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Abstract 
In this paper, we consider the problem of robust delay-dependent 

stability for a class of linear systems with interval time-varying 

delay and nonlinear perturbations. Less conservative stability 

criteria is put forward by using Lyapunov-Krasovskii functional 

approach. Based on delay-central point approach, introducing 

some free-weighting matrices and using tighter integral 

inequality for dealing with the cross-terms that emerge from the 

time derivative of the Lyapunov-Krasovskii functional, new less 

conservative stability criteria for the system is formulated in 

terms of linear matrix inequalities .Numerical examples are given 

to show the effectiveness of the proposed approach. 

Keywords:Lyapunov-Krasovskii(L-K)functional; Robust 

stability; Interval time-delay; Integral Inequality; Linear matrix 

inequality (LMI). 

1. Introduction 

In control systems, time delay is always one of the sources 

of instability and poor performance. The system analysis 

and synthesis with time delayed have received 

considerable attention in recent years [1-14]. Stability 

analysis of time-delay systems can be classified into two 

categories: the delay-independent stability and the delay-

dependent stability. Generally speaking, the delay-

dependent stability criterion is less conservative than 

delay-independent stability when the time-delay is small. 

To derive the delay-dependent stability conditions, many 

methods have been proposed based on linear matrix 

inequality (LMI) approach, such as descriptor system 

approach, bounding techniques, and free weighting matrix 

approach. An important index of measuring the 

conservativeness of the obtained conditions is the 

maximum upper bound on the delay. Finding some less 

conservative stability conditions motivates the present 

study. 

In some practical systems, time delay may be time-varying 

and the delay may vary in a range for which the lower 

bound is not restricted to being zero, such systems are 

referred to as interval time-varying delay systems [2]. In 

recently years, many significant results have been reported 

for this problem [3-14]. For example, The free-weighting 

matrix method was proposed in [3-5] to investigate the 

delay-dependent stability of continuous time systems with 

time-varying delay. Jensen’s integral inequality approach 

was employed in [6-11], where the authors use different 

integral inequality for dealing the cross-terms that emerge 

from the time derivative of the L-K functional and obtain 

different conservative results. A new technique called 

delay-central point method was proposed in [12]. Based 

on the delay-central point method and decomposition 

technique, In [14], the author proposes less conservative 

stability criteria for computing the maximum allowable 

bound of the delay range.  

In practice, the systems almost contain some uncertainties 

because it is very difficult to obtain an exact mathematical 

model due to environment noise, uncertain or slowly 

varying parameters, etc. Therefore, the stability problem 

of time-delay systems with nonlinear perturbations has 

received increasing attention [15-18]. An important issue 

in this field is to enlarge the feasible region of stability 

criteria, so how to reduce the conservative is still the topic 

for the research. A model transformation method was used 

in [15], A descriptor model transformation together with 

decomposition technique using the delay term matrix was 

employed in [16]. A less conservative delay-dependent 

stability criterion was provided in [17] by using a 

candidate L-K functional, and bounding the cross terms 

using free-weighting matrices. Recently, a less 

conservative delay-dependent stability criterion was 

provided in [18] by partitioning the delay-interval into two 

segments of equal length, and evaluating the time-

derivative of a candidate L-K functional in each segment 

of the delay-interval. Nevertheless, there is further scope 

for reduction in conservatism in the delay-range bound. 

In this paper, we deal with the delay-dependent stability 

problem for a class of linear systems with nonlinear 

perturbations and interval time-varying delay. Based on 

delay-central point approach, introducing some free-

weighting matrices and using more tighter integral 

inequality for dealing the cross-terms that emerge from the 

time derivative of the L-K functional, A new delay-

dependent stability criteria for the system is formulated in 
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terms of linear matrix inequalities, which can be easily 

calculated by using matlab LMI control toolbox, 

Numerical examples are given to illustrate the 

effectiveness and less conservatism of the proposed 

method. 

