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Abstract 

In this work, we focus on the Gray images of the linear 

codes over the ring 32
3 3 3 1)(vR F vF v F    , which is 

a finite chain ring. Firstly, we give the generator matrix of 
the linear code and its dual code over the 

ring
2

3 3 3F uF u F  . Secondly, we define an 

isomorphism from R  to S  and obtain the generator 
matrix of the linear code and its dual code over the ring R . 

Then, we define a Gray map   from 
nR  to

3
3
nF , and 

obtain Gray image ( )C  from the generator matrix of the 

linear code C  over the ring R . Finally, we prove that the 

Gray images ( )C  of cyclic codes C  are quasi-cyclic 

codes over 3F . 

Keywords: Linear codes, Generator matrix, Gray image, 
Dual code 

1. Introduction 

The study of linear codes and their Gray images over finite 
rings has obtained many useful results in coding theory [1-6]. 
The two main classes of rings that have been studied are 

Galois rings and rings of the 
2 2
m mF uF  and some 

variations of these [1][2]. Codes over 
3 3
F uF  were studied 

and improvements to the bounds on ternary linear codes [3]. 
In 2010, linear codes and cyclic codes over 

2 2 2 2
F uF vF uvF    were studied by Bahattin.Yildiz 

and S.Karadeniz[7][8]. Linear codes and cyclic codes over 
the ring 

2 2F vF  were studied by Zhu Shixin, Wangyu 

and Shi Minjia[9][10] where the ring 
2 2F vF  is not a finite 

chain ring, In order to popularize the conclution of the 

coding theory over 
2 2F vF , we study the coding theory 

over the ring 
2

3 3 3F vF v F   in this paper. 

 

After presenting some notations and properties about linear 

codes , cyclic codes and quasi-cyclic codes over the finite 

chain ring 2
3 3 3R F vF v F    in section 2. We study 

the structure of the linear code over the ring  R  and obtain 
the generator matrix of the linear code C  and its dual 

code C


  in section 3. In section 4, we study the gray 
image of the linear code and the cyclic code over the ring 
R .  

2. Basic Concepts of the Codes over the Ring 
2

3 3 3F vF v F   

Let
2

3{ , , }R a bv cv a b c F    , where
3 1v  . Note 

that R  is a finite chain ring with characteristic 3. The 
ideals can be listed as: 

20 ( 2) 2 1v v R       , 

Where  
2 2 2( 2) {0,1 ,2 2 2 }v v v v v        

And  
2 2

2 2 2 2

2 {0,1 ,2 2 2 ,1 2 ,

1 2 ,2 , 2 , 2 ,2 }

v v v v v v

v v v v v v v

       

    
. 

2 v    is the uniquely maximal ideal of the ring R . 

The zero divisors in R  are all in 2 v   .  It is obvious 

that 2 v  is a nilpotent of R  with nilpotency 3. 

Let
* 2R R v     , we can see that 

*R  consists of all 

units in R . 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 2, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 400

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

A linear code over the ring R of length n  is an R -

submodule of
nR . For any 

1 2
( , ,..., ),

n
x x x x  

1 2
( , , ..., ) n

n
y y y y R  , the inner product of ,x y  is 

defined as the following： 

1 1 2 2
, ...

n n
x y x y x y x y     . 

 
Let C  be a linear code of length n over R , then we can 

prove that  { | , 0, }C x x y y C

      is also a linear 

code over R of length n . We call C
to be the dual code of 

C . 
 
A cyclic code of length n  over R  is a linear code with 

the property that if 0 1 1
( , , , )

n
c c c C


  then  

0 1 1 1 0 2
( , , , ) ( , , , )

n n n
T c c c c c c C

  
   . 

 

A k  quasi-cyclic code of length kn  over R  is a linear 

code with the property that if 0 1 1( , , , )nc c c C   then  

11 12 1 21 22 2 1 2

1 11 1, 1 2 21 2, 1 1 , 1

( , , , , , , , , , , , , )

( , , , , , , , , , , , , )

k

k k n n nk

k k k k nk n n k

T c c c c c c c c c

c c c c c c c c c C
  

 

   

   
. 

3. The structure of the linear code over the 

ring 2
3 3 3F vF v F   

Let C  and C  are all linear codes over the finite chain 

ring of length n . If the code C  can be transformed to C  

by the transformation of coordinates, we call C  

permutation-equivalent toC .  

