

Knowledge Engineering Process for a Rapid Prototyping of

Inductive Expert System

Nittaya Kerdprasop and Kittisak Kerdprasop

Data Engineering Research Unit, School of Computer Engineering,

Suranaree University of Technology, 111 University Avenue,

Nakhon Ratchasima 30000 Thailand

Abstract
The main characteristic of current expert systems is the

separation of a knowledge base that may be changed from one

application to another from the inference engine that still remains

the same across applications. The delay in the development of

many expert systems is due to the difficulty in acquiring and

eliciting knowledge from the human domain experts. The

concept of inductive expert system is thus been devised to

overcome such bottleneck by incorporating automatic knowledge

acquisition module in the system. According to this new concept,

knowledge can now be induced or learned in an automatic way

from archived databases that are normally available in most

organizations. In this paper, we propose an architecture of the

inductive expert system that includes the knowledge engine part

to automatically forming expert rules from the stored data. We

explain the automatic knowledge creation technique through a

simple running example, then followed by a real application. We

also provide our Prolog source code in appendices for knowledge

engineers to apply our technique as a rapid prototyping of their

own expert systems.

Keywords: Expert Systems, Intelligent Knowledge Base,

Machine Learning, Knowledge Engineering.

1. Introduction

Since the release of DENDRAL in the 1960s from the

Stanford Heuristic Programming Project [5] as the first

practical knowledge-driven program, expert systems have

enormously proliferated and been applied to all areas of

computer-based problem solving. The inventors of

DENDRAL system have introduced the novel and

important concept of knowledge base separation in that the

content of knowledge could be added and refined

independently from the program module, called the

inference engine, that interprets and uses that knowledge.

The loosely coupling of a knowledge base and an

inference engine is an influential concept to all successor

rule-based expert systems such as MYCIN [10],

INTERNIST-1 [6], and many others.

Since the 1980s expert systems, also called knowledge-

based systems, have shifted from the medical and

scientific application domains to various areas. In

manufacturing and other engineering applications, rule-

based expert systems are commonly applied to solve

optimization problems, plan manufacturing scheduling,

diagnose equipment failures, and use in almost every stage

of the manufacturing process [2]. The increasing

popularity of rule-based expert systems is due to the

simplicity of the if-then rules that are easy to comprehend

by humans. Many expert system tools such as Clips and

Jess are available as a rule engine to facilitate rule

generation for a knowledge base. These tools help

facilitating knowledge representation, but knowledge

acquisition and elicitation are still the labor-intensive tasks

facing most knowledge engineers.

Modern expert system development process has thus

moved toward the automating methodology by applying

intelligent knowledge extraction techniques. Such

intelligent techniques can be acquired through the machine

learning and data mining technologies. There have been

increasing numbers of research work attempting to apply

learning techniques to automatically extract end elicit

knowledge [1], [3], [4], [7], [8], [11]. These attempts have

pushed the current expert system technology to the next

generation of an inductive expert system in the sense that

besides the knowledge base and the inference engine, the

system now includes the learning component.

The research work presented in this paper takes the same

direction as most researchers in an attempt to automate

knowledge extraction and elicitation with machine

learning and data mining techniques. Our work, however,

is different from others in that not only proposing an

architecture of the learnable inductive expert system and

experimenting with some learning algorithms, but we also

design and develop a full complement of the rule-based

expert system. The work presented in this paper covers the

knowledge mining from existing databases, knowledge

transfer as a set of rules to be stored in the knowledge

base, and knowledge reasoning through a logic-based

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 408

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

inference engine. Program source code for the whole

process also provided in appendices.

2. A Framework for Automatic Knowledge

Base Creation

We design (in Fig. 1) an architecture of the inductive

expert system to include the knowledge engine facility.

