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Abstract 
The shape features of planar trigonometric Bézier curves with 
two shape parameters are analyzed. The necessary and sufficient 
conditions are derived for these curves having one or two 
inflection points, a loop or a cusp, or be locally or globally 
convex. All conditions are completely characterized by the 
relative position of the control polygon’s side vectors. 
Furthermore we discussed the influences of shape parameters on 
the conditions and the ability for adjusting the shape of the curve. 
Keywords: Trigonometric Bézier curve, Loop, Cusp, Inflection 
point, Local convexity, Global convexity. 

1. Introduction 

Recently, trigonometric splines and polynomials with 
shape parameters have gained very much interest within 
CAGD, in particular curve design [1–4]. The paper [1-2] 
described the trigonometric polynomial curves with a 
global shape parameter. The paper [3] provided the C2 
continuous quadratic trigonometric polynomial curves 
with a local shape parameter. The cubic trigonometric 
Bézier curves with two shape parameters were discussed 
in [4]. Similar such studies using trigonometric splines can 
be found in [5-6]. The applications of trigonometric 
splines have led to the introduction of various types of 
trigonometric spline for CAGD purpose [7–10]. 

For many applications in geometric modeling it is often 
necessary to determine if the curve has singularities (loops 
or cusps), or inflection points, or is globally convex. This 
topic (also known as shape classification or geometric 
characterization of a curve in CAGD) has been studied 
before from different points of view [11–25]. For the case 
of general parametric curves the reader can see [11-12]. 
For planar cubic parametric curves some useful results can 
be found in [13–18]. For the rational case one can refer to 
[19–21]. For C-curves a classical shape diagram (similar 
to those in [13-14]) was obtained in [22]. However in the 
papers [11–22], the difference between global and local 
convexity was not referred to. In [23] a necessary and 
sufficient condition for global convexity of planar curves 
was presented. In [24], the author did not only investigate 
inflection points and singularities but also the global and 

local convexity of the planar cubic H-Bézier curves. A 
shape diagram (like that in [24]) of cubic trigonometric 
Bézier curves with a shape parameter was obtained in [25]. 

In this work, the shape features of planar trigonometric 
Bézier curves with two shape parameters are analyzed, by 
using the method based on the theory of envelope and 
topological mapping [18]. We give the conditions on the 
convexity and the existence of inflection points and 
singularities. Its use enables us to place control points and 
especially to choose shape parameters so that the resulting 
curves have not the undesirable features such as cusps and 
loops. The results are summarized in a shape diagram 
analogous to those in [24-25]. The influences of shape 
parameters on the shape features of the curve are also 
discussed. 

The rest of this paper is organized as follows. In Section 
2, we introduce the construction of the cubic trigonometric 
Bézier curves with two shape parameters (T-Bézier curve, 
for short). In Section 3, the cusps, inflection points, loops 
and convexity of the planar T-Bézier curve are discussed. 
In Section 4, the influences of shape parameters on the 
shape diagram and the ability for adjusting the shape of 
the curve are analyzed. We close in Section 5 with a brief 
summary of our work. 

2. Cubic Trigonometric Bézier Curve with 
Two Shape Parameters 

In [4] a cubic trigonometric Bézier curve with two shape 
parameters was defined in the following way: 
Definition 2.1 Given control points ( 0,1, 2,3)i i =P  in 2\  
or 3\ , the cubic trigonometric Bézier curve with two 
shape parameters is defined by 

3

0
( ) ( ), [0,1]i ii
t b t t

=
= ∈∑r P ,                         (1) 
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b t s t s t
b t s t s t s t
b t c t c t c t

b t c t c t
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⎪ = − −⎩
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in which ( ) : sin( / 2)s t tπ= , ( ) : cos( / 2)c t tπ= , and λ , 
μ ∈  [ 2,1]−  are shape parameters. It is called T-Bézier 
curve, for short. 

In the following sections we discuss the shape features 
of the planar T-Bézier curves. Without loss of generality, 
we suppose that 2( 0,1,2,3)i i = ∈\P . 

