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Abstract 

This paper is concerned with a Superlinearly feasible SQP 
algorithm algorithm for general constrained optimization. As 
compared with the existing SQP methods, it is necessary to solve 
equality constrained quadratic programming sub-problems at 
each iteration, which shows that the computational effort of the 
proposed algorithm is reduced further. Furthermore, under some 
mild assumptions, the algorithm is globally convergent and its 
rate of convergence is one-step superlinearly. 
Keywords: Constrained Optimization, SQP Algorithm, Global 
convergence, Superlinear convergence rate. 

1. Introduction 

Optimization deals with selecting the best of many possible 
decisions in real-life environment, constructing 
computational methods to find optimal solutions, exploring 
the theoretical properties, and studying the computational 
performance of numerical algorithms implemented based 
on computational methods. It is widely and increasingly 
used in science, management, engineering, economics and 
other areas. Many Optimization algorithmic and theoretical 
techniques have been developed and applied(such as [1]-
[5],etc). As an iterative method, sequential quadratic 
programming (SQP) method is more robust and effective 
for solving constrained optimization problems (see (see[6]-
[12]). 
We consider the following nonlinear programs: 

min  ( )

. .    ( ) 0,  (1,2, )

       ( ) 0,  ( 1, 2, ).
i

i

f x

s t g x i I m

g x i E m m m j

≤ ∈ =
= ∈ = + + +

…

…

         (1) 

Where ( ),  ( ) : ( )n
if x g x R R i I E→ ∈ ∪ are continuously 

differentiable functions. 
It generates iteratively the main search direction Qpd by 

solving the following quadratic programming (QP) sub-
problem: 

1
min   ( )

2
 . .    ( ) ( ) 0,  ,

         ( ) ( ) 0,  .

T T

T
i i

T
i i

f x d d Hd

s t g x g x d i I

g x g x d i E

∇ +

+ ∇ ≤ ∈

+ ∇ = ∈

                   (2) 

Where n nH R ×∈  is a symmetric positive definite 
matrix. However, in traditional SQP algorithm, there 
are two serious drawbacks: 1) SQP algorithms require 
that the related QP subproblem (2) must be solvable 
at each iteration. Obviously, this is difficult. 2) There 
exists Maratos effect [13], that is to say, the unit step-
size cannot be accepted although the iterate points are 
close enough to the optimum of (1). 
In [8], a scheme of feasible sequential quadratic 
programming (FSQP) method is proposed to deal with 
those shortcomings. Their scheme considers the following 
inequality constrained problem 

'

1

min    ( ) ( ) ( )

. .    ( ) 0,  .

m j

c i
i m

i

F x f x c g x

s t g x i L I E

+

= +
= −

≤ ∈ ∪

∑

≜

             (3)         

The SQP direction Qpd  is defined as the unique solution of 

the QP 
1

min   ( )
2

. .   ( ) ( ) 0,   .

T T
c

T
i i

F x d d Hd

s t g x g x d i I E

∇ +

+ ∇ ≤ ∈ ∪  
Where c is an appropriate parameters.  Generally, the 
computational effort of a inequality constraints QP 
problem is much larger than that of equality constraints P. 
Spellucci[10] proposed a new method, the 0d  is obtained 

by solving QP sub-problem with only equality constraints: 
1

min  ( )
2

. .   ( ) ( ) 0,  ,

T T

T
j j

f x d d Hd

s t g x g x d j A I

∇ +

+ ∇ = ∈ ⊆
 

where the so-called working set A I⊆ is suitably 

determined. If 0 0d = and 0λ ≥  ( λ  is said to be the 

corresponding KKT multiplier vector.), the algorithm stops. 
The most advantage of these algorithms is merely 
necessary to solve QP sub-problems with only equality 
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constraints. However, if0 0d = , but 0λ < , the algorithm 

will not implement successfully. Recently, in[11] Consider 
the following QP sub-problem: 

1
min  ( )

2
. .   p ( ) ( ) 0,  .