Notations. Throughout this paper, n
� denotes the n-

dimensional Euclidian space, n m×
� is the set of n m× real 

matrices, The notation 0X > , for n m
X

×∈� , means that the 

matrix X is a real symmetric positive definite. For an 

arbitrary matrix B and two symmetric matrices A and C , 

A B

C

 
 ∗ 

denotes a symmetric matrix, where ∗ denotes the 

entries implied by symmetry. 

2. Problem description and preliminaries 

Consider the following system with a time-varying state 

delay and nonlinear perturbations:  

2

( ) ( ) ( ( )) ( ( ), )

( ( ( )), )

( ) ( ), [ ,0]

x t Ax t Bx t h t f x t t

g x t h t t

x t t t hϕ

= + − + +


−
 = ∈ −

�

      (1) 

Where, ( ) n
x t ∈�  is the state vector, A , B  are 

constant matrices with appropriate dimensions, ( )h t  

is a time-varying delay satisfying   

1 20 ( ) , ( )h h t h h t µ≤ ≤ ≤ ≤� , 0t∀ ≥           (2) 

Where, 
1h and 

2h  represent the lower and upper bounds 

of the time-varying delay ( )h t , respectively, µ  is the 

bound on the delay-derivative, and initial condition 

( )tϕ is a continuous vector-valued function. The 

functions ( ( ), )f x t t  and ( ( ( )), )g x t h t t−  are unknown 

nonlinear perturbations with respect to the current state 

( )x t and in the delay state ( ( ))x t h t− , respectively. They 

satisfy that (0, ) 0f t = , (0, ) 0g t =  and 

2

2

( ( ), ) ( ( ), ) ( ) ( )

( ( ( )), ) ( ( ( )), ) ( ( )) ( ( ))

T T T

T T T

f x t t f x t t x t F Fxt

g x t ht t g x t ht t x t ht GGxt ht

α

β

 ≤


− − ≤ − −
  (3) 

Where 0≥α , 0≥β are known scalars, F and G  are 

known constant matrices. For simplicity we denote 

( ( ), )f f x t t= , ( ( ( )), )g g x t h t t= − . 

In this paper, we investigate the stability problem of 

system (1) with the interval time-varying delay satisfying 

(2) and the nonlinear perturbations f and g  satisfying 

(3).Our main objective is to derive new delay-range-

dependent stability conditions under which system (1) is 

asymptotically stable. The following lemma is introduced 

which has an important role in the derivation of the main 

results. 

Lemma 1
 [11]. For any scalar 0)( ≥th  and any constant 

matrix ,nn
RQ

×∈ ,0>= T
QQ the integration  

( )
( ) ( )

t
T

t h t
x s Qx s ds

−
−∫ � �  is well defined ,then the following 

inequality holds： 

( )

1

( ) ( )

( ) ( ) ( ) 2 ( ) ( ) ( ( ))

t
T

t h t

T T T T T

x s Qx s ds

h t t VQ V t t V x t x t h tζ ζ ζ

−

−

− ≤

 + − − 

∫ � �

Where, 

2

2

( ) ( ) ( ) ( ) ( ( )) ( )
2

( ) ( )
2

T T T T T Ta
a

T T T T

h
t x t x t x t h x t h t x t h

h
x t x t f g

ζ


= − − − −


− 

�

, 

V is free weighting matrix with appropriate dimensions. 

Lemma 2 
[19]

. Suppose 1 2( )tγ γ γ≤ ≤ , Where (.) :γ  

( ) ( )or or+ + + +→� � � � .Then, for any constant 

matrices 1Ξ , 2Ξ and Ω  with proper dimensions, the 

following matrix inequality 

1 1 2 2( ( ) ) ( ( )) 0t tγ γ γ γΩ + − Ξ + − Ξ <  

holds, if and only if 

2 1 1( ) 0γ γΩ + − Ξ < , 2 1 2( ) 0γ γΩ + − Ξ < . 