This part of the system requires a machine learning

algorithm and a training dataset. The learning algorithm

used in our work is based on the ID3 algorithm [9]

because the structure of induced tree is appropriate for

generating reasoning and explanation in the expert system

shell. The induced knowledge is to be generated in a

format of decision rules incorporated with probabilistic

values. This value is intended to be used as the degree of

potential applicability of each decision rule. The

probabilistic values are indeed the coverage values of

decision rules and can be computed as a proportion of

(number of instances at leaf nodes) / (total data instances

in a training dataset).

The steps graphically shown in Fig.2 are the process to

generate decision rules to be stored in the knowledge base.

These rules are to be used by the inference engine for

giving recommendation to users. Consulting rules are for

reasoning and giving explanation when requested by the

users.

Knowledge
Base

Training Data

User Interface

Inference Engine

Knowledge Engine

Learning Method

User

Knowledge
Engineer

Fig. 1 Architecture of the inductive expert system.

Fig. 2 Automatic knowledge engineering process.

3. Running Example

3.1 Training Data for Building a Tree Model

To explain the idea proposed in the previous section, we

provide a running example through a simple training

dataset as illustrated in Fig. 3. The given data contain

information regarding color and shape of three objects and

their classified class as either yes (the right object), or no

(the wrong one). Our objective is to learn a decision model

from this small dataset and extract a model in a form of a

decision tree that to be helpful in identifying objects in the

future with unknown class. The first step is converting

data format to fit the program. Most data in the databases

are represented as table. Appropriate format as required by

our Prolog program is the one shown below the table in

Fig.3. This converted data has been saved in a file

‘shape.pl’, and is to be used as a training dataset in the

next step.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 409

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

color shape class

red round yes

blue polygon yes

green square no

attribute(color, [red, green, blue]).
attribute(shape, [round, polygon, square]).
attribute(class, [yes, no]).

instance(1, class=yes, [color=red, shape=round]).
instance(2, class=yes, [color=blue, shape=polygon]).
instance(3, class=no, [color=green, shape=square]).

Fig. 3 A sample shape dataset that contains three instances.

3.2 Tree Model and a Transformed Knowledge Base

Rule

Once the training dataset has been prepared, the next step

is to build a tree model from the data. This can be done

through invoking the program ‘id3menu.pl.’ A small

dialog box will be popped up (as shown in Fig. 4) to ask

the file name of training data. The parameter ‘MinProb’ is

for pruning a tree model. The more the value, the shorten

the tree model. Default value of this parameter is 0.001,

which should be small enough for most moderate size

data.

When user clicks the ‘Enter’ button, the dialog box

disappears and the program starts building a tree model.

This model is actually a data structure of nodes and edges

(as illustrated in Fig.5). User will then be asked to input

the file name to store the model. In this example, we store

a model in the file named ‘shape.knb’. Content of this file

(displayed in Fig.6) is automatically created by the

‘id3menu.pl’ program. The program traverses the tree

model and converts the structures of nodes and edges into

rules. The created file, ‘shape.knb’, is a knowledge base

induced from the training data and can be consulted by the

inference engine of the expert system shell.

Fig. 4 A snapshot of parameter setting and output of the program

id3menu.pl.

Color

yes yesno

red
green

blue

Fig. 5 A tree model in a form of node and edge structures (left) and its

interpretation in a graphical form (right).

Fig. 6 A knowledge base ‘shape.knb’ that is automatically generated

from a tree model.

3.3 Knowledge Consulting Through the Expert

System

To consult a knowledge base, user needs a second

program named ‘expertshell.pl’. After running this

program (by double-clicking at the file name), the prompt

sign ‘1 ?’ will appear on the screen. User can now start

commanding the expert system by typing ‘expertshell.’

and press enter. The system will greet with simple advice

(as in Fig.7). This expert shell can work with any

knowledge base. Therefore, user has to specify the file

name of the knowledge base. It is ‘shape.knb’ in this

example. Once the knowledge base has been loaded, user

may start the consulting process by typing the command

‘solve.’ (Note that every command in Prolog ends with a

full-stop.)

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 410

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 7 An interaction with the expert system shell using a knowledge

base ‘shape.knb’.

