
FPGA Implementation Of A Fully And

Partially Connected MLP-A Dedicated Approach

Er.Jnana Ranjan Tripathy1, Dr.Hrudaya Kumar Tripathy2 and Dr.Maya Nayak3

1 Department of Computer Science & Engineering,, Biju Pattnaik University of Technology, Orissa Engineering College

Bhubaneswar, Odisha-752050, India

2 School of Computing & Technology,

Asia Pacific University College of Technology & Innovation (UCTI)

Bukit Jalil, Kuala Lumpur, 57000, Malasiya

31 Department of Information Technology, Biju Pattnaik University of Technology, Orissa Engineering College

Bhubaneswar, Odisha-752050, India

Abstract

In this work, we present several hardware implementations of a

standard MultilayerPerceptron (MLP) and a modified version

called eXtended Multi-Layer Perceptron (XMLP). This extended

version is an MLP-like feed-forward network with two-

dimensional layers and configurable connection pathways. The

interlayer connectivity can be restricted according to well-defined

patterns. This aspect produces a faster and smaller system with

similar classification capabilities. Furthermore the software version

of the XMLP allows configurable activation functions and batched

back propagationwith different smoothing-momentum alternatives.

The hardware implementations have been developed and tested

on an FPGA prototyping board. The designs have been defined

using two different abstraction levels: register transfer level

(VHDL) and a higher algorithmic-like level (Handel-C). We

compare the two description strategies. Furthermore we study

different implementation versions with diverse degrees of

parallelism. The test bed application addressed is speech

recognition.

Keywords:FPGA, Multi-Layer Perceptron (MLP), Artificial

Neural Network (ANN),VHDL, Handel-C, activation function,

discretization.

1. Introduction

An Artificial Neural Network (ANN) is an information

processing paradigm inspired by the way biological nervous

systems process information. An ANN is configured for a specific

application, such as pattern recognition or data classification,

through a learning process. As in biological systems, learning

involves adjustments of the synaptic connections that exist

between the neurons.

An interesting feature of the ANN models is their intrinsic

parallel processing strategies. However, in most cases, the ANN is

implemented using sequential algorithms thatrun on single

processor architectures, and do not take advantage of this inherent

parallelism.

Software implementations of ANNs are appearing in an

ever increasing number of real-world applications OCR

(Optical Character Recognition), data mining, image

compression, medical diagnosis, ASR (AutomaticSpeech

Recognition), etc. Currently, ANN hardware implementations

and bio inspiredcircuits are used in a few niche areasin

application fields with very high performance requirements

(e.g. high energy physics), in embedded applications of simple

hard-wired networks (e.g. speech recognition chips), and in

neuromorphic approaches that directly implement a desired

function (e.g. artificial cochleas and silicon retinas).

The work presented here studies the implementation viability

and efficiency of ANNs into reconfigurable hardware (FPGA)

for embedded systems, such as portable real-time ASR devices

for consumer applications, vehicle equipment (GPS navigator

interface), toys, and aidsfor disabled persons, etc.

Among the different ANN models available used for ASR, we

have focused on the Multi-Layer Perceptron (MLP).

A recent trend in neural network design for large-scale

problems is to split a task into simpler subtasks, each one

handled by a separate module. The modules are then

combined to obtain the final solution. A number of these

modular neural networks (MNNs) have been proposed and

successfully incorporated in different systems. Some of the

advantages of the MNNs include reduction in the number of

parameters (i.e., weights), faster training, improved

generalization, suitability for parallel implementation, etc. In

this way, we propose a modified version of the MLP called

eXtended Multi-Layer Perceptron (XMLP). This new

architecture considers image and speech recognition

characteristics that usually make use of two-dimensional

processing schemes, and its hardware implementability

(silicon area and processing speed).

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 402

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

mailto:hrudayakumar@gmail.com
mailto:mayanayak3299@yahoo.com

1.1.MLP/XMLP and speech recognition

Automatic speech recognition is the process by which a

computer mapsan acoustic signal to text. Typically, speech

recognition starts with the digital sampling of the voice signal. The

raw waveform sampled is not suitable for direct input for a

recognition system. The commonly adopted approach is to convert

the sampled waveform into a sequence of feature vectors using

techniques such as filter bank analysis and linear prediction

analysis. The nextstage is the recognition of phonemes, groups of

phonemes or words. This last stage is achieved in this work by

ANNs (MLP and XMLP), although other techniques can be used,

such as HMMs (Hidden Markov Models), DTW (Dynamic Time

Warping), expert systems or acombination of these.