3.Main results 

In this section, we present new delay-range-dependent 

stability conditions for system (1) with the delay satisfying 

(2) and the perturbations satisfying (3). 

Theorem 1  System (1) subject to (2)-(3) is asymptotically 

stable for a given 1 20 h h≤ ≤  and µ , if there exist 

scalars 1 0ε ≥ , 2 0ε ≥  and matrices 

1 0P > , 2 0P > , 1 0Z > , 2 0Z > ,
11 12

22

0
Q Q

Q
Q

 
= > ∗ 

,

11 12

22

0
S S

S
S

 
= > ∗ 

,and jL , jN , jV , jT , 1,2j = , with 

appropriate dimensions such that the following LMIs hold, 
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1

2

2

* 0 0

* *

ah
L h N

Z

Z

δ

 
Φ 
 
 − <
 

− 
  

                                                 (4)    

1

2

2

* 0 0

* *

ah
L h V

Z

Z

δ

 
Φ 
 
 − <
 

− 
  

                                                    (5)    

Where,
, 9 9( )i j ×Φ = Φ with 

11 1 1 2 11 11 1 1

2

1 1 1

T T

T T T

P A A P P Q S L L

T A A T a F Fε

Φ = + + + + + +

+ + +
,

12 12 1 2

T
Q L LΦ = − + , 13 0Φ = ， 14 1 1PB TBΦ = + , 

15 0Φ = , 16 12SΦ = ， 17 1 2

T T
T A TΦ = − + , 

18 19 1 1P TΦ = Φ = + ， 22 22 11 2 2

T
Q Q L LΦ = − − − , 

23 12QΦ = , 24 29 0Φ = =Φ =� ,
33 1 1 22

T
V V QΦ = + − , 

34 1 2

TV VΦ = − + , 35 39 0Φ = = Φ =� , 

2

44 2 2 2 1 1 2(1 ) T T T
P V V N N G Gµ ε βΦ =− − − − + + + ,

45 1 2

T
N NΦ =− + , 46 0Φ = ,

47 2

T T
B TΦ = , 48 49 0Φ =Φ = ，

55 22 2 2

T
S N NΦ =− − − , 56 12

T
SΦ = − , 57 59 0Φ = =Φ =� ,

66 22 11S SΦ = − , 67 69 0Φ = =Φ =� ,
77 1 2 2 2

2

Tah Z hZ T TδΦ = + − − , 

78 79 2TΦ =Φ = ,
88 1IεΦ = − ,

89 0Φ = ,
99 2IεΦ = − , 

1 2( ) 2ah h h= + ,
2 1( ) 2h h hδ = − , 

1 2
0 0 0 0 0 0 0

T
T T

L L L =   ,

1 2
0 0 0 0 0 0 0

T
T T

V V V =   ,

1 2
0 0 0 0 0 0 0

T
T T

T T T =   ,

1 2
0 0 0 0 0 0 0

T
T T

N N N =   . 

Proof: Based on delay-central point approach, we dividing 

delay interval into two equal subintervals at the 

midpoint
ah , That is [ ]1, ah h and[ ]2,ah h , if we can proof 

that theorem 1 holds for the two subintervals, then 

theorem 1 is true. 

Case 1: when 
2( )ah h t h≤ ≤ , Construct a L-K functional 

candidate as 

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + +                                          (6) 

1 1 2
( )

( ) ( ) ( ) ( ) ( )
t

T T

t h t
V t x t Px t x s P x s ds

−
= + ∫ ,   

22 1 1 2 2

2 2

( ) ( ) ( ) ( ) ( )
a

t t
T T

h h
t t

V t s Q s ds s S s dsξ ξ ξ ξ
− −

= +∫ ∫ ,  

2

0

3 1 2

2

( ) ( ) ( ) ( ) ( )
a

a

t h t
T T

h
t h t

V t x s Z x s dsd x s Z x s dsd
θ θ

θ θ
−

− + − +
= +∫ ∫ ∫ ∫� � � � , 

Where 

1( ) ( ) ( )
2

T

T T ah
s x s x sξ

 
= −  

, 2
2( ) ( ) ( )

2

T

T T h
s x s x sξ

 
= −  

. 

