Netherlands: Elsevier Science Press.

[13] De Jong, K.A., 1975. Analysis of Behavior of a Class

of Genetic Adaptive Systems. Ph.D. Thesis. University of

Michigan, Ann Arbor, MI.

Graph 2: MMRE Chart for SCED High

Graph 3: MMRE Chart for SCED Low

Graph 4: MMRE Chart for SCED Very Low

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 24

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[14] Dolado. C.J. and M. Leey, 2001. Can genetic

programming improve software effort estimation?A

comparative evaluation. Inform. Software Technol., 43: 863-

873.

[15] F J Heemstra, Vol 34 No 10 October 1992

09505849/92/100627-13, Information and Software

Technology.

[16] Fonseca, C., E. Mendes, Fleming and S.A.

Billings,1993. Nonlinear model term selection with genetic

algorithms. Proc. IEE/IEEE Workshop on Natural Algorithms in

Signal Process., pp: 27/1 –27/8.

[17] G.N. Parkinson, Parkinson's Law and Other Studies in

Administration, Houghton-Miffin, Boston, 1957.

[18] Goldberg, D., 1989. Genetic Algorithms in Search,

Optimization and Machine Learning. New York, Addison-

Wesley.

[19] Hodgkinson, A.C. and P.W. Garratt, A neurofuzzy

cost estimator. Proceedings of the 3rd International

Conference on Software Engineering and Applications,

(SEA’99), ePrint, pp: 401-406.

http://eprints.ecs.soton.ac.uk/2659/. , 1999.

[20]] Holland, J., 1975. Adaptation in Natural and

Artificial Systems. Ann Arbor, MI: University of Michigan Press.

[21] J. R. Herd, J.N. Postak, W.E. Russell, K.R. Steward,

and Software cost estimation study: Study results, Final

Technical Report, RADCTR77- 220, vol. I, Doty Associates,

Inc., Rockville, MD, pp. 1-10, 1977.

[22] Jensen R – “An Improved Macro level Software

Development Resource Estimation Model,” Jensen R.,

Proceedings 5th ISPA Conference, , pp. 88-92, April 1983

[23] Jones C (2007). Estimating software costs: Bringing

realism to estimating. New York, NY: McGraw-Hill.

[24] Kristinsson. K. and G. Dumont, 1992. System

identification and control using genetic algorithms. IEEE

Transaction

[25] L. H. Putnam, A general empirical solution to the

macro software sizing and estimating problem, IEEE Trans. Soft.

Eng., pp. 345-361, July 1978.

[26] Mitchell, Melanie (1996). An Introduction to Genetic

Algorithms. Cambridge, MA: MIT Press. ISBN 9780585030944.

[27] Putnam LH (1987). A general empirical solution to the

macrosoftware sizing and estimating problem. IEEE Trans.

Software Eng., 4(4): 345-361

[28] Putnam, L. and Myers, W. (1992), Measures for

Excellence, Putnam, L. and Myers, W, Yourdon Press

Computing Series., 1992.

[29] R. E. Park, PRICE S, The calculation within and why,

Proc. of ISPA Tenth Annual Conference, Brighton, England, pp.

231-240, July 1988.

[30] R. Tausworthe, Deep Space Network Software Cost

Estimation Model, Jet Propulsion Laboratory Publication 81-7,

pp. 67-78, 1981

[31] R.K.D. Black, R. P. Curnow, R. Katz, M. D. Gray,

BCS Software Production Data, Final Technical Report, RADC-

TR-77-116, Boeing Computer Services, Inc., March, pp. 5-8,

1977.

[32] Schultz. A. and J. Grefenstette, 1994. Evolvingrobot

behavior. Proc. Artificial Life Conf. MIT Press.

[33] Shepperd M, Schofield C (1997). Estimating Software

Project Effort Using Analogies. IEEE TRANSACTIONS ON

SOFTWARE ENGINEERING 23(11): 736-743

[34] Sheta. A. and K. DeJong, 1996. Parameter

estimation of nonlinear systems in noisy environment using

genetic algorithms. Proc. IEEE Intl. Symp. Intelligent Control

(ISIC’96), pp: 360-366.

[35] Sheta. A. and K. DeJong, 1996. Parameter

estimation of nonlinear systems in noisy environment using

genetic algorithms. Proc. IEEE Intl. Symp. Intelligent Control

(ISIC’96), pp: 360-366

[36] Srinivasan, K. and Fisher D., Machine learning

approaches to estimating software development effort. IEEE

Trans. Software Eng., 21: 126-137. DOI: 10.1109/32.345828,

1995.

[37] Strike, K., K. El-Emam and N. Madhavji. Software

cost estimation with incomplete Data. IEEE Trans. Software

Engg., 27: 890-908. DOI: 10.1109/32.962560, 2001.

[38] W. S. Donelson, Project Planning and Control, Proc.

Datamation, pp. 73- 80, June 1976.

[39] W.Shouli, K.Dionysios,1992.Proc of IEEE Int. Conf.

on Tools with AI Arlington, VA, Nov. 1992, IASCE: An

Intelligent Assistant to Software Cost Estimation.

[40] Z. Fei, and X. Liu, “f-COCOMO: fuzzy constructive

cost model in software engineering”, Proceedings of the IEEE

International Conference on Fuzzy Systems, IEEE Press, New

York, pp. 331–337, 1992.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 25

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