T T

T
j j

f x d d Hd

s t x g x d j L

∇ +

+ ∇ = ∈
 

Where ( )
j

p x  is a suitable vector, L is a suitable 

approximate active, which guarantees to hold that if 

0 0d = , then x  is a KKT point of (1), i.e., if 0 0d = , then 

it holds that 0λ ≥ . 
We will develop an improved feasible SQP method for 

solving optimization problems based on the one in [11]. 
The traditional FSQP algorithms, in order to prevent 
iterates from leaving the feasible set, and avoid Maratos 
effect, it needs to solve two or three QP sub-problems like 
(3). In our algorithm, per single iteration, it is only 
necessary to solve equality constrained quadratic 
programming subproblems and systems of linear equations. 
Obviously, it is simpler to solve the equality constrained 
QP problem than to solve the QP problem with inequality 
constraints. In order to void the Maratos effect, a height-
order correction direction is computed by an equality 
constrained QP problem. Furthermore, its global and 
superlinear convergence rate are obtained under some 
suitable conditions. In the end, some limited numerical 
experiments are given to show that the algorithm is 
effective. 
This paper is organized as follows: In Section 2, we state 
the algorithm; The well-defined of our approach is also 
discussed, the accountability of which allows us to present 
global convergence guarantees under common conditions 
in Section 3, while in Section 4 we deal with superlinear 
convergence. Finally, in Section 5, some numerical 
experiments are implemented. 

2. Description of Algorithm 

For the sake of simplicity, we denote 

{ | ( ) 0,  ; ( ) 0,  },

( ) { | ( ) 0},   ( ) ( ) ,

{ | ( ) 0,  }.

n
i i

i

n
i

X x R g x i I g x i E

I x i I g x L x I x E

X x R g x i L+

= ∈ ≤ ∈ = ∈
= ∈ = = ∪

= ∈ ≤ ∈

 

The following general assumptions are true throughout the 
paper. 
A1 Feasible sets of (1) and (3) are nonempty, i.e., 

+,   X ,X ≠ Φ ≠ Φ  and functions ( ),  f x  ( ),  ig x i L∈  are 

twice continuously differentiable. 
A2  x X∀ ∈ , the vectors { ( ),  ( )}ig x i L x∇ ∈ are linearly 

independent. 
Given a pointx X +∈  , define the following matrices 

2

1

( ) ( ( ), ),   ( ) ( ( ), ),

( ),   ,
 ( )

0,          .

( ) ( ( ) ( ) ( )) ( ) ,        ( ) ( ) ( ).

i i

i
i

T T

N x g x i L D x diag D x i L

g x i I
D x

i E

B x N x N x D x N x x B x f xπ−





= ∇ ∈ = ∈

∈=
∈

= + = − ∇

    (4) 

For the meaning of above matrices, we establish the 
following result. 
 
Lemma 1  
For all x X +∈ , the matrix ( ( ) ( ) ( ))TN x N x D x+   is 

positive definite, thereby,  ( ( ) ( ) ( ))TN x N x D x+  is 

nonsingular. 
Proof. For all0 m jy R +≠ ∈ , we have  

2 2( ( ) ( ) ( )) ( ) ( ) 0.T T
i i

i L

y N x N x D x y N x y D x y
∈

Γ + = + ≥∑≜

 Suppose by contradiction that 0Γ = , then 

( ) ( ) 0,   ( ) 0,  .i i i i
i L

N x y g x y D x y i L
∈

= ∇ = = ∈∑  

From the definition of the matrix( )D x , it gets that 

0,  \ ( )iy i L L x= ∈  

So, we obtain that 

( )

( ) ( ) 0  .i i
i L x

g x y N x y
∈

∇ = =∑  

From the assumption A2, it sees that 
0,  ( )iy i L x= ∈  

Thereby, it holds that 0y = , which is a contradiction. 