The time-derivative of the L-K functional along the 

trajectory of (1) is given by 

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + +� � � �                                     (7) 

1 1 2

2

( ) 2 ( ) ( ) ( ) ( )

(1 ( )) ( ( )) ( ( ))

T T

T

V t x t Px t x t Px t

h t x t h t Px t h t

= + −

− − −

� �

�
                         (8) 

2 1 1 1 1

2 2
2 2 2 2

( ) ( ) ( ) ( ) ( )
2 2

( ) ( ) ( ) ( )
2 2

T T a a

T T

h h
V t t Q t t Q t

h h
t S t t S t

ξ ξ ξ ξ

ξ ξ ξ ξ

= − − −

+ − − −

�

                     (9) 

2

3 1 2 2

1 2

2

( ) ( ) ( ) ( ) ( ) ( )
2

( ) ( ) ( ) ( )
a

a

T Ta
a

t t h
T T

h
t t h

h
V t x t Z x t h h x t Z x t

x s Z x s x s Z x s
−

− −

= + −

− −∫ ∫

� � � � �

� � � �

      (10) 

From the condition (2), one can obtain: 

1 1 2

2

( ) 2 ( ) ( ) ( ) ( )

(1 ) ( ( )) ( ( ))

T T

T

V t x t Px t x t Px t

x t h t Px t h tµ

≤ + −

− − −

� �
              (11) 

Note that 

2 2

( )

2 2 2
( )

( ) ( ) ( ) ( ) ( ) ( )
a at h t h t t h

T T T

t h t h t h t
x s Z x s ds x s Z x s ds x s Z x s ds

− − −

− − −
− =− −∫ ∫ ∫� � � � � �

Using Lemma1, one can obtain: 

1

1 1

2

( ) ( ) ( ) ( )
2

2 ( ) ( ) ( )
2

a

t
T T Ta

h
t

T a

h
x s Z x s ds t LZ L t

h
t L x t x t

ζ ζ

ζ

−

−
− ≤ +

 
− −  

∫ � �

       (12) 

[ ]

1

2 2
( )

( ) ( ) ( ( ) ) ( ) ( )

2 ( ) ( ) ( ( ))

at h
T T T

a
t h t

T

a

x s Z x s ds h t h t VZ V t

t V x t h x t h t

ζ ζ

ζ

−
−

−
− ≤ −

+ − − −

∫ � �

    (13) 

[ ]
2

( )
1

2 2 2

2

( ) ( ) ( ( )) ( ) ( )

2 ( ) ( ( )) ( )

t h t
T T T

t h

T

x s Z x s ds h h t t NZ N t

t N x t h t x t h

ζ ζ

ζ

−
−

−
− ≤ −

+ − − −

∫ � �

   (14) 
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On the other hand, for any scalars 1 0ε ≥ , 2 0ε ≥ ,it 

follows from (3) that 
2

10 [ ( ) ( ) ]T T T
x t F Fx t f fε α≤ −              (15)           

2

20 [ ( ( )) ( ( )) ]T T T
x t h t G Gx t h t g gε β≤ − − −       (16) 

Moreover, for any matricesT with appropriate dimensions, 

From the system (1), we have 

0 2 ( ) [ ( ) ( ( )) ( )]T
t T Ax t Bx t h t x tζ= + − − �        (17) 

Substituting (8)～(17) in (7), the time derivative ( )V t�  

can be expressed as follows: 

1 1 1

1 1 2 2 2 1( ) ( )( ( ( )) ( ( ) ) ) ( )
2

T T T Ta
a

h
V t t LZ L h ht NZ N ht h VZ V tζ ζ− − −≤ Φ+ + − + −�

Where  

1 2

2

( ) ( ) ( ) ( ) ( ( )) ( )
2

( ) ( )
2

T T T T T Ta
a

T T T T

h
t x t x t x t h x t ht x t h

h
x t x t f g

ζ


= − − − −


− 

�

 

