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Abstract 

In this work, we present several hardware implementations of a 

standard MultilayerPerceptron (MLP) and a modified version 

called eXtended Multi-Layer Perceptron (XMLP). This extended 

version is an MLP-like feed-forward network with two-

dimensional layers and configurable connection pathways. The 

interlayer connectivity can be restricted according to well-defined 

patterns. This aspect produces a faster and smaller system with 

similar classification capabilities. Furthermore the software version 

of the XMLP allows configurable activation functions and batched 

back propagationwith different smoothing-momentum alternatives.  

The hardware implementations have been developed and tested 

on an FPGA prototyping board. The designs have been defined 

using two different abstraction levels: register transfer level 

(VHDL) and a higher algorithmic-like level (Handel-C). We 

compare the two description strategies. Furthermore we study 

different implementation versions with diverse degrees of 

parallelism. The test bed application addressed is speech 

recognition.  

Keywords:FPGA, Multi-Layer Perceptron (MLP), Artificial 

Neural Network ( ANN),VHDL, Handel-C, activation function, 

discretization. 

 

 

1. Introduction 
 

An Artificial Neural Network (ANN) is an information 

processing paradigm inspired by the way biological nervous 

systems process information. An ANN is configured for a specific 

application, such as pattern recognition or data classification, 

through a learning process. As in biological systems, learning 

involves adjustments of the synaptic connections that exist 

between the neurons.  

An interesting feature of the ANN models is their intrinsic 

parallel processing strategies. However, in most cases, the ANN is 

implemented using sequential algorithms thatrun on single 

processor architectures, and do not take advantage of this inherent 

parallelism. 

 

 

Software implementations of ANNs are appearing in an 

ever increasing number of real-world applications OCR 

(Optical Character Recognition), data mining, image 

compression, medical diagnosis, ASR (AutomaticSpeech 

Recognition), etc. Currently, ANN hardware implementations 

and bio inspiredcircuits are used in a few niche areasin 

application fields with very high performance requirements 

(e.g. high energy physics), in embedded applications of simple 

hard-wired networks (e.g. speech recognition chips), and in 

neuromorphic approaches that directly implement a desired 

function (e.g. artificial cochleas and silicon retinas).  

The work presented here studies the implementation viability 

and efficiency of ANNs into reconfigurable hardware (FPGA) 

for embedded systems, such as portable real-time ASR devices 

for consumer applications, vehicle equipment (GPS navigator 

interface), toys, and aidsfor disabled persons, etc.  

Among the different ANN models available used for ASR, we 

have focused on the Multi-Layer Perceptron (MLP). 

A recent trend in neural network design for large-scale 

problems is to split a task into simpler subtasks, each one 

handled by a separate module. The modules are then 

combined to obtain the final solution. A number of these 

modular neural networks (MNNs) have been proposed and 

successfully incorporated in different systems. Some of the 

advantages of the MNNs include reduction in the number of 

parameters (i.e., weights), faster training, improved 

generalization, suitability for parallel implementation, etc. In 

this way, we propose a modified version of the MLP called 

eXtended Multi-Layer Perceptron (XMLP). This new 

architecture considers image and speech recognition 

characteristics that usually make use of two-dimensional 

processing schemes, and its hardware implementability 

(silicon area and processing speed). 
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1.1.MLP/XMLP and speech recognition 

Automatic speech recognition is the process by which a 

computer mapsan acoustic signal to text. Typically, speech 

recognition starts with the digital sampling of the voice signal. The 

raw waveform sampled is not suitable for direct input for a 

recognition system. The commonly adopted approach is to convert 

the sampled waveform into a sequence of feature vectors using 

techniques such as filter bank analysis and linear prediction 

analysis. The nextstage is the recognition of phonemes, groups of 

phonemes or words. This last stage is achieved in this work by 

ANNs (MLP and XMLP), although other techniques can be used, 

such as HMMs (Hidden Markov Models), DTW (Dynamic Time 

Warping), expert systems or acombination of these. 

 

1.1.1. Multi-Layer Perceptron 
 

The MLP is an ANN with processing elements or neurons 

organized in a regular structure with several layers (Figure 1.1): an 

input layer (that is simply an input vector), some hidden layers and 

an outputlayer. For classification problems, only one winning node 

of the output layer is active for each input pattern.  

Each layer is fully connected with its adjacent layers. There are no 

connections between non-adjacent layers and there are no recurrent 

connections. Each of these connections is defined by an associated 

weight. Each neuron calculates the weighted sum of its inputs and 

applies an activation function that forces the neuron output to be 

high or low, as shown in Eqn. (1.1).  