 
Lemma 1 Let  

2

3

2
3 3 3 { , , }S a bu cu a b c FF uF u F      , 

Where
3 0u  . Note that S  is a finite chain ring with 

characteristic 3. Any linear code C  of length n over the 

ring S is permutation-equivalent to a code with generator 
matrix of the form: 

1

2

3

1 2 3

11 12

2 2
22

0

0 0

k

k

k k n

I A A A

G uI uA uA

u I u A


 
 

  
  
 

……(1) 

Where 
1 2 3

, ,
k k k
I I I are all unit matrixes with order 

1 2 3, ,k k k respectively. Let 1 2 3k k k k   , where 
2

1 2 3 ( 1,2,3),i i i iA B uB u B i     and 11 12 22, , ,A A A  

1 2 3, , ( 1,2,3)i i iB B B i   are matrixes over the ring 3F . Then 

1 2 33 23 k k kC   . 

 
Proof. Let 1 ( )ij k nG g   be the generator matrix of the 

linear code C over S . 

If there exist invertible elements in 1G , by applying row 

transformation to 1G , we can transform the first column of 

the matrix 1G to (1,0, , 0)T and transform 1G to 2G ; 

Removing the first row and first column of 2G , if there 

also exist invertible elements in 2G , then, using the same 

method we can transform  the second column of the matrix 

2G  to (0,1, ,0)T  and  also transform 2G  to 3G ;  After 

1k steps transformation, we can obtain the following 

matrix: 

1

1

1

1

20

k

k

I M
G

M


 
   
 

， 

Where 
1k
I is a unit matrix with order 1k , 1 2,M M  are 

matrixes over the ring S , and there is not invertible 

elements in 2M ; 

 
Because there are not invertible elements in 2M , so 2M  is 

a matrix over uS . Then there exists a matrix 2M
  over S  

such that 2 2M uM  . Using the similar method of (1), after 

applying 2k  steps row transformation to
1 1kG  , we can 

obtain the following matrix: 

1

1 2 2

1 3

1 4

5

0

0 0

k

k k k

I A M

G uI M

M

 

 
 

  
 
 

， 

Where 
2k
I  is a unit matrix with order 2k , 5M  is a matrix 

over 2u S ; 
 

Applying 3k  steps row transformation to
1 2 1k kG   , we can 

obtain the following matrix: 

1

2

3

1 2 3

11 12

2 2
22

0

0 0

k

k

k k n

I A A A

G uI uA uA

u I u A


 
 

  
  
 

， 
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Where 
1 2 3

, ,
k k k
I I I are all unit matrixes with order  

1 2 3, ,k k k  respectively. Let 1 2 3k k k k   , where 
2

1 2 3 ( 1,2,3),i i i iA B uB u B i     and 11 12 22, , ,A A A  

1 2 3, , ( 1,2,3)i i iB B B i   are matrixes over the ring 3F . 

 
From the above, we can prove the theorem.  
 
Similar to the literature [6], the following lemma can be 
easily obtained. 
 
Lemma 2 If C  is an arbitrary linear code of S , then the 

generator matrix of the dual code C 
 is:  

3

2
1

12 22 11 22

2 11 1 11

2 2
1 ( )

( ) 0

0 0

T T T T
n k

T T T T
k

T
k n k n

F A A A A I

H u A A A uA uI

u A u I



 

 
 

  
  
 

……(2) 

Where
22 2 11 1 12 1 3

( )T T T T T T TF A A A A A A A   , 

2
1 2 3 ( 1,2,3),i i i iA B vB v B i     and 11 12 22, , ,A A A  

1 2 3, , ( 1,2,3)i i iB B B i   are matrixes over the ring 3F . 

Then 1 2 33 23n k k kC     . 

 

Define the map   from R  to R  by:  

2 2( ) ( ) ( 2 )( 2) ( 2) .a bv cv a b c b c v c v            

It is obvious that   is an automorphism map of the ring R . 

 

Define the map   from R  to S  by: 

2 2( ) ( ) ( 2 ) .a bv cv a b c b c u cu          

It is obvious that   is a one to one map from R  to S . 

 

Theorem 3 The map   is an isomorphism from  R  to S . 