Case2 : when 1 ( ) ah h t h≤ ≤ , consider a L-K functional 

candidate as 

1 2 3( ) ( ) ( ) ( )V t V t V t V t= + +                  (18) 

1 1 2
( )

( ) ( ) ( ) ( ) ( )
t

T T

t h t
V t x t Px t x s P x s ds

−
= + ∫ , 

12 1 1 2 2

2 2

( ) ( ) ( ) ( ) ( )
a

t t
T T

h h
t t

V t sQ s ds sS s dsξ ξ ξ ξ
− −

= +∫ ∫ ,  

10

3 1 2

2

( ) ( ) ( ) ( ) ( )
a

a

t h t
T T

h
t h t

V t x s Z x s dsd x s Z x s dsd
θ θ

θ θ
−

− + − +
= +∫ ∫ ∫ ∫� � � � , 

Where 1P , 2P , 1Z , 2Z , Q , S  are the same matrices used in 

the L-K functional (6). 

Since V , N are slack matrices used in the stability 

analysis, in the similar manner ,we can obtain  

1 1 1

2 1 2 1 2 2( ) ( )( ( ( )) ( () ) ) ( )
2

T T T Ta
a

h
Vt t LZ L h ht NZ N ht h VZ V tζ ζ− − −≤ Φ+ + − + −� , 

Where  

2 1

1

( ) ( ) ( ) ( ) ( ( )) ( )
2

( ) ( )
2

T T T T T Ta
a

T T T T

h
t x t x t x t h x t h t x t h

h
x t x t f g

ζ


= − − − −


− 

�

, 

One can see that if [ ]2( ) ,
a

h t h h∀ ∈ , 

1 1 1

1 2 2 2( ( )) ( ( ) ) 0
2

T T Ta
a

h
LZ L h ht NZ N ht h VZ V− − −Φ+ + − + − <     (19) 

and [ ]1( ) ,
a

h t h h∀ ∈  

1 1 1

1 2 1 2
( ( )) ( ( ) ) 0

2

T T Ta

a

h
LZ L h ht NZ N ht h VZ V

− − −Φ+ + − + − <   (20) 

Then , 
2

( ) ( )
i

V t x tε<−� for some scalar 0, 1,2i iε > =  , from 

which we conclude that system (1) is asymptotically stable 

according to L-K stability theory [1]. 

Applying Lemma 3 to (19) yields the follows:  

1 1

1 2 2
( ) 0

2

T Ta
a

h
LZ L h h NZ N

− −Φ + + − <     (21) 

1 1

1 2 2
( ) 0

2

T Ta
a

h
LZ L h h VZ V

− −Φ + + − <     (22) 

Similarly, the convex LMI condition of (20) can be solved 

as: 

1 1

1 1 2
( ) 0

2

T Ta
a

h
LZ L h h NZ N

− −Φ + + − <     (23) 

1 1

1 1 2
( ) 0

2

T Ta
a

h
LZ L h h VZ V

− −Φ + + − <      (24) 

Since 
2 1a ah h h h hδ− = − = , the equation pairs (21),(22) 

are equivalent to (23), (24), Applying Schur complement 

on (21),(22), completes the proof. 

Remark 1 Less conservatism of the proposed stability 

criteria is attributed to two aspects. On the one hand, based 

on the delay-central point method of stability analysis, the 

delay interval is partitioned into two subintervals of equal 

length, and time-derivative of a candidate L-K functional 

is evaluated in the respective segments. On the other hand, 

when deal with the time derivative of L-K functional, we 

using a more tightly integral inequality (Lemma 1) for 

bounding the cross terms, hence yields less conservative 

delay-range bounds. 