Zli =f(Sli);Sli =sumjwlijZ(l−1)j) (1.1)  

In this equation,
z
li is the output of the neuron 

i
 in layer 

l
,sli is the 

weighted sum in that neuron, f is the activation function andwlij is 

the weight of the connection coming from neuronj in the previous 

layer (
l
–1). 

In this way, propagating the output of each layer, the MLP 

generates an output vector from each input pattern. The synaptic 

weights are adjusted through a supervised training algorithm called 

back propagation.  

Different activation functions have been proposed to transform 

the activity level (weighted sum of the node inputs) into an output 

signal. The most frequently used is the sigmoid, although there are 

other choices such as a ramp function, a hyperbolic tangent, etc. 

All of these are continuous functions, with a smoothS-like 

waveform, that transform an arbitrary large real value to another 

value in a much restricted range. 

 

1.1.2 Extended Multi-Layer Perceptron 

 
The XMLP is a feed-forward neural network with aninput 

layer (withoutneurons), a number of hidden layers selectable from 

zero to two, and an output layer. In addition to the usual MLP 

connectivity, any layer can be twodimensional and partially 

connected to adjacent layers. As illustrated in Figure 

1.2,connections come out from each layer in overlapped 

rectangular groups. The size of a layerl and its partial connectivity 

pattern are defined by six parameters in the following form: 

x(gx,sx) ×y(gy,sy), wherex andy are the sizes of the axes, andg ands 

specify the size of a group of neurons and the step between two 

consecutive groups, both in abscissas (gx,sx) and ordinates (gy,sy) 

 

A neuron i in the X-axis at layerl+1 (the upper one in Figure 1.2) 

is fed from all the neurons belonging to thei-the ). group in the 

Xaxis at layerl (the lower one). The same connectivity definition 

is used in the Y-axis. When g ands are not specified for a 

particular dimension, the connectivity assumed for that 

dimension isgx =x andsx = 0, or gy =y and sy = 0. Thus, MLP is a 

particular case of XMLP wheregx =x, sx = 0,gy = y and sy = 0 for 

all layers. 

The second dimension in each layer can be considered as a real 

spatial dimension for image processing applications or as the 

temporal dimension for time related problems. Two 

particularizations of the XMLP in time-related problems are the 

Scaly Multi-Layer Perceptron (SMLP) used in isolated word 

recognition, and the Time Delay Neural Network (TDNN), used 

in phoneme recognition. 

1.1.3.Configurations Used for Speech 

Recognition  
 

To illustrate the hardware implementation of the 

MLP/XMLP system we have chosen a specific speaker-

independent isolated word recognition application. Nevertheless, 

many other applications require embedded systems in portable 

devices (low cost, low power and reduced physical size).  

For our test bed application, we need an MLP/XMLP with 220 

scalar data in the input layer and 10 output nodes in the output 

layer. The network input consists of 10 vectors of 22 

components (10 cepstrum, 10 ∆cepstrum, energy, ∆energy) 

obtained after pre-processingthe speech signal. The output nodes 

correspond to 10 recognizable words extracted from a multi-

speaker database. After testing different architectures, the best 

classification results (96.83% of correct classification rate in a 

speaker-independent scheme) have been obtained using 24 nodes 

in a single hidden layer, with the connectivity of the XMLP 

defined by 10(4,2)×22 in the input layer and 4×6 in the hidden 

layer. 
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1.2. Activation functions  
 

For hardware implementations,we have chosen a two’s 

complement representation and different bit depths for the stored 

data (inputs, weights, outputs, etc.). In order to accomplish the 

hardware implementation, it is also necessary to discretize the 

activation function. Next, we present different activation functions 

used in the MLP and some details about their discretization 

procedure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.2. Structure of an example XMLP interlayer 

connectivity pattern defined by the expression 5(3, 2) ×3(2,1) 

1.2.1. Activation Functions  
 

One of the difficult problems encountered when 

implementing ANNs in hardware is the nonlinear activation 

function used after the weighted summation of the inputs in each 

node (Eqn.1.1). There are three main nonlinear activation 

functions: threshold (hard limited), ramp and various sigmoid 

curves. We have studied different options: classical sigmoid, 

hyperbolic tangent, arc tangent and ramp activation functions. In 

the hardware implementation, we have focused on the sigmoid 

activation function.  