 

Proof. For any ,x y R  , where 
2

1 1 1 ,x a b v c v    

2
2 2 2y a b v c v   . Then  

2
1 2 1 2 1 2

2
1 2 1 2 1 2 1 2 1 2 1 2

2
1 1 1 1 1 1

2
2 2 2 2 2 2

( ) (( ) ( ) ( ) )

( ) ( 2 2 ) ( )

( ) ( 2 )

( ) ( 2 )

( ) ( ),

x y a a b b v c c v

a a b b c c b b c c u c c u

a b c b c u cu

a b c b c u c u

x y

 

 

      

           

     

     

 

 

1 2 1 2 1 2 1 2 1 2 1 2

2
1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2

2

1 2 1 2 1 2

2
1 1 1 1 1 1

2 2

( )

(( ) ( )

( ) )

( 2 2 2 )

( )

[( ) ( 2 ) ]

[(

x y

aa bc cb ab ba cc v

ac bb ca v

aa bc cb ab ba cc ac bb ca

ab ba cc ac bb c a u

ac bb ca u

a b c b c u cu

a b







     

  

        

     

  

     

   2

2 2 2 2) ( 2 ) ]

( ) ( ).

c b c u c u

x y 

  

 

 

So  

( ) ( ) ( )x y x y     ……(3) 

And  

( ) ( ) ( )x y x y     ……(4) 

Thus, we have proved the theorem. 

 

By the Lemma 1, Lemma 2 and the theorem 3, the 
following two theorems can be easily obtained. 

Theorem 4 Any linear code C  over R  of length n  is 
permutation-equivalent to a code with generator matrix of 
the form: 

1

2

3

1 2 3

11 12

2 2
22

0 ( 2) ( 2) ( 2)

0 0 ( 2) ( 2)

k

k

k k n

I A A A

G v I v A v A

v I v A


 
 

    
    

……(5) 

Where 
1 2 3

, ,
k k k
I I I are all unit matrixes with order  

1 2 3, ,k k k  respectively. Let 1 2 3k k k k   ,  

where 2
1 2 3 ( 1,2,3),i i i iA B vB v B i     and 11 12 22, , ,A A A  

1 2 3, , ( 1,2,3)i i iB B B i   are matrixes over the ring 3F . Then 

1 2 33 23 k k kC   . 
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Theorem 5 If C  is an arbitrary linear code of 
2

3 3 3F vF v F  , then the generator matrix of the dual 

code C
 is:  

3

2
1

12 22 11 22

2 11 1 11

2 2
1 ( )

( 2)( ) ( 2) ( 2) 0

( 2) ( 2) 0 0

T T T T
n k

T T T T
k

T
k n k n

F A A A A I

H v A A A v A v I

v A v I



 

 
 

     
    

, 

……(6) 

Where
22 2 11 1 12 1 3

( )T T T T T T TF A A A A A A A   , 

2
1 2 3 ( 1,2,3),i i i iA B vB v B i     and 11 12 22, , ,A A A  

1 2 3, , ( 1,2,3)i i iB B B i   are matrixes over the ring 3F . 

4. The gray image of the linear codes over the 

ring 2
3 3 3F vF v F   

For any x R ,  then 2

3
( , , )x a vb v c a b c F    . 

Define : 3
3R F  by: ( ) ( , 2 , , )x a b c b c c     . Then 

  is a ring homomorphism. The Lee weight of x  are 

defined by ( ) ( ( ))
L

W x W x . For any 
2

3 3 3,x y F vF v F   , we have  

( ) ( , ) ( ( ), ( ))

( ( ) ( )).

L L
W x y d x y d x y

W x y

 

 

  

 
 

 

The Gray map   can be extended to nR . For any 

1 2
( , , , ) n

n
x x x x R  ， let 2

i i i i
x a vb v c R    ， then, 

for any x , we have 

1 1 1

1 1 1 2

( ) ( , ,

2 , , 2 , , , ).

,

,

n n n

n n n

x a b c a b c

b c b c c c c

     

 



 
 

 

It is obvious that  is a bijective from nR to 3
3
nF . 

 
By the definition of the Gray map , we can obtain the 

following lemma easily. 
 
Lemma 6 The Gray map   is a distance preserving map 

from nR  to 3
3
nF . 

 
Theorem 7 Let C  be a linear code of length  n  over the 

ring R with generator matrix of the form (5), ( )C is the 

Gray image ofC . Then, ( )C  is permutation-equivalent 

to a linear code of length 3n over 3F  with generator 

matrix of the form: 

 

1

1

1

2

2

3

1 2 3 1 2 1 3 2 2 2 3 3 2 3 3 1 3 2 3 3 3

1 2 3 1 2 1 3 2 2 2 3 3 2 3 3

1 2 3

' "
1 1 1 2 1 2

'

1 1 1 2

2 2

0 2 2 2 0

0 0 0 0 0 2 2 2

0 0 0 0 0 0 0 0
,

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

k

k

k

k

k

k

I B B B B B B B B B B B B

I B B B B B B B B B

I B B B
M

I A A A

I A A

I A

   
 

   
 
 
 
 
 
 
 
 

  

  

  
 

 

Where 1 2 3 ( 1,2,3)i i i iB B B B i      and  ' "
11 12 12 22, , ,A A A A  

1 2 3, , ( 1,2,3)i i iB B B i   are matrixes over the ring 3F . 