Remark 2 When the information of the time 

derivative )(th is unknown by choosing
2 0P = ,we can get 

delay-dependent and rate-independent stability criterion 

from Theorem 1. 

Remark 3 If there is no perturbation, that is 0f = , 

0g = ,then the stability problem of system (1) is reduced 

to analyzing the stability of the system 

2

( ) ( ) ( ( ))

( ) ( ), [ ,0]

x t Ax t Bx t h t

x t t t hϕ

= + −


= ∈ −

�
               (25) 

This problem has been widely studied in the recent 

literature (see, e.g.,[5,8,9,12,13,14]) and the stability 

criterion for the deterministic system is stated below. 
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Theorem 2 For given values of 1h , 2h and µ ,System (24) 

is asymptotically stable, if there exist matrices 

1 0P > , 2 0P > , 1 0Z > , 2 0Z > ,
11 12

22

0
Q Q

Q
Q

 
= > ∗ 

, 

11 12

22

0
S S

S
S

 
= > ∗ 

,and jL� , jN� , jV� , jT� , 1,2j = , with 

appropriate dimensions such that the following LMIs hold, 

1

2

2

* 0 0

* *

ah
L h N

Z

Z

δ

 
Φ 
 
 − <
 

− 
  

� ��

                                                 (26)    

1

2

2

* 0 0

* *

ah
L h V

Z

Z

δ

 
Φ 
 
 − <
 

− 
  

� ��

                                                    (27)    

Where 
, 7 7( )i j ×Φ = Φ� � with 

11 1 1 2 11 11 1 1 1 1

T T T T
PA A P P Q S L L TA A TΦ = + + + + + + + +� � � �� ,

12 12 1 2

T
Q L LΦ = − +� �� ,

13 0Φ =� ，
14 1 1PB TBΦ = + �� , 

15
0Φ =� , 16 12

SΦ =� ， 17 1 2

T TT A TΦ = − +� �� , 

22 22 11 2 2

TQ Q L LΦ = − − −� �� ,
23 12

QΦ =� , 

24 27
0Φ = =Φ =� �� ,

33 1 1 22

TV V QΦ = + −� �� , 

34 1 2

T
V VΦ = − +� �� ,

35 36 37 0Φ = Φ = Φ =� � � , 

44 2 2 2 1 1
(1 ) T TP V V N NµΦ =− − − − + +� � � �� ,

45 1 2

TN NΦ =− +� �� ,

46
0Φ =� ,

47 2

T TB TΦ = �� ,
55 22 2 2

TS N NΦ =− − −� �� , 

56 12

T
SΦ = −� ,

57 0Φ =� ,
66 22 11S SΦ = −� ,

67 0Φ =� ,

77 1 2 2 2
2

Tah
Z h Z T TδΦ = + − −� �� , 

1 2( ) 2ah h h= + ,
2 1( ) 2h h hδ = − , 

1 2
0 0 0 0 0

T
T T

L L L = 
� � � ,

1 2
0 0 0 0 0

T
T T

V V V = 
� � � ,

1 20 0 0 0 0
T

T T
T T T = 
� � � , 1 20 0 0 0 0

T
T T

N N N = 
� � � . 

4.Numerical examples 

In this section, we use two numerical examples to show 

that the proposed results are improvements over some 

exiting ones. 

Example 1 Consider system (1) satisfying (2),(3) with the 

following parameter: 

1.2 0.1

0.1 1
A

− 
=  − − 

,
0.6 0.7

1 0.8
B

− 
=  − − 

,
1 0

0 1
F G

 
= =  

 
. 

For given values of ,α β and µ , we apply Theorem 1 to 

calculate the maximal allowable value 2h  that guarantees 

the asymptotical stability of the system are listed in Table 

1. From the table, it is easy to see that our proposed 

stability criterion gives a much less conservative results 

than those in [17, 18] since the proposed analysis uses 

delay-central point method as well as tighter bounding on 

the time-derivative of L-K functional. 