So, 0Γ > , i.e., the matrix ( ( ) ( ) ( ))TN x N x D x+   is 

positive definite. 
Lemma 2  
If the parameter { }max ( ) :ic x i Eπ> ∈ , thenx  is a 

K T− point for (1) if and only if K T− point for ( 3) . 
Proof. If  x  is a K T− point for (1), thenx X +∈ , and there 

exist a multiplier vector ( ) m j
iu u R += ∈ such that 

( ) ( ) 0,

( ) 0,   0,   ,

( ) 0,   .

i i
i L

i i i

i

f x u g x

u g x u i I

g x i E

∈

∇ + ∇ =

 ∇ = ≥ ∈
 = ∈



∑

 

Thereby, it holds that  

( ) ( ) ( ) ( ) 0,

( ) 0,   0,   ,

( ) ( ) 0,   .

c i i i i
i I i E

i i i

i i

F x u g x u c g x

u g x u i I

u c g x i E

∈ ∈

∇ + ∇ + + ∇ =

 ∇ = ≥ ∈
 + = ∈



∑ ∑

 

Furthermore, in accordance with the definition of the 
matrix ( )D x , we have  

( ) ( ) 0,

( ) 0.

f x N x u

D x u

∇ + =
 =

 

Which implies that 
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( ) 1
( ( ) ( ) ( )) ( ) ( )

 ( ) ( ) ( ).

T Tu N x N x D x N x f x

B x f x xπ

−
= − + ∇

== − ∇  
Thus,  

| | | |,   . .,  .( ) ( ) 0  i i i ic u i e u c i Ex x cπ π> = + = ∈+ >  
Thereby, it holds that x is a K-T point of (3). 
On the other hand, let x  be a K-T point of (3), then 

there exists a multiplier vector ɶ ɶ( ,   )iu u i L= ∈ such 

that  
ɶ ɶ

ɶ ɶ

( ) ( ) ( ) 0,

( ) 0,   0,   ( ) 0,  .

i ic i i
i I i E

i ii i

F x u g x u g x

u g x u g x i L

∈ ∈

∇ + ∇ + ∇ =


 ∇ = ≥ ≤ ∈

∑ ∑
 

Therefore, 
ɶ ɶ( ) ( ) ( ) ( ) 0.i ii i

i I i E

f x u g x u c g x
∈ ∈

∇ + ∇ + − ∇ =∑ ∑  

Denote 
ɶ

ɶ

,        
( ,  ),  

,  ,

i

i i
i

u i I
i L

u c i E
ν ν ν

 ∈= ∈ = 
− ∈

 

then, it is obvious that 
( ) ( ) 0,   ( ) 0.f x N x D xν ν∇ + = =  

So,  

( ) 1
( ( ) ( ) ( )) ( ) ( )

 ( ) ( ) ( ).

T TN x N x D x N x f x

B x f x x

ν

π

−
= + ∇

= − ∇ =

−
 

Thus, we obtain,  
ɶ .( ) 0,   i i iu c i Ex cν π= + = ∈+ >  

And 
ɶ ɶ

ɶ ɶ

( ) ( ) ( ) ( ) 0,

( ) 0,   0,  ( ) 0,  ,

( ) 0,   .

i ii i
i I i E

i ii i

i

f x u g x u c g x

u g x u g x i I

g x i E

∈ ∈

∇ + ∇ + − ∇ =

 ∇ = ≥ ≤ ∈
 = ∈



∑ ∑

 

which implies that x is a K-T point of (1). 
 
Based on Lemma 2, in the sequel, we consider to 
solve the problem (3). Given x X +∈ , an appropriate 

index set ( )L x J L⊆ ⊆ ,  

Sub-algorithm A: 
Computation of an approximate active set kJ  

Step 1 For the current point kx X∈ , set 

, 00,  (0,1)k jj ε ε= = ∈ . 

Step 2 Compute  
� �

, ,, , , ,{ | ( ) 0},  ,  ( ( ), )k k
k j k jk j i k j k j i k jJ i I g x J J E A g x j Jε= ∈ − ≤ ≤ = ∪ = ∇ ∈  

If  , ,det( ) ( ),T k
k j k j jA A xε≥  , let 

� �
, , ,,  ,  ,  ,k k j k k j k k j kJ J J J A A j j= = = = STOP. Otherwise 

go to Step 3. 