1.1.1. Multi-Layer Perceptron

The MLP is an ANN with processing elements or neurons

organized in a regular structure with several layers (Figure 1.1): an

input layer (that is simply an input vector), some hidden layers and

an outputlayer. For classification problems, only one winning node

of the output layer is active for each input pattern.

Each layer is fully connected with its adjacent layers. There are no

connections between non-adjacent layers and there are no recurrent

connections. Each of these connections is defined by an associated

weight. Each neuron calculates the weighted sum of its inputs and

applies an activation function that forces the neuron output to be

high or low, as shown in Eqn. (1.1).

Zli =f(Sli);Sli =sumjwlijZ(l−1)j) (1.1)

In this equation,
z
li is the output of the neuron

i
 in layer

l
,sli is the

weighted sum in that neuron, f is the activation function andwlij is

the weight of the connection coming from neuronj in the previous

layer (
l
–1).

In this way, propagating the output of each layer, the MLP

generates an output vector from each input pattern. The synaptic

weights are adjusted through a supervised training algorithm called

back propagation.

Different activation functions have been proposed to transform

the activity level (weighted sum of the node inputs) into an output

signal. The most frequently used is the sigmoid, although there are

other choices such as a ramp function, a hyperbolic tangent, etc.

All of these are continuous functions, with a smoothS-like

waveform, that transform an arbitrary large real value to another

value in a much restricted range.

1.1.2 Extended Multi-Layer Perceptron

The XMLP is a feed-forward neural network with aninput

layer (withoutneurons), a number of hidden layers selectable from

zero to two, and an output layer. In addition to the usual MLP

connectivity, any layer can be twodimensional and partially

connected to adjacent layers. As illustrated in Figure

1.2,connections come out from each layer in overlapped

rectangular groups. The size of a layerl and its partial connectivity

pattern are defined by six parameters in the following form:

x(gx,sx) ×y(gy,sy), wherex andy are the sizes of the axes, andg ands

specify the size of a group of neurons and the step between two

consecutive groups, both in abscissas (gx,sx) and ordinates (gy,sy)

A neuron i in the X-axis at layerl+1 (the upper one in Figure 1.2)

is fed from all the neurons belonging to thei-the). group in the

Xaxis at layerl (the lower one). The same connectivity definition

is used in the Y-axis. When g ands are not specified for a

particular dimension, the connectivity assumed for that

dimension isgx =x andsx = 0, or gy =y and sy = 0. Thus, MLP is a

particular case of XMLP wheregx =x, sx = 0,gy = y and sy = 0 for

all layers.

The second dimension in each layer can be considered as a real

spatial dimension for image processing applications or as the

temporal dimension for time related problems. Two

particularizations of the XMLP in time-related problems are the

Scaly Multi-Layer Perceptron (SMLP) used in isolated word

recognition, and the Time Delay Neural Network (TDNN), used

in phoneme recognition.

1.1.3.Configurations Used for Speech

Recognition

To illustrate the hardware implementation of the

MLP/XMLP system we have chosen a specific speaker-

independent isolated word recognition application. Nevertheless,

many other applications require embedded systems in portable

devices (low cost, low power and reduced physical size).

For our test bed application, we need an MLP/XMLP with 220

scalar data in the input layer and 10 output nodes in the output

layer. The network input consists of 10 vectors of 22

components (10 cepstrum, 10 ∆cepstrum, energy, ∆energy)

obtained after pre-processingthe speech signal. The output nodes

correspond to 10 recognizable words extracted from a multi-

speaker database. After testing different architectures, the best

classification results (96.83% of correct classification rate in a

speaker-independent scheme) have been obtained using 24 nodes

in a single hidden layer, with the connectivity of the XMLP

defined by 10(4,2)×22 in the input layer and 4×6 in the hidden

layer.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 403

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

1.2. Activation functions

For hardware implementations,we have chosen a two’s

complement representation and different bit depths for the stored

data (inputs, weights, outputs, etc.). In order to accomplish the

hardware implementation, it is also necessary to discretize the

activation function. Next, we present different activation functions

used in the MLP and some details about their discretization

procedure.