In order to achieve generality, an activation function f(x) is defined 

depending on three parameters: (slope atx = 0),fmax (maximum 

value of f(x)) and fmin (minimum value). The generic expressions 

for the four functions considered and their respective derivatives, 

needed in the backpropagation algorithm, are given in Table 1.1. 

An example for three particular values of the parameters is plotted 

in Figure 1.3.For simplicity,fR is defined asfmax–fmin. 

 

1.2.2 Discretization 
 

In this contribution, learning is carried out offline 

using floating points,while hardware implementations use 

discrete variables and computations. However, classification 

results in hardware are very similar to the ones obtained with 

the software approach. For instance, in phoneme recognition 

application with the MLP, we obtained 69.33% correct 

classification with the continuous model and 69% when using 

the discretized model. In order to use limited precision values, 

it is necessary to discretize three different sets of variables: 

network inputs and neuron outputs (both with the same 

number of bits), weights and the activation function input. 

Each of these sets has a different range, specified by the 

number of bits (n) of the discrete variable and the maximum 

absolute value (M) of the corresponding continuous variable. 

The expressions for the conversion between continuous (c) 

anddiscrete (d) values are: 

 

 

 

 

 

 

 

 

1.2.3 Implementation characteristics of MLP 

with different design strategies 
 

To extract the EDIF files, the systems have been 

designed using the development environments FPGA 

advantage, for VHDL, and DK1.1, for Handel-C. All designs 

have been finally placed and routed onto a Virtex-E 2000 

FPGA, using the synthesis tool Xilinx Foundation 3.5i. The 

basic building blockof the Virtex-ECLB (Configurable Logic 

Block) is the logic cell (LC). Each CLB contains four LCs 

organized in two similar slices. An LC includes a 4-input 

function generator that is implemented as 4-input LUT. A 

LUT can provide a 16×1synchronous RAM. Virtex-E also 

incorporates large Embedded Memory Blocks (EMBs) (4096 

bits each) that 

Complement the distributed RAM memory available 

in the CLBs. Table 2 presents the results obtained after 

synthesizing the sequential and parallel versions of the MLP 

using Handel-C. These results are characterized by the 

following parameters: number and percentage of slices, 

number and percentage of EMBs RAM, minimum clock 

period, the number of clock cycles and the total time required 

for each input vector evaluation. The percentage values apply 

to the Virtex-E 2000 device. 

As mentioned in Section 1.2.1, obtaining an efficient 

system requires a detailed analysis of the possible choices. 

When programming the MLP, there aredifferent options for 

data storage in the RAM. In orderto analyse the effects of the 

several techniques for distributing and storing data in RAM. 

Only distributed RAM for the whole designs has beenused; in 

(b), the weights associated with synaptic signals (large array) 

are stored in EMBs RAM modules, while the remaining data is 

stored in a distributed mode; and finally, (c) only uses memory 

grouped in EMBs RAM modules. 
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Table 1.1.Activation functions and their derivatives 

 

1.2.4 Discretization 
 

One particular difficulty regarding the migration of ANNs towards hardware is that the software simulations use 

floating point arithmetic and either double or simple precision weights, inputs and outputs. Any hardware implementation would 

become unreasonably expensive if incorporating floating point operations and therefore needing to store too many bits for each 

weight. Fixed point arithmetic is better suited for hardware ANNs because a limited precision requires fewer bits for storing the 

weightsand also simpler calculations. This causes a reduction in the size of the required silicon area and a considerable speed. 

 
Figure 1.3. Activation functions and their derivatives with f'0= 1/2, fmax = 1, fmin =−1(fR = 2) 
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1.3 Hardware implementations of XMLP  
 

This section introduces a sequential and a parallel 

version of the XMLP. For reasons of clarity, only the hardware 

implementation for the parallel version has been described in 

detail. However, the implementation characteristics of both the 

sequential and parallel designs are presented.  

In this particular XMLP implementation, the connectivity is 

defined by 10(4, 2)×22 in the input layer and 4×6 in the hidden 

layer. 

