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Abstract 
By using dissipative system Lagrange equation, the strongly 
nonlinear dynamic equation of torsional vibration system is 
deduced, which contains a class of square and cube nonlinear 
rigidity and combination harmonic excitations. Bifurcation 
characteristics of the strongly nonlinear system are analyzed in 
the autonomous and non-autonomous situations by means of 
singular point stability theory and singularity theory, respectively. 
The bifurcation diagram of system response corresponding to the 
change of torsional rigidity is derived by using numerical 
simulations, and evolution process of period, period doubling 
and chaotic motions is studied. Finally, chaotic motion is further 
verified by the maximum Lyapunov exponent, phase trajectory 
and Poincare map. 

Keywords: Strongly Nonlinear, Torsional Vibration, 
Bifurcations, Chaos 

1. Introduction 

Torsional vibration system exists widely in rotating 
machinery equipment such as turbine generator, rolling 
mill and steam turbine. Torsional vibration may be due to 
torque fluctuations or due to unbalanced rotating parts or 
other mechanical reasons. Such vibrations, if not 
controlled may cause damage or destruction to the rotating 
shafts or their accessories. Torsional vibration has great 
influence on performance and the reliability of mechanical 
drive system. Therefore, torsional vibration instability 
mechanism and dynamics behaviors are the key issues to 
optimal design and vibration monitoring of system.  
 
A lot of research on nonlinear torsional vibration system 
has been done in recent years[1-3]. The equilibrium stability, 
bifurcation and chaotic characteristics of several  
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typical torsional vibration system were studied in[4-6]. 
Zhou[7] analysed the nonlinear gear meshing based on 
dynamics of gear system and the Hertz elastic theory, and  
the torsional vibration of the transmission system under 
speeding-up condition and comparisons with a real vehicle 
results were studied. M.S.tehrani et al[8]established the 
measurement model of cold tandem mill coupled torsional 
vibration system, and researched the influence of tension 
and rolling speed fluctuation of strip between frame on 
rolling mill drive system. Östman et al[9]studied the active 
torsional vibration control of reciprocating engines, and 
balanced the cylinder-wise torque contributions by 
utilizing the measured angular speeds of the crankshaft 
system. Jiang[10]developed a linear mathematical model of 
coupled drive system with multi-rotor and analyzed the 
vibration characteristics of multi-stage centrifugal pump. 
In [11], the authors studied the local dynamics near the 
Hopf bifurcation points with a direct linear time-delayed 
velocity feedback and the stability of trivial equilibrium is 
examined with the change of counting multiplicity of 
eigenvalue with positive real part. With precise symbolic 
computation and a completely mathematical analysis, 
Zhang[12] applied the normal form theory to investigate the 
Hopf bifurcation of the four dimensional autonomous 
hyperchaos and chaos system with whole parameter space 
completely. 

 
Above papers better explained the vibration 

mechanism and dynamic characteristics of nonlinear 
system under the condition of weak nonlinear. However, 
the strongly nonlinear torsional vibration system is 
widespread in engineering, and its dynamic characteristics 
including bifurcation and chaos have received less 
attention. In this paper, the dynamics equation of strongly 
nonlinear torsional vibration system with a class of 
quadratic and cubic nonlinear rigidity and external 
excitation is established according to dissipative Lagrange 
equation. The bifurcation structures and chaotic behaviors 
of strongly nonlinear torsional vibration system are 
studied by theoretical analysis and numerical simulation. 
Some dynamical behaviors including period-m orbits, 
period-doubling and chaos are exhibited by bifurcation 
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diagram, maximum Lyapunov exponent, phase trajectory 
and Poincare map. The paper provides a theoretical basis 
for further study of complex nonlinear dynamics behaviors 
and improving dynamic nature of mechanical drive 
systems. 

2.Nonlinear Dynamic Equation of Torsional 
Vibration System 

Torsional vibration system is widespread in engineering 
drive system. Considering a class of quadratic and cubic 
nonlinear rigidity, the kinetic and potential energy of two-
mass system can be expressed as 

2 2
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Generalized damping force is 
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Where iJ  is inertia moment of concentrated mass , iθ ，

iθ& are rotation angle and angular velocity of concentrated 

mass, is linear torsional rigidity, ， are nonlinear 

torsional rigidity, c is linear damping 

coefficient.

1a 2a 3a

i c
i i iF F F= + ,where iF is generalized external 

force, 
c

iF  is generalized damping force, q is generalized 
coordinate.  
 