Figure 1.2. Structure of an example XMLP interlayer

connectivity pattern defined by the expression 5(3, 2) ×3(2,1)

1.2.1. Activation Functions

One of the difficult problems encountered when

implementing ANNs in hardware is the nonlinear activation

function used after the weighted summation of the inputs in each

node (Eqn.1.1). There are three main nonlinear activation

functions: threshold (hard limited), ramp and various sigmoid

curves. We have studied different options: classical sigmoid,

hyperbolic tangent, arc tangent and ramp activation functions. In

the hardware implementation, we have focused on the sigmoid

activation function.

In order to achieve generality, an activation function f(x) is defined

depending on three parameters: (slope atx = 0),fmax (maximum

value of f(x)) and fmin (minimum value). The generic expressions

for the four functions considered and their respective derivatives,

needed in the backpropagation algorithm, are given in Table 1.1.

An example for three particular values of the parameters is plotted

in Figure 1.3.For simplicity,fR is defined asfmax–fmin.

1.2.2 Discretization

In this contribution, learning is carried out offline

using floating points,while hardware implementations use

discrete variables and computations. However, classification

results in hardware are very similar to the ones obtained with

the software approach. For instance, in phoneme recognition

application with the MLP, we obtained 69.33% correct

classification with the continuous model and 69% when using

the discretized model. In order to use limited precision values,

it is necessary to discretize three different sets of variables:

network inputs and neuron outputs (both with the same

number of bits), weights and the activation function input.

Each of these sets has a different range, specified by the

number of bits (n) of the discrete variable and the maximum

absolute value (M) of the corresponding continuous variable.

The expressions for the conversion between continuous (c)

anddiscrete (d) values are:

1.2.3 Implementation characteristics of MLP

with different design strategies

To extract the EDIF files, the systems have been

designed using the development environments FPGA

advantage, for VHDL, and DK1.1, for Handel-C. All designs

have been finally placed and routed onto a Virtex-E 2000

FPGA, using the synthesis tool Xilinx Foundation 3.5i. The

basic building blockof the Virtex-ECLB (Configurable Logic

Block) is the logic cell (LC). Each CLB contains four LCs

organized in two similar slices. An LC includes a 4-input

function generator that is implemented as 4-input LUT. A

LUT can provide a 16×1synchronous RAM. Virtex-E also

incorporates large Embedded Memory Blocks (EMBs) (4096

bits each) that

Complement the distributed RAM memory available

in the CLBs. Table 2 presents the results obtained after

synthesizing the sequential and parallel versions of the MLP

using Handel-C. These results are characterized by the

following parameters: number and percentage of slices,

number and percentage of EMBs RAM, minimum clock

period, the number of clock cycles and the total time required

for each input vector evaluation. The percentage values apply

to the Virtex-E 2000 device.

As mentioned in Section 1.2.1, obtaining an efficient

system requires a detailed analysis of the possible choices.

When programming the MLP, there aredifferent options for

data storage in the RAM. In orderto analyse the effects of the

several techniques for distributing and storing data in RAM.

Only distributed RAM for the whole designs has beenused; in

(b), the weights associated with synaptic signals (large array)

are stored in EMBs RAM modules, while the remaining data is

stored in a distributed mode; and finally, (c) only uses memory

grouped in EMBs RAM modules.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 404

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 1.1.Activation functions and their derivatives

1.2.4 Discretization

One particular difficulty regarding the migration of ANNs towards hardware is that the software simulations use

floating point arithmetic and either double or simple precision weights, inputs and outputs. Any hardware implementation would

become unreasonably expensive if incorporating floating point operations and therefore needing to store too many bits for each

weight. Fixed point arithmetic is better suited for hardware ANNs because a limited precision requires fewer bits for storing the

weightsand also simpler calculations. This causes a reduction in the size of the required silicon area and a considerable speed.

Figure 1.3. Activation functions and their derivatives with f'0= 1/2, fmax = 1, fmin =−1(fR = 2)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 405

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

1.3 Hardware implementations of XMLP

This section introduces a sequential and a parallel

version of the XMLP. For reasons of clarity, only the hardware

implementation for the parallel version has been described in

detail. However, the implementation characteristics of both the

sequential and parallel designs are presented.

In this particular XMLP implementation, the connectivity is

defined by 10(4, 2)×22 in the input layer and 4×6 in the hidden

layer.