  Step 3   Let , , 1

1
1,   ,

2k j k jj j ε ε −= + =  and go to Step2. 

Lemma 3 
For any iteration k, there is no infinite cycle in Sub-
algorithm A. Moreover, if *{ }k k Kx x∈ → , then there exists 

a constant 0ε > ,such that , kk iε ε≥ , for k K∈ ; k large 

enough. 
Now, the algorithm for the solution of the problem (1) can 
be stated as follows. 
Algorithm A： 
Step 0: Initialization: 
    Given a starting point0x X∈ , and an initial symmetric 

positive definite matrix   0
n nH R ×∈ .Choose 

parameters
1

(0, ),  (2,3), 2,  (2, ),  0,  0,
2

v vα τ δ ξ ε∈ ∈ > ∈ > >  

Set 0k = ; 
Step1: Computation of an approximate active set kJ by 

Sub-algorithm A； 
Step2: Update kc  Computation: 

From (4), calculate ( ),  ( ),k k k
kB B x xπ π= =  let 

0 1 1 0

1 1 0

max{| |,  },

max{ ,  },  ,
 

 ,                              .

k
k i

k k k k
k

k k k

a i E

a c c c a c
c

c c a c

π
ε− −

− −

= ∈
+ + < +

=  ≥ +

 

Step3: Computation of the search direction: 
3.1 Solve the following equality constrained QP 

subproblem: 
1

 min    ( )
2

  . .    ( ) ( ) 0,  .

k T
c k

k k T
i i k

F x d H d

s t p x g x d i J

∇ +

+ ∇ = ∈
                  (5) 

Where,
( ),    \ ,   ( ) 0,

( )
( ),      \ ,   ( ) 0.

k k
i ik

i k k
i i

x i J E x
p x

g x i J E x

π π
π

− ∈ <= 
∈ ≥

 

 Let 0( ,  )k kd µ be the corresponding K-T point pair， if 

0 0kd = , STOP. 

3.2 Compute the feasible direction: 
  3.2.1 Solve the following equality constrained QP 

subproblem at kx  

0

1
 min    ( )

2
  . .    ( ) ( ) || || ,  .

k T
c k

k k T k v
i i k

F x d H d

s t g x g x d d i J

∇ +

+ ∇ = − ∈
      (6) 

Let 1( ,  )k kd λ be the corresponding K-T point pair, 

if 1 1 ( ) || || ,k T k k v
cF x d dξ∇ ≤ −  set 1

k kd d= , go to step 3.3; 

3.2.2 Solving the following linear problem 
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min     

. .  ( ) ,

      ( ) ( ) ,  .

k T
c

k k T
i i k

z

s t F x d z

g x g x d z i J

∇ ≤

+ ∇ ≤ ∈

 

Let 2( ,  )k
kd z  be the solution, set 2

k k
kd z d= − ; 

3.3 Computation of the high-order revised direction: 
Solve the following equality constrained QP 

1
min    ( ) ( ) ( )

2
. .    ( ) ( ) || || ,  .

k k T k
c k

k k k T k
i i k

F x d d H d d

s t g x d g x d d i Jτ

∇ + + +

+ + ∇ = − ∈
 

Let � �( ,  )
k k

d λ  be the corresponding K-T point pair, if 

�|| || || ||
k kd d> ，set � 0

k
d = ； 

Step4: The line search: 
Compute kt , the first number t  in the sequence 

1 1 1
{1, , , ,...}

2 4 8
 satisfying 

�2( ) ( ) ( ) ,  
k k k

kk k k k T k
c c cF x td t d F x t F x dα+ + ≤ + ∇  (7) 

�2( ) 0,      .  
kk k

ig x td t d i L+ + ≤ ∈                          (8) 

 
Step5: Update: 

Obtain 1kH +  by updating the positive definite matrix kH  

using some quasi-Newton formulas. Set 1 2k k k k
kx x t d t d+ = + + ɶ , 

and 1k k= + . Go back to step 1. 