Substituting Eq. (3)and Eq. (4) into Eq. (5),yields 
generalized moment     
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Then substituting Eq.  (6) and Eq.  (7) into Lagrange 
equation  

j
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Considering the variation of relative rotation angle in 
practical engineering, Eq.(9) minus Eq. (10),  
yields 
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Suppose 1x 2θ θ= − ，
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Eq. (11) can be simplified as 
2 2 3
0 1 2 ( )x x k x k x x F tω μ+ + + + =&& &

       (12)                   
Eq. (12) is nonlinear dynamics equation of t

     
orsional 

vibration system, which is the basis for further study of 

stem, parameter

dynamic behavior of torsional vibration system. 

3.Bifurcation Characteristics of Strongly 
Nonlinear Torsional Vibration System 

For the study of bifurcation characteristics of strongly 
onlinear torsional vibration syn ε is 

introduced, and ε is not be limited to a small par
en Eq. (12) can be written as 

ameter, 
th
 

 
2 2 3
0 1 2 ( )x x k x k x F tω ε ε εμ ε+ + + + =&& &       (13)   

 

Eq. (13) is a strongly nonlinear dynamics equ

x                     

ation of 
torsional vibration system, for ε is not a small parameter. 

d nonautonomous system respectively. 
Below, bifurcation analysis is carried out of autonomous 
system an
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3.1 Bifurcation Characteristics of Autonomous 
System 

Acc
equa  

x x k x k xω ε ε+ + +&&
      

 equation 

y x k x k x y

ording to Eq.(13), when
tion of torsional vibration system is

( ) 0F t = , autonomous 
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Eq. (14) can be reduced order for first-order
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and  values are

then characteristic equation is 
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2 2 2

0

1,2

4

2

εμ ε μ ω
λ

− ± −
=

                            (19) 
 
According to singularity stability theory, Eq.(15) exists the 
following structures: 

(1) When 
2 2 2

04ε μ ω> ,
2
0 0ω < , characteristic values 

are two real roots of opposite sign, and singular point of 
system is saddle point. 

2

(2) When 0 
2 2 4ε μ ω>

ro

， 0 0 , characteristic 

values are two real ots of the same sign. If
0

2ω >

εμ <
, 

characteristic values are two positive real roots, and 

singular point of system is unstable node; If
0εμ >

, 
characteristic values are two negative real roots, and 
singular point of system is stable node. 

(3) When 042 2 2ε μ ω< , characteristic values are two 

complex roots. If
0εμ <

, real part of characteristic value is 
positive, and singular point of system is unstable focus; 

when
0εμ >

, real part of characteristic value is negative, 
singular point of system is stable focus. 

(4) When
2 2 2

04ε μ ω< ,
0εμ =

, characteristic values 
are two pure imaginary roots, and singular point of system 
is origin. at this ti

stable; when
0εμ =

, system stability changes from 
unstable to sta

bance excitation is a class of 

combination harmonic 

ble. 

3.2 Bifurcation Characteristics of Nonautonomous 
System 

Suppose external distur

 1 2( ) cos( ) cos(2 )F t f t f t= Ω + Ω , 
then nonautonomous equation of torsional vibration 
system can be written as 

( )2 2 3x 0 1 2 1 2cos cos(2 )x k x k x xω ε ε εμ f t f tε ε+ + + + =& Ω + Ω
 (20) 

ed for bifurcation analysis 
of nonautonomous system. 
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where /x dx dτ′ = ，
2 2

me, oscillation curve is appeared, and 
Hopf bifurcation is occurred.  
 
From the above stability analysis of singular points, 
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Expanding x  into power series of σ , then substituting 
x into Eq. (22), comparing the coefficience of σ , and 
eliminating the secular term, one can obtain 
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is the initial condition of Eq.(where 0a 22), 0 0(0)x a= ,and 

0 is decided by the following equation 
2 2
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Therefore, the new parameter σ  will enable a strongly 
nonlinear system corresponding to ε be transformed into a 
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σsmall parameter system with respect to . Substituting Eq. 
(25)-(27) into Eq. (22), one can yield 
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To study bifurcation cha cteristics 
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Eliminating the secular term, one can obtain 
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1i ( )

1

1
( )

2
TA r T e φ=

，and substituting it into Eq.(36), 
and then separating real part and imaginary part, one can 
get average equations under polar coordinate 
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Eq.(40) is the bifurcation response equation of torsional 
vibration system under nonautonomous condition. 
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Eq. (40) can be simplified to 
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According to singularity theory,  taking germ 

7
0 ( , )g r s r sr= − , one can prove is a 

universal unfolding of germ 

( , , , )G r s p q
7

0 ( , )g r s r sr= − with 

unfolding parameters p 、 ,  and codimension is 2. To 
study the bifurcation topological structure of Eq. (41), and 
discuss the effect of unfolding parameters p, q on 
bifurcation diagram,  we use transition set to decide 
qualitative behavior of bifurcation diagram when 

is under small perturbation. 

q
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According to the definition of transition set, one can 

obtain
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.when , system 

has a bifurcation point set 
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；
at the same time system has a double limit point set 

( ) { }2
2 /4, 0D Z q p p= = ≤

and transition set 0 1 0 1B B H H DΣ= U U U U . 