3. Shape Features of Planar T-Bézier Curve 

We recall the following preliminary knowledge before 
discussion. The interested reader is referred to [11, 18, 23, 
26] for further details. 
Definition 3.1 [18]. Let ( )tr  be a vector (or scalar) valued 
function such that 

0 00 0
lim ( ) ( ) lim ( ) ( )

t t t t
t t c t t

→ + → −
=r r r r  

where c  is a constant. We say that ( )tr  changes direction 
(or sign) oppositely at 0t , if 1c = − ; and ( )tr  does not 
change direction (or sign) at 0t , if 1c = . 
Definition 3.2 [18]. If the tangent vector ( )t′r  of the 
parametric curve ( )tr  changes direction oppositely at 0t , 
we say that the curve ( )tr  has a cusp at 0t . 
Definition 3.3 [11, 18]. Let ( ) ( ) ( )t t tγ ′ ′′= ×r r , where 
given two vectors 1 2( , )x x=x  and 1 2( , )y y=y , we define 
the cross product 1 2 2 1x y x y× = −x y . If ( )tγ  changes sign 
at 0t  with 0( ) 0t′ ≠r , we say that the curve ( )tr  has an 
inflection point at 0t . 
Definition 3.4 [18]. If there exists 1 2t t≠ such that 

1( )tr 2( )t= r , we say that the curve ( )tr  has a loop. 
Definition 3.5 [23]. Let 

( ) ( ) ( )t t tγ ′ ′′= ×r r , 
( ) (0) [ ( ) (0)]m t t′ × −= r r r , 
( ) [ ( ) (0)] ( )n t t t′= − ×r r r , 

and suppose that the curve ( )( [0,1])t t∈r  has no 
singularities. We say that the curve ( )tr is globally convex 
if ( )tγ , ( )m t  and ( )n t  do not change sign for all (0,1)t∈ . 
We say that the curve ( )tr  is locally convex if ( )tγ  does 
not change sign for all (0,1)t∈  while there exists 

0 (0,1)t ∈  such that ( )m t  or ( )n t  changes sign at 0t . 
Definition 3.6 [26]. For given family of curves :tC  

( , , ) 0F x y t =  with a single parameter t , : ( , ) 0C f x y =  is 
called as the envelop curve of the given family of curves 

tC , if the curve C  satisfies that an arbitrary point P  on 
C  belongs to one curve in the given family of curves tC  
and C  tangents to tC  at the point P . 

Definition 3.7 [26]. If a set is composed of the points 
( , )x y  that satisfy the system of equations 

( , , ) 0,

( , , ) 0,t

F x y t

F x y t

=⎧⎪
⎨ ′ =⎪⎩

 

it is called the determining curve or discriminant of the 
given family of curves ( , , ) 0F x y t = . 
Definition 3.8 [26]. The determining curve is called as the 
envelop curve of the given family of curves tC  if /F x∂ ∂  
and /F y∂ ∂ are not zero at the points ( , )x y  on the 
determining curve in the same time. 

Let  -1( 1, 2,3)i i i i− =a = P P , the T-Bézier curve (1) can 
be rewritten as 

0 0 1 2 3 2 3 3( ) [1 ( )] [ ( ) ( )] ( )t b t b t b t b t= + − + + +r P a a a .  (3) 
First, we suppose that the side vectors 1a  and 3a  are 

not parallel, i.e. 1 3 0× ≠a a . Then the side vector 2a  can 
be represented as the linear combination of 1a  and 3a , i.e. 

2 1 3u v= +a a a , where 2 3 1 2 1 3( , ) ( ) /( )u v = × × ×a a ,a a a a . 
The coefficients u  and v  clearly indicate the relative 
position of the control polygon’s side vectors. 

The following theorem shows the relation between the 
position of point ( , )u v  in uv -plane and the shape features 
of the curve (3). 

 

 

Fig. 1 Shape diagram of planar T-Bézier curve with two shape parameters. 

Theorem 3.1 Assume that 2 1 3u v= +a a a  with 1 3 0× ≠a a . 
Then, the shape features of the planar T-Bézier curve ( )tr  
are completely determined by the position of point ( , )u v  
in  uv -plane (see Fig. 1), i.e. 
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: ( ) is globally convex and has no inflection points and singular points,
: ( ) is locally convex and has no inflection points and singular points,

: ( ) has one inflection point and no s
( , )

N t
N N t
S t

λ μ ∈

∪
r

r
r ingular points,

: ( ) has two inflection points and no singular points,
: ( ) has one cusp and no loops and inflection points,
: ( ) has one loop and no cusps and inflection points.