The expert shell starts asking questions as suggested by

information stored in the knowledge base. Thus, the order

and content of questions can vary according to the

knowledge base currently applicable to the expert shell.

After the system provides appropriate answer, user may

ask for explanation by typing a command ‘why.’

4. Experimentation

The experimentation with real data is to confirm the

efficiency of the proposed automatic knowledge base

creation method. For the purpose of demonstration, we use

a car evaluation data set obtain from the UCI repository

(http://archive.ics.uci.edu/ml). In this dataset, each car is

to be evaluated as acceptable or unacceptable based on the

buying price, price of maintenance, number of doors,

capacity in terms of persons to carry, the size of luggage

boot, and the estimated safety of the car. The data set has

been formatted as Prolog clauses and saved in a file named

‘car.pl’. The created knowledge base is illustrated in Fig.

8, and consulting this knowledge base through the expert

system shell is shown in Fig.9.

Fig. 8 An automatically created knowledge base ‘car.knb’.

Fig. 9 Consulting ‘car.knb’ through the expert system shell.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 411

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusion

Artificial intelligence, specifically expert systems, has

played an important role in solving complex engineering

and manufacturing problems. Knowledge base and

inference procedures have been employed to solve the

problems that require significant human expertise and

domain-specific knowledge. The required knowledge has

to be elicited by knowledge engineers. It is a labor-

intensive task, and thus a bottle neck in building intelligent

systems. We propose to apply data mining technique as a

major step in a knowledge engine component of the

inductive expert system to assist the knowledge elicitation

task. The proposed technique is a novel method for

automating knowledge acquisition that help supporting

intelligent manufacturing systems. Knowledge in our tool

can be discovered from the stored data using the decision

tree induction algorithm. The learned tree structure is then

transformed to a rule set that can be integrated into the

knowledge base. The implementation of our knowledge

acquisition tool is based on the logic programming scheme

that has been proven appropriate for inferring and

reasoning answers and recommendations from the existing

knowledge base.

Appendix A. Source Code for Automatic Knowledge

Base Creation

The source code provided here is for learning a tree model

from training data and then transform the model to be a

rule set to store in the knowledge base. The given ID3

module is capable of learning model of binary classes such

as yes/no, true/false, acceptable/unacceptable. For training

data with multiple classes, the module needs some

modification. This program should be saved in a single

file, named “id3menu.pl”. To run the program, user may

double click at the file name in the directory where it has

been saved. The knowledge base will be automatically

created and stored in the same directory with the file name

such as ‘shape.knb’, and this program can now be closed.

The created knowledge base will be used later by the

expert system shell, which is another Prolog program.

/*--------id3menu.pl-------*/

id3menu:-

 new(Dialog,dialog('Create Rules from ID3')),

 send_list(Dialog, append,

 [new(D1, text_item(datafile,'*.pl')),

 new(Per,text_item(minProb,'0.001')),

 button(cancel, message(Dialog, destroy)),

 button(enter, and(message(@prolog,callId3,

 D1?selection, Per?selection),message(Dialog,destroy)))]),

 send(Dialog, open).

callId3(Dfile,Per) :- term_to_atom(Per1,Per),

 consult(Dfile), createKB(Per1).

:-id3menu.

% ----------- Create KB rules -----------------------

createKB(Min) :- init(AllAttr,EdgeList), getnode(N),

 create_edge(N,AllAttr,EdgeList), addAllKnowledge,

 selectRule(Min,Res), writeln(Res), nl,

 write('Enter KB file name(ex. ''1.knb''.): '),

 read(F), tell(F), writeHeadF, format('~n% Generated

rules:~n'),

 maplist(createRule1,Res), nl,

 format('~n% Generated menu:~n'),

 writeTailF, told, writeln(endProcess).

writeHeadF :-

 format('% Knowledge base automatically created for expert

shell.'),

 format('~n~n% top_goal is where the inference starts.~n'),

 format('~ntop_goal(X,V) :- type(X,V).~n').