4．Numerical study of chaotic motion 

In order to study the chaotic motion evolution process of 
strongly nonlinear torsional vibration system, different 
kinds of numerical methods are applied such as bifurcation 
diagram, maximum Lyapunov exponent, phase trajectory 
and Poincare map. These methods are all very useful tools 

, namely 
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for examing chaotic properties and exploring chaotic 
attractors. 
 
Fourth-order Runge-Kutta method is employed to 
numerical study of torsional vibration system. We fix 

0 1ω = ， ,1Ω = 0.1μ = ， 2ε = ， ，1 0.1k = 1 5f = ，

, and let change in a wide range. The bifurcation 

diagram of Eq.(20) in (x, ) plane is shown in Fig.1(a) 

and the maximum Lyapunov exponent corresponding to 
Fig.1(a) is shown in Fig.1(b). From Fig.1(a), we can see 
that strongly nonlinear torsional vibration system exhibits 
periodic and chaotic behaviors when  changes. The 

maximum Lyapunov exponent given by Fig.1(b) can be 
convince of occurrence of chaotic motion.  
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(a) Bifurcation diagram   
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(b) Maximum Lyapunov exponent 

Fig.1  Bifurcation diagram and Maximum Lyapunov exponent 

In Fig.1, periodic and chaotic motion are clearly visible. 
When torsional rigidity is small, system response is 

period-2 motion. With the increase of torsional rigidity, 
system jumps into chaotic motion. When , system 

response is period-6 motion and then system jumps into 
chaotic motion. With further increase of torsional rigidity, 
system finally enters chaotic state after period-doubling 
bifurcation. From Fig.1, we can see that periodic and 

chaotic motion interval occur with the increase of torsional 
rigidity.  

2k

2 0.4k =

In order to further describe chaotic characteristics of 
torsional vibration system, phase trajectory and chaotic 
attractors are shown in Fig.3, Fig.4 and Fig.5 under  

2 0.25,0.65,2.35k =  , respectively. We can see that Phase 

trajectory repeatedly winding in enclosed area but not 
closed, and Poincare section has the obvious fractal 
structure. 
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(a)  Phase trajectory 
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(b) Poincare map 

Fig.2  Phase trajectory and Poincare map when k2=0.25  
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(a)  Phase trajectory 
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(b) Poincare map 

Fig.3  Phase trajectory and Poincare map when k2=0.65 
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(a)  Phase trajectory 
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(b) Poincare map 

Fig.4  Phase trajectory and Poincare map when k2=2.35  

It can be seen from Fig.1 that system finally enters chaotic 
motion usually through period doubling, while period 
doubling is the most commonly known route to chaos at 
present. Phase trajectory and Poincare map are applied to 
depict the period doubling bifurcation motion in Fig.5 and 
Fig.6 respectively. When response is period-m motion, 

phase trajectory for m closed curves, and poincare map for 
m fixed points. 
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(a) Period-2 motion 
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(c)  Period-8 motion 

Fig.5  Phase trajectory of period doubling 
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(a)  Period-2 motion 
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(b) Period-4 motion 
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(c)  Period-8 motion 

Fig.6  Poincare map of period doubling 

5. Conclusion 

Torsional vibration characteristics are important 
information for rotating machinery design and control. In 
this paper, the dynamic performance of nonlinear torsional 
vibration system has been studied by theoretical analysis 
and numerical simulation. The results are as follows: 

(1) The strongly nonlinear dynamic equation of 
torsional vibration system is deduced by using dissipative 
system Lagrange equation, which contains a class of 
square and cube nonlinear rigidity and combination 
harmonic excitations. 

(2) Bifurcation characteristics of the strongly 
nonlinear torsional vibration system are analyzed in the 
autonomous and nonautonomous situations, and 
bifurcation conditions of torsional vibration system are 
given. 

(3) When system parameters and initial conditions are 
appropriately chosen, system bifurcation diagram is made 
by fourth-order Runge-Kutta method. It is found that with 
the increase of torsional rigidity, periodic motion and 
chaotic motion intervals occurs in torsional vibration 
system, and ultimately system enters into chaos after 
period-doubling bifurcation. Different shapes of chaotic 
attractors and period-doubling bifurcation motions are 
obtained by using phase trajectory and Poincare map. 

 
These results provide a reference for further studying 
complex nonlinear dynamics behaviors and improving 
dynamic nature of mechanical drive systems. 
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