D t
C t
L t

⎧
⎪
⎪
⎪⎪
⎨
⎪
⎪
⎪
⎪⎩

r
r
r

 

The  regions mentioned above are defined as: 
0 {( , ) | 1, 1} {( , ) | 0 ,0 }N u v u v u v u v= ≤ − ≤ − ≤ ≤∪ , 

1 1{( , ) | ( , ) 0, 1 0}N u v k u v v= < − < < , 

2 2{( , ) | ( , ) 0, 1 0}N u v k u v u= < − < < , 
{( , ) | 0} {(0, ) | 0} {( ,0) | 0}S u v uv v v u u= < < <∪ ∪ , 
{( , ) | ( , ) 0, 0, 0}D u v k u v u v= > < < , 
{( , ) | ( , ) 0, , 0}C u v k u v u v= = −∞ < < , 

1 2{( , ) | ( , ) 0, ( , ) 0, ( , ) 0}L u v k u v k u v k u v= < ≥ ≥ , 
where the associated implicit equations are: 

2 2( , ) : ( , ) ( , ) 1 0, , 0,k u v g u g v u vλ μ= + − = −∞ < <            (4) 
2 2

1 1 2( , ) : ( , ) ( , ) 1 0, 1, 1 0,k u v h u h v u vλ μ= + − = −∞< ≤− − ≤ <      (5) 
2 2

2 1 2( , ) : ( , ) ( , ) 1 0, 1 0, 1,k u v h v h u u vμ λ= + − = − ≤ < −∞< ≤ −    (6) 
in which 

1
2 2

1/(1 ), 0,
( , ) :

(1 2 ) /3 [(1 2 ) 3 ( 2)] /3 , 0,

x y
g x y

x y y x y y y y y

− =⎧⎪= ⎨
⎪ − + − − + − + ≠⎩

11
2 2

2 /(1 ), 0,
( , ) :

(1 2 ) / 2 [(1 2 ) 4 ( 2)] / 2 , 0,

x y
h x y

x y y x y y y y y

− =⎧⎪= ⎨
⎪ − + − − + − + ≠⎩

12
2 2

(1 ) /(1 ), 0,
( , ) :

(1 ) / 2 [(1 ) 4 ( 1)] / 2 , 0.

x x y
h x y

x y y x y y x y y

+ − =⎧⎪= ⎨
⎪ − + − − + − + ≠⎩

 

Proof. Substituting 2 1 3u v= +a a a  into (3), we have 

0 0 2 3 1

3 2 3 3

( ) {1 ( ) [ ( ) ( )]}
{ ( ) [ ( ) ( )]} .

t b t u b t b t
b t v b t b t

= + − + +
+ + +

r P a
a

                     (7) 

The following proof is composed of four parts 
corresponding to the case of cusps, inflection points, loops 
and convexity, respectively. 

3.1. The Case of Cusps 

According to Definition 3.2, the necessary condition that 
the curve ( )tr  has cups is ( ) 0(0 1)t t′ = < <r . From (7), 
we have 

0 2 3 1 3 2 3 3{ ( ) [ ( ) ( )]} { ( ) [ ( ) ( )]} 0b t u b t b t b t v b t b t′ ′ ′ ′ ′ ′− + + + + + =a a . 
Since 1a  and 3a  are linearly independent, letting 
coefficients of the vectors in ( )t′r  be zero, we obtain 

0 2 3

3 2 3

( ) [ ( ) ( )] 0,
( ) [ ( ) ( )] 0.

b t u b t b t
b t v b t b t

′ ′ ′− + + =⎧
⎨ ′ ′ ′+ + =⎩

                          (8) 

From (2) and (8), we obtain parametric equations of the 
curve C . 

( , ) [1 ( )][2 3 ( )] / 2 ( ),
: 0 1.

( , ) [1 ( )][2 3 ( )] / 2 ( ),
u t s t s t s t

C t
v t c t c t c t

λ λ λ
μ μ μ

= − − + −⎧
< <⎨ = − − + −⎩

(9) 

From (9), using 2 2( ) ( ) 1s t c t+ = , we can get the implicit 
equation (4). The implicit form (4) is more useful when 
determining on which side of the curve the point ( , )u v  
lies, while the parametric form (9) is more useful for 
displaying the curve. 

Conversely, suppose that the point 0 0( , )u v  lies on the 
curve C  and 0 0( , )u u t λ= , 0 0( , )v v t μ= , where 0 (0,1)t ∈ , 
then 0( ) 0t′′ ≠r . Otherwise, after the discussion similar to 
that of (8) and (9), we can get two contradictory equations: 

3 2
0 0( )[2 3 ( )] 0c t s tλ λ+ − =  and 3 2

0 0( )[2 3 ( )] 0s t c tμ μ+ − = . 
Therefore, according to the Taylor expansion 

0 0 0( ) ( )( ) ( )t t t t o t t′ ′′= − + −r r , 
we know that ( )t′r  changes direction oppositely at 0t . 