1.3.1High Level Description (Handel-C) 
 
From an algorithmic point of view, two-dimensional 

layers require the use of nested loops to index both 

dimensions. The following example shows the programmed 

code equivalent to that of the parallel MLP implementation 

described in Section 1.4.1.2. Its functionality corresponds to 

the weighted sum of the inputs ofeach node in the hidden 

layer. Note that the external loops have been parallelized using 

the par directive. par (X=0; X<NumHiddenX; X++)  

{  

FirstX[X] = X*InStepX; par (Y=0; Y<NumHiddenX; Y++)  

{ 

FirstY[Y] = Y*InStepY; Sum[X][Y] = 0 ;  

}  

} par (X=0; X <NumHiddenX; X++)  

{ par (Y=0; Y <NumHiddenY; Y++)  

{  

for (XGrp=0; XGrp <InGrpX; XGrp++)  

{  

Mul[X][Y] = W[X][Y][XGrp][YGrp]* 

In[FirstX[X]+XGrp][FirstY[Y]];  

for (YGrp=1; YGrp<InGrpY; YGrp++) par{  

Sum[X][Y] = Sum[X][Y]+Mul[X][Y];  

Mul[X][Y] = W[X][Y][XGrp][YGrp]*  

In[FirstX[X]+XGrp][FirstY[Y]+YGrp];}  

}  

Sum[X][Y] = Sum[X][Y]+Mul[X][Y];  

} } 

NumHiddenX and NumHiddenY are the sizes of the axes in the hidden 

layer. InGrp and InStep specify the size of a group of inputs and the step 

between two consecutive groups (in the input layer), both in abscissas 

(InGrpX, InStepX) and ordinates (InGrpY, InStepY).W is the array 

containing the weight values. In is the input array. Finally, Sum is a 

variable that stores the accumulated weighted sum of the inputs.  

In order to compare the XMLP to the MLP, similar design alternatives 

(a), (b) and (c) to the ones considered in the MLP (Table 1.1) have been 

chosen. 

Table 1.1. Implementation characteristics for the XMLP designs 

described with Handel-C. (a) Only distributed RAM. (b) Both EMBs 

and distributed RAM. (c) Only EMBs RAM 

MLP     Evaluation Time 

Design  Slices  Slices  RAM RAM (ns)  Cycles  (ms) 

a)Serial 2389 12 0 0 44.851 2566 115.087 

Parallel 5754 29 0 0 47.964 143 6.858 

b)Serial 1700 8 96 60 71.568 2566 183.643 

Parallel 5032 26 96 60 64.270 143 9.190 

c)Serial 1608 8 140 91 77.220 2566 198.146 

Parallel 4923 25 147 91 64.830 143 9.271 

As expected, the XMLP approaches result in systems twice as fast 

compared to the fully connected MLP version. This gain in speed 

depends on the connectivity pattern defined for the XMLP model. In the 

case studied, the XMLP requires only 

1.3.2 Register Transfer Level Description (VHDL) 
 

The parallel architecture of the XMLP and the MLP are similar. 

Keeping in mind that the connectivity pattern of the XMLP is different, 

only modifications related to this feature need to be made, as in Figure 

1.4.  

Since each hidden neuron is only connected to 88 input values 

(4×22), the global input RAM module with 220 MLP inputs has been 

replaced by 24 local RAM modules. These local modules store the 88 

necessary input values for each functional unit. As each functional unit 

only computes 88 input values, local weight RAMs can be reduced to 

112-word RAM modules for the first ten units (that also compute the 

output layer), and 88-word RAM modules for the rest. 

 

Figure 1.4. Structure of the parallel XMLP 
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Table 1.2 shows the implementation characteristics obtained after 

synthesizing both sequential and parallel versions of the XMLP using 

VHDL. This design corresponds to the option (b) described inTable 1.1 

. MLP     Evaluation Time 

Design  Slices  Slices  RAM RAM (ns)  Cycles  (ms) 

Serial 267 2 11 6 37.780 2478 93.618 

Parallel 1747 9 49 30 53.752 152 8.170 

 

The performance improvement of the XMLP compared to the MLP is 

similar to that described for the Handel-C approaches. 

1.4. Conclusions  
 

We have presented an FPGA implementation of fully and 

partially connected MLP-like networks for a speech recognition 

application. Both sequential and parallel versions of the MLP/XMLP 

models have been described using two different abstraction levels: 

register transfer level (VHDL) and a higher algorithmic-like level 

(Handel-C). Results show that RTL implementation produces more 

optimized systems. However, one of the main advantages of the high 

level description is the reduction of design time. The Handel-C design 

is completely defined with less than 100 code lines.  

In both (VHDL and Handel-C) described systems, the parallel versions 

lead to approaches 20 times faster on average for the MLP, and around 

18 times faster for the XMLP. This speed-up corresponds to the degree 

of parallelism (24 functional units). Therefore, it depends on the 

number of hidden neurons that are computed in parallel.  