1.3.1High Level Description (Handel-C)

From an algorithmic point of view, two-dimensional

layers require the use of nested loops to index both

dimensions. The following example shows the programmed

code equivalent to that of the parallel MLP implementation

described in Section 1.4.1.2. Its functionality corresponds to

the weighted sum of the inputs ofeach node in the hidden

layer. Note that the external loops have been parallelized using

the par directive. par (X=0; X<NumHiddenX; X++)

{

FirstX[X] = X*InStepX; par (Y=0; Y<NumHiddenX; Y++)

{

FirstY[Y] = Y*InStepY; Sum[X][Y] = 0 ;

}

} par (X=0; X <NumHiddenX; X++)

{ par (Y=0; Y <NumHiddenY; Y++)

{

for (XGrp=0; XGrp <InGrpX; XGrp++)

{

Mul[X][Y] = W[X][Y][XGrp][YGrp]*

In[FirstX[X]+XGrp][FirstY[Y]];

for (YGrp=1; YGrp<InGrpY; YGrp++) par{

Sum[X][Y] = Sum[X][Y]+Mul[X][Y];

Mul[X][Y] = W[X][Y][XGrp][YGrp]*

In[FirstX[X]+XGrp][FirstY[Y]+YGrp];}

}

Sum[X][Y] = Sum[X][Y]+Mul[X][Y];

} }

NumHiddenX and NumHiddenY are the sizes of the axes in the hidden

layer. InGrp and InStep specify the size of a group of inputs and the step

between two consecutive groups (in the input layer), both in abscissas

(InGrpX, InStepX) and ordinates (InGrpY, InStepY).W is the array

containing the weight values. In is the input array. Finally, Sum is a

variable that stores the accumulated weighted sum of the inputs.

In order to compare the XMLP to the MLP, similar design alternatives

(a), (b) and (c) to the ones considered in the MLP (Table 1.1) have been

chosen.

Table 1.1. Implementation characteristics for the XMLP designs

described with Handel-C. (a) Only distributed RAM. (b) Both EMBs

and distributed RAM. (c) Only EMBs RAM

MLP Evaluation Time

Design Slices Slices RAM RAM (ns) Cycles (ms)

a)Serial 2389 12 0 0 44.851 2566 115.087

Parallel 5754 29 0 0 47.964 143 6.858

b)Serial 1700 8 96 60 71.568 2566 183.643

Parallel 5032 26 96 60 64.270 143 9.190

c)Serial 1608 8 140 91 77.220 2566 198.146

Parallel 4923 25 147 91 64.830 143 9.271

As expected, the XMLP approaches result in systems twice as fast

compared to the fully connected MLP version. This gain in speed

depends on the connectivity pattern defined for the XMLP model. In the

case studied, the XMLP requires only

1.3.2 Register Transfer Level Description (VHDL)

The parallel architecture of the XMLP and the MLP are similar.

Keeping in mind that the connectivity pattern of the XMLP is different,

only modifications related to this feature need to be made, as in Figure

1.4.

Since each hidden neuron is only connected to 88 input values

(4×22), the global input RAM module with 220 MLP inputs has been

replaced by 24 local RAM modules. These local modules store the 88

necessary input values for each functional unit. As each functional unit

only computes 88 input values, local weight RAMs can be reduced to

112-word RAM modules for the first ten units (that also compute the

output layer), and 88-word RAM modules for the rest.

Figure 1.4. Structure of the parallel XMLP

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 406

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Table 1.2 shows the implementation characteristics obtained after

synthesizing both sequential and parallel versions of the XMLP using

VHDL. This design corresponds to the option (b) described inTable 1.1

. MLP Evaluation Time

Design Slices Slices RAM RAM (ns) Cycles (ms)

Serial 267 2 11 6 37.780 2478 93.618

Parallel 1747 9 49 30 53.752 152 8.170

The performance improvement of the XMLP compared to the MLP is

similar to that described for the Handel-C approaches.

1.4. Conclusions

We have presented an FPGA implementation of fully and

partially connected MLP-like networks for a speech recognition

application. Both sequential and parallel versions of the MLP/XMLP

models have been described using two different abstraction levels:

register transfer level (VHDL) and a higher algorithmic-like level

(Handel-C). Results show that RTL implementation produces more

optimized systems. However, one of the main advantages of the high

level description is the reduction of design time. The Handel-C design

is completely defined with less than 100 code lines.

In both (VHDL and Handel-C) described systems, the parallel versions

lead to approaches 20 times faster on average for the MLP, and around

18 times faster for the XMLP. This speed-up corresponds to the degree

of parallelism (24 functional units). Therefore, it depends on the

number of hidden neurons that are computed in parallel.