3. Global convergence of algorithm 

In this section, firstly, it is shown that Algorithm A given 
in Section 2 is well-defined, then we prove the global 
convergence of Algorithm A. 
The following assumptions are needed in the proof of the 
global convergence: 
A3 { }kx  is bounded, which is the sequence generated by 

the algorithm A, and there exist constants 0b a≥ > , such 

that 2 2|| || || ||T
ka y y H y b y≤ ≤ , for all k  and all ny R∈ .  

According to Algorithm A, it is similar to the proof of 
lemma 3.1 in [11].we can get the following conclusions. 
 
Lemma 4 
Let 0( ,  )k kd µ  be the solution of (5). If0 0kd = , then kx  is a 

K-T point of (1). If 0 0kd ≠ , the direction kd  computed in 

step 3.2 is a feasible descent direction of (1) atkx . 
 
Lemma 5 

The line search in step4 yields a stepsize 
1

( )
2

i
kt =  for 

some finite ( )i i k= . 

Proof.  
It is a well-known result according to Lemma 4 and 

1
(0, )

2
α ∈ . For (7), 

2

2

( ) ( ) ( )

( ) ( ) ( ) ( )

(1 ) ( ) ( ).

k k k

k k

k

k k k k k T k
c c c

k T k k k T k
c c

k T k
c

s F x td t d F x t F x d

F x td t d o t t F x d

t F x d o t

α

α

α

+ + − − ∇

= ∇ + + − ∇

= − ∇ +

ɶ≜

ɶ  

For (8), if  
( ),  ( ) 0;

( ),  ( ) 0,  ( ) 0,

k k
j

k k k T k
j j

i I x g x

i I x g x g x d

∉ <

∈ = ∇ <
 

so we have 
2 2( ) ( ) ( ) ( )

( ) ( ).

k k k k T k k
i i

k T k
i

g x td t d g x td t d o t

t g x d O tα
+ + = ∇ + +

= ∇ +

ɶ ɶ
 

It is shows that the results hold for t small enough. 
Let the sequence { }kx   be generated by the algorithm A, 

without loss of generality, Since there are only finitely 
many choices for sets kJ L⊆ , and the definition of kπ , we 

might as well assume that there exists a subsequence K , 
such that  

* * *

*

,  ,  ,  

,  ,  ,

k k k

k k

x x p p

H H J J k K

π π→ → →
→ ≡ ∈

                (9) 

whereJ is a constant set. Moreover, according to the 

assumptions A3, the sequence  0 1{ ,  ,  ,  , }k k k k kd d d µ λ is 

bounded. Thereby, we might as well assume, too, that 
* * *

0 0 1 1

* *
 

,  ,  ,  

, ,  .

k k k

k k

d d d d d d

k Kµ µ λ λ
→ → →

→ → ∈
                 (10) 

Lemma 6 
If the sequence { }kx  is bounded, then there exists a 

positive integer 0k , such that 

0 0,      .k kc c c for all k k= ≥≜  

Proof.  
Suppose by contradiction that the result is not true. 

According to step 2, there exists a 
sequence 1 1 1( ),  | |K K K K⊆ = ∞ , such that,  

0 1 1 0 1max{ ,  },  ,  .k k k k kc a c c c a c k Kε− −= + + < + ∈  

While 0ε > , hence the definition of ka in step 2 

shows that 1,  ,kc k K→ ∞ ∈ and { }kc is monotone 

increasing, thereby, it holds that 
,  .kc k→ ∞ → ∞  

In addition, because the functions( ),  ( )( )if x g x i L∈  

are continuously differentiable and the sequence { }kx  

is bounded, the fact * ,k k Kπ π→ ∈ shows that  

sup{ ,  } .ka k K∈ < ∞  
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Hence, we have 
1

1lim k
k K

c −∈
< ∞ , which is contradict. 