writeTailF :-

 findall(_,(attribute(S,L),

 format('~n~w(X):-menuask(~w,X,~w). ',[S,S,L])),_),

 format('~n~n% end of automatic KB creation').

transform1([X=V],[Res]) :-

 atomic_list_concat([X,'(',V,')'],Res1),

 term_to_atom(Res,Res1),!.

transform1([X=V|T],[Res|T1]) :-

 atomic_list_concat([X,'(',V,')'],Res1),

 term_to_atom(Res,Res1), transform1(T,T1).

createRule1(I) :- I = Z>>X>>Y,

 transform1(X, BodyL),

 format('~ntype(~w,~w):-', [Y,Z]),

 myformat(BodyL) , !.

myformat([X]) :- write(X), write('.'),!.

myformat([H|T]) :- write(H), write(','), myformat(T).

addAllKnowledge :-

 findall([A], pathFromRootToLeaf(A,_), Res),

 retractall(_>>_>>_), maplist(apply(assert),Res),

 write(addToKB), nl. % add to knowledge base

selectRule(V,Res) :-

 findall(N>>X>>Class,(X>>Class>>N,N>=V),Res1),

 sort(Res1,Res2), reverse(Res2,Res).

path(A,[H|T],C) :- edge(A,H,B), path(B,T,C).

path(C,[],C) :- !.

pathFromRootToLeaf(V>>Class>>Num, C) :-

 path(1,V,C), node(C,Value1-Value2),

 (Value1=[] ; Value2=[]),

 (Value1=[] -> length(Value2,Numb) ; length(Value1,Numb)),

 total+Total, Num is Numb/Total, hasClass(C1,C2),

 (Value1=[]->Class=C2;Class=C1).

%-------------- ID3 (work only with data with 2 classes) --------------

:- dynamic current_node/1,node/2,edge/3,hasClass/2,type/2.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 412

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

init(AllAttr,[root-nil/PB-NB]) :-

 writeln(creating_tree_model), retractall(hasClass(_,_)),

 attribute(class,[Y1, Y2]), assert(hasClass(Y1,Y2)),

 retractall(node(_,_)), retractall(current_node(_)),

 retractall(type(_,_)), retractall(edge(_,_,_)),

 assert(current_node(0)), hasClass(C1,C2),

 findall(X,attribute(X,_),AllAttr1),

 delete(AllAttr1,class,AllAttr),

 findall(X2,instance(X2,class=C1,_),PB),

 findall(X3,instance(X3,class=C2,_),NB),

 length(PB,N1), length(NB,N2), N is N1+N2,

 retractall(total+_), apply(assert,[total+N]).

getnode(X) :- current_node(X), X1 is X+1,

 retractall(current_node(_)),

 assert(current_node(X1)), X1 <4000. % limit at 4000 nodes

create_edge(_,_,[]) :- !.

create_edge(_,[],_) :- !.

create_edge(N, AllAttr, EdgeList) :- create_nodes(N, AllAttr,

EdgeList).

create_nodes(N, AllAttr, [H1-H2/PB-NB|T]) :-

 getnode(N1),

 assert(edge(N,H1=H2,N1)), assert(node(N1,PB-NB)),

 append(PB, NB, AllInst),

 ((PB\==[], NB\==[]) -> (cand_node(AllAttr, AllInst, AllSplit),

 min_cand(AllSplit, [V, MinAttr, Split]),

 delete(AllAttr,MinAttr,Attr2),

 create_edge(N1,Attr2,Split)) ; true),

 create_nodes(N,AllAttr,T).

create_nodes(_,_,[]) :- !.

create_nodes(_,[],_) :- !.

min_cand([H|T], Min) :- min_cand(T, H, Min).

min_cand([], Min, Min).

min_cand([H|T], Min0, Min) :- H = [V,_,_], Min0 = [V0,_,_],

 (V<V0 -> Min1=H ; Min1=Min0),

 min_cand(T, Min1, Min).