Finally on comparing the XMLP approaches (Tables 1.2 and 1.3) to the 

MLP ones (Tables 1.2 and 1.3), we see that the XMLP computes faster 

than the MLP. In the best case, it reduces the computation time from 

13.7 to 6.9 microseconds for the parallel version. The advantages of 

XMLP are due to the partial connectivity patterns, which reduce the 

number of multiplications from 5520, with a fully connected 

configuration (MLP), to 2352 with the XMLP configured as described 

in Section 1.2.3. It can also be observed that XMLP connectivity 

reduces the RAM storagerequirements, once more because it requires 

less connection weights to be stored.  

For the speech recognition application we obtain a speaker-independent 

correct classification rate of 96.83% with a computation time of around 

14-16 microseconds per sample. This amply fulfilsthe time restrictions 

imposed by the application. Therefore, the implementation can be seen 

as a low-cost design where the whole system, even the parallel version, 

would fit into low-cost FPGA device. The system could be embedded 

in a portable speech recognition platform for voice-controlled systems. 

A pipeline processing scheme taking one neural layer in each stage 

would lead to a faster approach. The processing bottleneck is imposed 

by the maximum neural fan-in, 220 in a hidden node, because of the 

need for 220 multiplications. With a pipeline structure,we could overlap 

the computation time of the hidden layer with the computation time of 

the output layer (24 multiplications per node). This speeds up the data 

path by a maximum of 10%. Here we did not study the pipeline choice 

because our design fulfils the application requirements (portability, 

low-cost and computation time). 

References 
[1]J. Misraa and I. Sahab, "Artificial neural networks in 

hardware: A survey of two decades of progress," 

Neurocomputing, vol. 74, no. 1-3, pp. 239-255, 2010. 

[2]J. Zhu and P. Sutton, "FPGA implementations of neural 

networks -a survey of a decade of progress," in Proceedings of 

the 13th International Conference on Field Programmable 

Logic and Applications (FPL 2003), 2003, pp. 1062-1066. 

[3]S. Haykin, Neural Networks: A Comprehensive Foundation, 

2nd ed. Upper Saddle River, NJ: Prentice-Hall, 1999. 

[4]M. M. Khan, D. R. Lester, Luis A. Plana, Alexander D. 

Rast, X. Jin, E. Painkras, and Stephen B. Furber, "SpiNNaker: 

Mapping neural networks onto a massively-parallel 

chipmultiprocessor," In International Joint Conference on 

Neural Networks (IJCNN), pp. 2849-2856, 2008. 

[5]Draghici S. On thecapabilities of neural networks using 

limited precision weights, Neural Networks, 15, 2002, no. 3, 

pp. 395-414.  

[6]Fiesler E. and Beale R. Handbook of Neural Computation,, 

IOP Publishing Ltd and Oxford University Press, 1997.  

[7]Ienne P. Cornu T. and Gary K. Special-Purpose Digital 

Hardware for Neural Networks: An Architectural Survey. 

Journal of VLSI Signal Processing, 13, 1996, pp. 5-25.  

[9]Mentor Graphics, http://www.mentorg.com/  

[10]Xilinx, http://www.xilinx.com 

[11]Celoxica, http://www.celoxica.com/  

 

About The Author 
Er.Jnana Ranjan Tripathy1 

Pusruing PhD in Centurion University of Technology & 

Management in “ANN Implementation in Embedded Systems”  

M.Tech in Computer Science,Berhampur University 

B.Tech in Information Technology, BPUT 

Currently working in Orissa Engineering College, Odisha 

Worked at Centurion University previously. 

Member of IACSIT 

 

Dr.Hrudaya Kumar Tripathy2  

Ph.D in Computer Science from Berhampur University. 

M.Tech in CSE from IIT, Guwahati   
B.Tech (Ceramic Technology) from IIC (CG&CRI), Kolkatta  

School of Computing & Technology, 

Asia Pacific University College of Technology & Innovation 

Bukit Jalil,  Kuala Lumpur 

Published around 20 No.(s) of research papers in reputed 

international referred journals & IEEE conferences. Technical 

reviewer and member of technical committee of many 

International conferences.  

Received many certificates of merits and highly applauded in 

presentation of research papers at International conferences of 

different Asian countries (Thailand, Singapore, Hong Kong).  

Member of International Association of Computer Science and 

Information Technology (IACSIT), Singapore,  

Member of IEEE, India Chapter.  

 

 Dr.Maya Nayak3 

Published around 28 No.(s) of research papers in reputed 

international referred journals & IEEE conferences. Technical 

reviewer and member of technical committee of many 

International conferences.  

 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 407

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.