 
 
 

Proof. By the theorem 4 and the definition of the Gray 
map , ( )C can be generated by linear combination of 

the Gray images of the row vector of the following 

matrixG . 

1

1

1

2 2 2
11 12 13 21 22 23 31 32 33

2 2 2
11 12 13 21 22 23 31 32 33

2 2 2 2 2 2 2

11 12 13 21 22 23 31 32 33

( 2) ( 2)( ) ( 2)( ) ( 2)( )

( 2) ( 2) ( ) ( 2) ( ) ( 2) ( )

0 ( 2)

k

k

k

I B vB v B B vB v B B vB v B

v I v B vB v B v B vB v B v B vB v B

v I v B vB v B v B vB v B v B vB v B
G

v

     

         

         





2

2

3

' "
11 12 12

2 2 2 ' "
11 12 12

2 2

22

,
( 2) ( 2)[ ( 2) ]

0 ( 2) ( 2) ( 2) [ ( 2) ]

0 0 ( 2) ( 2)

k

k

k

I v A v A v A

v I v A v A v A

v I v A
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Because 

1

1

2 2 2
11 12 13 21 22 23 31 32 33

11 12 13 21 22 23 31 32 33

12 13 22 23 32 33 13 23 33

, , ,

, , ,

( )

( ,0,

2 , 2 , 3 ,0, , , );

k

k

I B vB v B B vB v B B vB v B

I B B B B B B B B B

B B B B B B B B B

      

      

  

1

1

2

11 12 13 21 22

2 2
23 31 32 33 11

12 13 21 22 23 31 32 33 12 13

22 23 32 33

, ,

, ,

, ,

(( 2) ( 2)( ) ( 2)(

) ( 2)( )) (0,0,0,0,

,0, 2 ,

2 , 3 );

k

k

v I v B vB v B v B vB

v B v B vB v B I B

B B B B B B B B B B

B B B B

      

    

      

 

 

1

1

2 2 2 2
11 12 13 21 22

2 2 2
23 31 32 33

11 12 13 21 22 23 31 32 33

, ,

,

, , ,

(( 2) ( 2) ( ) ( 2) (

) ( 2) ( )) (0,0,0,0,0,0,0,0,

);

k

k

v I v B vB v B v B vB

v B v B vB v B

I B B B B B B B B B

      

    

     

2

2

' "

11 12 12

' "
11 12 12

, , ,

, , ,

(0 ( 2) ( 2) ( 2)[ ( 2) ])

(0,0,0,0,0 ,0,0,0, );

k

k

v I v A v A v A

I A A A

     


 

2

2

2 2 2 ' "

11 12 12

'
11 12

, , ,

, , , ,

(0 ( 2) ( 2) ( 2) [ ( 2) ])

(0,0,0,0,0 0,0,0,0 );

k

k

v I v A v A v A

I A A

     


 

3 3

2 2
22 22, , , , ,(0 0,( 2) ( 2) ) (0,0,0,0,0 0,0,0,0 0, );k kv I v A I A   

 
Theorem 8 Let C  be a cyclic code of length n  over the 

ring R , ( )C  is a 3 quasi-cyclic linear code of length 

3n  over 3F . 

 

Proof. For any 1 2
( , , , )

n
x x x x C  , where  

2
1 2 3 ( 1,2, , )i i i ix x x v x v i n     . 

Then 

11 12 13 1 2 3

12 13 2 3 13 23 3

( ) ( , ,

2 , , 2 , , , ).

,

,

n n n

n n n

x x x x x x x

x x x x x xx

     

 



 
 

 

Because C  is a cyclic code of length n  over the ring R , 
then  

2 2

1 2 3 11 12 13

2

1,1 1,2 1,3

( ) ( , , ,

) .

n n n

n n n

T x x x v x v x x v x v

x x v x v C
  

    

  


 

So,  

1 2 3 11 12 13 1,1 1,2 1,3

2 3 12 13 1,2 1,3 3 13 1,3

( ( ))

( , ,

2 2 , , 2 , , ).

, ,

, , ,

n n n n n n

n n n n n n

T x

x x x x x x x x x

x x x x x x x xx



  

  

      

  



 

Then,  
3

( ( )) ( )).(T x T x   

Thus we have proved the theorem. 

Conclusion 

In this paper, we studied linear codes over the ring R . 
Another direction for research in this topic is of course the 

cyclic and constacyclic codes over the ring R . 
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