Example 2 Consider system (25) with following matrices: 

2 0

0 0.9
A

− 
=  − 

,
1 0

1 1
B

− 
=  − − 

. 

The purpose is to calculate the allowable upper bound of 

2h  that guarantee the asymptotic stability of the above 

system for given lower bound 1h . Table 2 lists the 

comparison results for 0.5µ = and 0.9µ = , Table 3 lists 

the results for unknown µ .From the tables, it is clear that 

the proposed stability criterion is less conservative than 

those in [5,8,12,13,14]. Especially, when 1 5h = ,the result 

in [5,8,12] are not feasible while the MUBD obtained 

using our method is 5.1713.

Table 1 Admissible upper bounds 2h for various µ and 1 0.5,1h =  

1.0,0 == βα  1.0,1.0 == βα  
1h  

,α β  

µ  0.5 0.9 1.1 0.5 0.9 1.1 

[17] 1.442 1.338 1.338 1.284 1.245 1.245 

[18] 1.558  1.558 1.558 1.384 1.384 1.384 0.5 

Theorem 1 1.5636 1.5636 1.5636 1.3858 1.3858 1.3858 

[17] 1.543 1.543 1.543 1.408 1.408 1.408 

[18] 1.760 1.760 1.760 1.532 1.532 1.532 1 

Theorem 1 1.7897 1.7897 1.7897 1.5647 1.5647 1.5647 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 135

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Table 2 Admissible upper bounds 2h for given 1h  

µ  Method 1 0h =  
1 1h =  

1 2h =  
1 3h =  

1 4h =  
1 5h =  

[5] 2.0439 2.0764 2.4328 3.2234 4.0643 -- 

[8] 2.0723 2.1276 2.5048 3.2591 4.0744 -- 

[12] 2.0801 2.1513 2.7113 3.3839 4.1136 -- 

[13] 2.1484 2.3239 2.8630 3.5729 4.3343 5.1306 

[ 14] (N=2) 2.2022 2.3912 2.9578 3.6384 4.3736 5.1463 

0.5 

Theorem 2 2.1471 2.5652 3.1124 3.7448 4.4369 5.1713 

[5] 1.3789 1.7424 2.4328 3.2234 4.0643 -- 

[8] 1.5304 1.8737 2.5048 3.2591 4.0744 -- 

[12] 1.6654 2.1251 2.7113 3.3839 4.1136 -- 

[13] 1.7157 2.2302 2.8630 3.5729 4.3343 5.1306 

[ 14] (N=2) 1.8828 2.3585 2.9578 3.6384 4.3736 5.1463 

0.9 

Theorem 2 2.1377 2.5627 3.1085 3.7408 4.4340 5.1703 

Table 3 Admissible upper bounds 2
h for various 1

h and unknown µ  

µ  Method 1
0h =  

1
1h =  

1
2h =  

1
3h =  

1
4h =  

1
5h =  

[5] 1.3454 1.7424 2.4328 3.2234 4.0643 -- 

[8] 1.5296 1.8737 2.5049 3.2591 4.0744 -- 

[12] 1.6654 2.1251 2.7113 3.3839 4.1136 -- 

[13] 1.7157 2.2302 2.8630 3.5729 4.3343 5.1306 

[ 14] (N=2) 1.8828 2.3585 2.9578 3.6384 4.3736 5.1463 

Any µ  

Theorem 2 2.1377 2.5627 3.1085 3.7408 4.4340 5.1703 

5.Conclusions 

This paper studies the problem of robust delay-dependent 

stability for a class of linear systems with interval time-

varying delay and nonlinear perturbations, based on the 

delay-central point approach, appropriate free-weighting 

matrices and convex combination technique, less 

conservative robust stability criteria were proposed. The 

reduction in the conservatism of the proposed stability 

criteria is mainly attributed due to the use of new 

bounding condition for dealing with the cross-terms. 

Numerical examples have illustrated the effectiveness of 

the proposed method. 
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