Thus, the result is true. Furthermore, in the sequel, we 
always assume that .kc c≡  Obviously, it holds that 

*
0| | | |,     .

iic c for all i Eπ π≥ + > ∈  

Theorem 1  
The algorithm either stops at the K-T point kx  of the 
problem (1) in finite number of steps, or generates an 
infinite sequence { }kx  any accumulation point *x  of 

which is a K-T point of the problem (1). 
Proof.  

The first statement is easy to show, since the only 
stopping point is in step 3. Thus, assume that the algorithm 
generates an infinite sequence{ }kx , (9) and (10) holds. 

According to Lemma 4, it is only necessary to prove that 
*
0 0d = . Suppose by contradiction that*0 0d ≠ . From 

lemma 3, we have *( )L x J⊆ and * *det( ) ,TA A ε≥ where 
*

* ( ( ),  )iA g x i J= ∇ ∈ . it is not difficult to prove that 
*
1 0d ≠ is the sole solution of the following QP 

*
*

* * *
0

1
min    ( )

2
 . .    ( ) ( ) || || ,  .

T
c

T v
i i

F x d H d

s t g x g x d d i J

∇ +

+ ∇ = − ∈
 

 Thereby,  it holds that 
* * * * *( ) 0,   ( ) 0,  ( ) .T T

c iF x d g x d i L x J∇ < ∇ < ∈ ⊆  

Thus, it is easy to see that the step-size kt obtained  in step 

4 are bounded away from zero on .., eiK  

* inf{ ,  } 0,  .k kt t t k K k K≥ = ∈ > ∈  

In addition, from (7) and lemma 4, it is true that { ( )}k
cF x  

is monotonically decreasing, which implies that 
*( ) ( ),  ,k

c cF x F x k k K→ → ∞ ∈ ， 

So, it holds that  
1

* *
*

0 lim( ( ) ( )) lim ( )

1
( ) 0.

2

k k k T k
c c k c

k K k K

T
c

F x F x t F x d

t F x d

α

α

+

∈ ∈
= − ≤ ∇

≤ ∇ <
 

It is a contradiction, which shows*0 0d = . Thus, *x  is a K-

T point of (1). 

4. The rate of convergence 

Now we prove the sequence { }kx  generated by the 

algorithm is one-step superlinearly convergent. For this 
purpose, we state  some stronger regularity assumptions. 
 
A5 The second-order sufficiency conditions with strict 
complementary slackness are satisfied at the K-T point*x   

and the corresponding multiplier vector*u . 

 
A 6 * *,  ,    kH H k and H→ → ∞  is positive definite on the 

subspace *( )Y x , where  
* * *( ) { | ( ) 0,  ( )}n T

iY x d R g x d i L x= ∈ ∇ = ∈ . 

 
A 7 Let the sequence of matrixes { }kH  satisfy that 

2

2

|| ( ( , )) || (|| ||)

|| ( ( , )) || (|| ||),

k k k k
k k xx

k k k k
k k xx

P H L x d o d

P H L x u d o d

λ− ∇ =

⇔ − ∇ =
 

where 

*

1

2 2 2

( )

2 * * 2 * * 2 *

( ) ,

( , ) ( ) ( ),  

( , ) ( ) ( ).

T T
k n k k k k

k k k k k
xx c i i

i L x

xx i i
i L

P I A A A A

L x F x g x

L x u f x u g x

λ λ

−

∈

∈

= −

∇ = ∇ + ∇

∇ = ∇ + ∇

∑

∑

 

The first task is to show that, the entire sequence { }kx  

converges to *x . 
Lemma 7  
Under above conditions, the entire sequence { }kx  

converges to *x , i.e. * ,  .kx x k→ → ∞  

Proof. When 1 1 ( ) || || ,k T k k v
cF x d dξ∇ ≤ −  holds, we have 

1( ) ( )  ( ) || || .k k k T k k v
c c k c kF x F x t F x d t dα α ξ+ − ≤ ∇ ≤ −  

When 2
k k

kd z d= − , from the assumptions A3, there 

exists a constant 0c > ,such that .k
kz c d− ≥  Thereby, 

from Lemma 4, it holds that 
1

2 2 2

( ) ( )  ( )

  || || .