Finally on comparing the XMLP approaches (Tables 1.2 and 1.3) to the

MLP ones (Tables 1.2 and 1.3), we see that the XMLP computes faster

than the MLP. In the best case, it reduces the computation time from

13.7 to 6.9 microseconds for the parallel version. The advantages of

XMLP are due to the partial connectivity patterns, which reduce the

number of multiplications from 5520, with a fully connected

configuration (MLP), to 2352 with the XMLP configured as described

in Section 1.2.3. It can also be observed that XMLP connectivity

reduces the RAM storagerequirements, once more because it requires

less connection weights to be stored.

For the speech recognition application we obtain a speaker-independent

correct classification rate of 96.83% with a computation time of around

14-16 microseconds per sample. This amply fulfilsthe time restrictions

imposed by the application. Therefore, the implementation can be seen

as a low-cost design where the whole system, even the parallel version,

would fit into low-cost FPGA device. The system could be embedded

in a portable speech recognition platform for voice-controlled systems.

A pipeline processing scheme taking one neural layer in each stage

would lead to a faster approach. The processing bottleneck is imposed

by the maximum neural fan-in, 220 in a hidden node, because of the

need for 220 multiplications. With a pipeline structure,we could overlap

the computation time of the hidden layer with the computation time of

the output layer (24 multiplications per node). This speeds up the data

path by a maximum of 10%. Here we did not study the pipeline choice

because our design fulfils the application requirements (portability,

low-cost and computation time).

References
[1]J. Misraa and I. Sahab, "Artificial neural networks in

hardware: A survey of two decades of progress,"

Neurocomputing, vol. 74, no. 1-3, pp. 239-255, 2010.

[2]J. Zhu and P. Sutton, "FPGA implementations of neural

networks -a survey of a decade of progress," in Proceedings of

the 13th International Conference on Field Programmable

Logic and Applications (FPL 2003), 2003, pp. 1062-1066.

[3]S. Haykin, Neural Networks: A Comprehensive Foundation,

2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999.

[4]M. M. Khan, D. R. Lester, Luis A. Plana, Alexander D.

Rast, X. Jin, E. Painkras, and Stephen B. Furber, "SpiNNaker:

Mapping neural networks onto a massively-parallel

chipmultiprocessor," In International Joint Conference on

Neural Networks (IJCNN), pp. 2849-2856, 2008.

[5]Draghici S. On thecapabilities of neural networks using

limited precision weights, Neural Networks, 15, 2002, no. 3,

pp. 395-414.

[6]Fiesler E. and Beale R. Handbook of Neural Computation,,

IOP Publishing Ltd and Oxford University Press, 1997.

[7]Ienne P. Cornu T. and Gary K. Special-Purpose Digital

Hardware for Neural Networks: An Architectural Survey.

Journal of VLSI Signal Processing, 13, 1996, pp. 5-25.

[9]Mentor Graphics, http://www.mentorg.com/

[10]Xilinx, http://www.xilinx.com

[11]Celoxica, http://www.celoxica.com/

About The Author
Er.Jnana Ranjan Tripathy1

Pusruing PhD in Centurion University of Technology &

Management in “ANN Implementation in Embedded Systems”

M.Tech in Computer Science,Berhampur University

B.Tech in Information Technology, BPUT

Currently working in Orissa Engineering College, Odisha

Worked at Centurion University previously.

Member of IACSIT

Dr.Hrudaya Kumar Tripathy2

Ph.D in Computer Science from Berhampur University.

M.Tech in CSE from IIT, Guwahati
B.Tech (Ceramic Technology) from IIC (CG&CRI), Kolkatta

School of Computing & Technology,

Asia Pacific University College of Technology & Innovation

Bukit Jalil, Kuala Lumpur

Published around 20 No.(s) of research papers in reputed

international referred journals & IEEE conferences. Technical

reviewer and member of technical committee of many

International conferences.

Received many certificates of merits and highly applauded in

presentation of research papers at International conferences of

different Asian countries (Thailand, Singapore, Hong Kong).

Member of International Association of Computer Science and

Information Technology (IACSIT), Singapore,

Member of IEEE, India Chapter.

 Dr.Maya Nayak3

Published around 28 No.(s) of research papers in reputed

international referred journals & IEEE conferences. Technical

reviewer and member of technical committee of many

International conferences.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 407

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