cand_node([H|T], CurInstL, [[Val, H, SplitL] | OtherAttr]) :-

 info(H, CurInstL, Val, SplitL),

 cand_node(T, CurInstL, OtherAttr).

cand_node([],_,[]) :- !.

cand_node(_,[],[]).

info(A,CurInstL,R,Split) :- attribute(A,L),

 maplist(concat3(A,=), L, L1),

 suminfo(L1, CurInstL, R, Split).

concat3(A,B,C,R) :- atom_concat(A,B,R1), atom_concat(R1,C,R).

suminfo([H|T], CurInstL, R, [Split | ST]) :-

 AllBag = CurInstL, hasClass(C1,C2),

 term_to_atom(H1,H),

 findall(X1,(instance(X1,_,L1),member(X1,CurInstL),

 member(H1,L1)), BagGro),

 findall(X2,(instance(X2,class=C1,L2),

 member(X2,CurInstL), member(H1,L2)), BagPos),

 findall(X3,(instance(X3,class=C2,L3),member(X3,CurInstL),

 member(H1,L3)), BagNeg),

 (H11=H22) = H1,

 length(AllBag,Nall), length(BagGro,NGro),

 length(BagPos,NPos), length(BagNeg,NNeg),

 Split = H11-H22/BagPos-BagNeg,

 suminfo(T,CurInstL,R1,ST),

 (NPos is 0 *->L1 = 0; L1 is (log(NPos/NGro)/log(2))),

 (0 is NNeg *->L2 = 0; L2 is (log(NNeg/NGro)/log(2))),

 (NGro is 0 -> R = 999;

 R is (NGro/Nall)*(-(NPos/NGro)*L1-(NNeg/NGro)*L2)+R1) .

suminfo([],_,0,[]).
% ------------------------------ End of KB Creation Process --------------

Appendix B. Expert System Shell in Prolog

% -------- expertshell.pl -------------

% To run this program call ‘expertshell.’

% then call ‘load.’ and input a file name such as 'file.knb'.

% Start consulting the expert system with the command ‘solve.’

:-dynamic known/1, answer/2.

expertshell :-

 greeting, repeat, nl, write('expert-shell> '), read(X), do(X),

 X == quit, writeln('>>>>Goodbye, see you later<<<<'), !.

greeting :-

 write('This is the Easy Expert System shell.'), nl,

 native_help.

do(help) :- native_help, !.

do(load) :- load_kb, !.

do(solve) :- solve, !.

do(why) :- why, !.

do(quit).

do(X) :- write(X), write(' is not a legal command.'), nl, fail.

native_help :- write('Type help. load. solve. why. quit.'),

 nl, write('at the prompt.'), nl.

load_kb :- write('Enter file name in single quotes (ex. ''1.knb''.): '),

 read(F), reconsult(F).

solve :- retractall(known(_)),retractall(answer(_,_)),

 top_goal(X,V),

 format('The answer is __~w__ with probability ~w',[X,V]),

 assert(answer(X,V)), nl.

solve :- write('No answer found.'), nl.

menuask(Pred,Value,Menu) :-

 menuask(Pred,Menu),

atomic_list_concat([Pred,'(',Value,')'],X),

 term_to_atom(T,X), known(T),!.

menuask(Pred,_) :-

 atomic_list_concat([Pred,'(','_',')'],X),

 term_to_atom(T,X), known(T), !.

menuask(Attribute,Menu):-

 nl, write('What is the value for '), write(Attribute), write('?'),

 nl, addchoice(Menu,MenuRes), writeln(MenuRes), nl,

 write('Enter the choice> '), read(C), nl,

 member(C-V,MenuRes),

 atomic_list_concat([Attribute,'(',V,')'],X),

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 413

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 term_to_atom(T,X), asserta(known(T)) .

why :- answer(A,V),

 format('~nThe answer is ...~w... with probability =

 ~w.~n',[A,V]),

 findall(X , known(X),Result),

 writeln('The known storage are'), writeln(Result).

addchoice(X,Res) :- length(X,Len),

 numlist(1,Len,NumL), map(NumL,X,Res).

map([],[],[]).

map([H|T], [X|TT], [H-X|T1]) :- map(T, TT, T1).