k k k T k
c c k c

k
k k k

F x F x t F x d

t z t c d

α
α α

+ − ≤ ∇

≤ − ≤ −
 

Through the above analysis, we have  
1 2 2 2( ) ( ) || || min{ , || || },  .k k k k v

c c kF x F x t d c d kα ξ+ −− ≤ − − ∀  

From *( ) ( ),  ,k
c cF x F x k→ → ∞ it is easy to see that  

0,  .k
kt d k→ → ∞  

So, we have 

�1 2 2 0,  .
kk k k k

k k kx x t d t d t d k+ − ≤ + ≤ → → ∞  

Thereby, according to the assumptions A5 and Proposition 
4.1 in [13], we have * ,  .kx x k→ → ∞  
 
Lemma 8    
 For k large enough, it holds that 
1) * *

0( ) ( ) ,  0k
kJ L x I x E d≡ = ∪ →  ， 

2) kπ is obtained by (4) satisfy that * ,  k uπ →  

3) �  0 1{ ,  ,  ,  , }
kk k k kd d d d λ obtained in step 3 satisfy that 
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µ µ
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≡
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Proof.  
1) Firstly, from Theorem 1 and Lemma 7, it holds that 

0 0,  .kd k→ → ∞ Then, to prove that * *( ) ( ) .kJ L x I x E≡ = ∪  

According to definitions of 
kJ and � kJ  Sub-algorithm A, 

we only prove that � *( )kJ I x= , On one hand, from Lemma 

3, we obtain, for k large enough, that �*( ) kI x J⊆ . On the 

other hand, we suppose by contradiction that � *( )kJ I x⊆  is 

not holds, then there exist constants 0i and 0φ > , such that 

�
0

*
0( ) 0,   .i kg x i Jφ< − < ∈  

According to *
0 0,  ,k kd x x k→ → → ∞  and the continuity of 

0
( )ig x , for k large enough, it holds that 

0 0

0 0 0 0

0 0 0

0

0

0

 ( )

1
( ) ( ) ( ) 0,  ( ) 0

2
1

( ) ( ) 0,             ( ) 0,
2
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p g x d
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which is contradictory with the fact �
0 ki J∈ ,then, � *( )kJ I x⊆ , 

i.e. � *( )kJ I x= ,  so, *( )kJ L x≡ . 

2) From the definition of kπ , we have  
1 ( ) ( ( ) ( ) ( )) ( ) ( )

          ( ) ( ),

k k T k k k T k

k k

x N x N x D x N x f x

B x f x

π −= − + ∇

= − ∇
 

Then, k → ∞ , it holds that  
* * * 1 * *

* *

 ( ) ( ( ) ( ) ( )) ( ) ( )

          ( ) ( ).

k T Tx N x N x D x N x f x

B x f x

π −→ − + ∇
= − ∇

 

In addition, the fact * *( , )x u is a K-T point pair of (1), it is 

implies that  
* * * * * *

* * * *

*

( ) ( ) ( ) 0,

( ) 0,   ( ) 0,  0,   ,

( ) 0,   .

i

i i

i
i L

i i

i

f x u g x f x N u

u g x g x u i I

g x i E

∈
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= ∈


∑

 

Denote  
2 *

* *

( ),   ,
( )

0,          .
 ( , ),  i

i

g x i I
D x

i E
D diag D i L

 ∈= 
∈

= ∈  

Then * ( )kD D k→ → ∞ , and *
* 0D u = , so, it shows that 

* * * * 1 * *

* *

( ( ) ( ) ( )) ( ) ( )

  ( ) ( ).

T Tu N x N x D x N x f x

B x f x

−= − + ∇
= − ∇

 

According to definitions of kπ , it holds that *k uπ → . 
3) it is similar to the proof of Lemma4.2 in [11]. 
 