% ---------------------- END OF EXPERT SYSTEM SHELL -----------

Acknowledgment

This research was supported by the SUT Research and

Development Fund, Suranaree University of Technology.

References
[1] F. Alonso, L. Martinez, A. Perez, and J.P. Valente,

“Cooperation between expert knowledge and data mining

discovered knowledge: Lesson learned,” Expert Systems with

Applications, vol.39, 2012, pp.7524-7535.

[2] A. B. Badiru, Expert Systems: Applications in Engineering

and Manufacturing, Prentice Hall, 1992.

[3] N. Kerdprasop and K. Kerdprasop, “Higher order

programming to mine knowledge for a modern medical

expert system,” International Journal of Computer Science

Issues, vol. 8, no. 3, 2011, pp. 64-72.

[4] C. Leon, F. Biscarri, I. Monedero, J. I. Guerrero, J. Biscarri,

and R. Millan, “Integrated expert system applied to the

analysis of non-technical losses in power utilities,” Expert

Systems with Applications, vol.38, 2011, pp.10274-10285.

[5] R. K. Lindsay, B. G. Buchanan, E. A. Feigenbaum, and J.

Lederberg, “DENDRAL: A case study of the first expert

system for scientific hypothesis formation,” Artificial

Intelligence, vol.61. no.2, 1993, pp.209-261.

[6] R. A. Miller, H. E. Pople, and J. D. Myer, “INTERNIST-1,

An experimental computer-based diagnostic consultant for

general internal medicine,” New England Journal of

Medicine, vol.307, no.8, 1982, pp.468-476.

[7] A. H. Mohammad and N. A. M. Al Saiyd, “A framework for

expert knowledge acquisition,” International Journal of

Computer Science and Network Security, vol.10, no.11,

2010, pp.145-151.

[8] R. A. Perez, L. O. Hall, S. Romaniuk, and J. T. Lilkendey,

“Inductive learning for expert systems in manufacturing,”

Proceedings of the 25th Hawaii International Conference on

System Sciences, 1992, pp.14-25.

[9] J. R. Quinlan, “Induction of decision trees,” Machine

Learning, vol.1, no.1, 1986, pp.81-106.

[10] E. H. Shortliffe, Computer-Based Medical Consultations:

MYCIN, Elsevier, 1976.

[11] T. Witkowski, P. Antczak, and A. Antczak, “Machine

learning-based classification in manufacturing system,”

Proceedings of the 6th IEEE International Conference on

Intelligent Data Acquisition and Advanced Computing

Systems: Technology and Applications, 2011, pp.580-585.

Nittaya Kerdprasop is an associate professor with the school of
computer engineering, Suranaree University of Technology,
Thailand. She received her B.S. from Mahidol University, Thailand,
in 1985, M.S. in computer science from the Prince of Songkla
University, Thailand, in 1991, and Ph.D. in computer science from
Nova Southeastern University, U.S.A., in 1999. She is a member
of ACM and IEEE Computer Society. Her research of interest
includes Knowledge Discovery in Databases, Artificial Intelligence,
Logic Programming, Deductive and Active Databases.

Kittisak Kerdprasop is an associate professor and chair of
computer engineering school, Suranaree University of Technology,
Thailand. He received his bachelor degree in Mathematics from
Srinakarinwirot University, Thailand, in 1986, master degree in
computer science from the Prince of Songkla University, Thailand,
in 1991, and doctoral degree in computer science from Nova
Southeastern University, U.S.A., in 1999. His current research
includes Data mining, Artificial Intelligence, Functional and Logic
Programming, and Computational Statistics.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 2, No 3, March 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 414

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