Lemma 9 

 For k large enough, 1t ≡ , i.e. �1 kk k kx x d d+ = + + . 

Proof.  It is only necessary to prove that 
�( ) ( ) ( ) ,  

k k k

kk k k k T k
c c cF x d d F x F x dα+ + ≤ + ∇   

�( ) 0,      .  
kk k

ig x d d i L+ + ≤ ∈  

it is similar to the proof of Lemma4.3 in [10]. 
 
In view of Lemma 9 and Theorem 5.2 in [9], we may 
obtain the following theorem: 
 
Theorem 2  
Under all above-mentioned assumptions, the algorithm is 
superlinearly convergent, i.e., the sequence { }kx  generated 

by the algorithm satisfies that 
1 * *|| || (|| ||).k kx x o x x+ − = −  

5. Numerical experiments 

In this section, we carry out numerical experiments 
based on the Algorithm A. The code of the proposed 
algorithm is written by using MATLAB 7.0 and utilized 
the optimization toolbox. The results show that the 
algorithm is effective. During the numerical experiments, it 
is chosen at random some parameters as follows:  

0 00.5,  0.25,  2.25,  -3, =2.5, =0.5 ,v H Iε α τ δ ξ= = = =
Where I  is the unit matrix. kH is updated by the BFGS 

formula [7].  

1 ( , , ),k k
k kH BFGS H s y+ =  

Where,  
^

1

^
1 1

1

,  (1 ) ,

( ) ( ) ( ( ) ( )),
k k

k k k k k k
k

m
k k k k k k

c c j j j
j

s x x y y H s

y F x F x u g x g x

θ θ+

+ +

=

= − = + −

= ∇ − ∇ + ∇ − ∇∑
 

   

ɵ

ɵ

1,                                    0.2( ) , 

0.8( )
,     . 

( )

kT
k k T k

k

k T k
k

kT
k T k k

k

if y s s H s

s H s
otherwise

s H s y s

θ

 ≥
= 


−

 

This algorithm has been tested on some problems from 
Ref.[14], a feasible initial point is either provided or 
obtained easily for each problem. The results are 
summarized in Table 1—Tabe 3. The columns of this table 
has the following meanings: 

No.: the number of the test problem in [14]; 
n:   the number of variables; 

|C1|, |C2|: give the number of inequality and equality 
constraints, respectively; 

NT : the number of iterations; 
CPU: the total time taken by the process (unit: 

millisecond); 
FV : the final value of the objective function. 
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TABLE I.  THE DETAIL INFORMATION OF NUMERICAL EXPERIMENTS 

NO. n,  |C1|, |C2| NT CPU 
HS32 3,   4,     1   10 0 
HS63 3,   3,     2 46 0 
HS81 5,  10,    3 48 10 
HS100 7,  4,     0 15 62 
HS113 10,  8,    0 95 50 

TABLE II.  THE APPROXIMATE OPTIMAL SOLUTION 
*x FOR TABLE  

NO. the approximate optimal solution *x  

HS32 (0.0000000000, 0.0000000000, 1.0000000000)T 
HS63 (3.5121213421, 0.2169879415, 3.5521711546)T 

HS81 
(−1.7171435704, 1.5957096902, 

1.8272457529,−0.7636430782,−0.7636430782)T 

HS100 

(2.3304993729, 1.9513723729, 
-0.4775413929, 4.3657262336, 
-0.6244869704, 1.0381310185, 

1.59422671167)T 

HS113 

(2.1719963713, 2.3636829737, 
8.7739257385, 5.0959844880, 
0.9906547650, 1.4305739789, 
1.3216442082, 9.82872580788, 
8.2800916701, 8.3759266639)T 

 

TABLE III.  THE FINAL VALUE OF THE OBJECTIVE FUNCTION FOR TABLE  

NO. FV 
HS32 1.0000000000E + 00 
HS63 9.6171517213E + 02 
HS81 5.3949847770E − 02 
HS100 6.8063005737E+002 
HS113 2.4306209068E + 01 
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