Hence we have proved the following lemma. 
Lemma 3.1 The T-Bézier curve ( )tr  has a cusp if and 
only if ( , )u v C∈ , where C  is determined by (5) or (9). 

3.2 The Case of Inflection Points 

By directly computing from (7), we can get 
1 3( ) ( ) ( ) ( ; , )t t t f t u vγ ′ ′′= × = ×r r a a , 

where 
0 3 2 3 0 1

0 3 2 3 0 1

( ) ( ) ( ) ( ) ( ) ( )
( ; , )

( ) ( ) ( ) ( ) ( ) ( )
b t b t b t b t b t b t

f t u v u v
b t b t b t b t b t b t
′ ′ ′ ′ ′ ′

= − + +
′′ ′′ ′′ ′′ ′′ ′′

. 

According to Definitions 3.1 and 3.3, the point 0( )tr  is an 
inflection point if and only if ( ; , )f t u v  changes sign at 0t . 
In the uv -plane, the possible region of inflection points 
must be covered by the family of straight 
lines ( ; , ) 0f t u v = . After solving the simultaneous 
equations ( ; , ) 0f t u v = and ( ; , ) 0tf t u v′ =  with respect to 
u  and v , we obtain (9). 

According to Definitions 3.6, 3.7 and 3.8, the curve C  
is just the envelope of the family of straight lines. The 
curve C  is strictly convex continuous curve, so that the 
region swept by the tangent line of the curve C  is 
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S D∪ (see Fig. 1), i.e. the possible region that results in 
inflection points. 

Apparently, the curve C has at least a tangent line 
0( ; , ) 0f t u v =  passing through an arbitrary point 0 0( , )u v  

located in .S D∪  Note that 0 0 0( ; , ) 0tf t u v′ ≠  when 

0 0( , )u v ∈ .S D∪  Otherwise, according to Definition 3.7 
on the envelope, we get 0 0( , )u v C∈ . Therefore, from the 
Taylor expansion 0 0 0 0 0 0 0( ; , ) ( ; , )( ) ( )tf t u v f t u v t t o t t′= − + − , 
we know that 0 0( ; , )f t u v  changes sign at 0t t= , 
consequently, the point 0( )tr  is an inflection point. 

Furthermore, if 0 0( , )u v S∈ , the curve ( )tr  has a single 
inflection point because there exists a unique tangent line 
of the curve C passing through the point 0 0( , )u v ; else if 

0 0( , )u v D∈ , then the curve ( )tr  has two inflection points 
because there exist two tangent lines of the curve C  
passing through the point 0 0( , )u v . Hence we obtain the 
following lemma. 
Lemma 3.2 The T-Bézier curve ( )tr  has one (or two) 
inflection point if and only if 0 0( , )u v S∈  ( or D ). 

3.3 The Case of Loops 

From Definition 3.4, the sufficient and necessary 
condition that the T-Bézier curve ( )tr  has loops is that 
there exists 1 20 1t t≤ < ≤  such that 1 2( ) ( ) 0t t− =r r . 
According to (7), it is equivalent to u , v , 1t  and 2t  
satisfy the system of equations: 

0 2 0 1

2 2 3 2 2 1 3 1
1 2

3 1 3 2

2 2 3 2 2 1 3 1

( ) ( )
,

( ) ( ) ( ) ( )
( , )

( ) ( )
,

( ) ( ) ( ) ( )

b t b t
u

b t b t b t b t
t t

b t b t
v

b t b t b t b t

−⎧ =⎪ + − −⎪ ∈Δ⎨ −⎪ =
⎪ + − −⎩

,      (10) 

where 2
1 2 1 2{( , ) | 0 1}t t t tΔ= ∈ ≤ < ≤\ . The map : ( )F FΔ→ Δ  

defined as (10) is a topological mapping. Therefore, the 
image ( )L F= Δ  is a simply connected region in uv -plane, 
its boundary curves C , 1L  and 2L  correspond to the three 
boundary segments of Δ : 1 2t t= , 1 0t =  and 2 1t =  
respectively, this indicates that the curve C  does not 
belong to the region L  while the curves 1L  and 2L  do. 
The parametric equations of 1L  and 2L  are as follows: 

2

1
[2 2 ( ) ( ) ( )] / ( ),

: 0 1,
[1 ( )][1 ( )] /[1 ( )],

u s t s t s t s t
L t

v c t c t c t
λ λ λ

μ
⎧ = − + − − −

< ≤⎨
= − − − +⎩

(11) 

2 2

[1 ( )][1 ( )] /[1 ( )],
: 0 1.

[2 2 ( ) ( ) ( )] / ( ),
u s t s t s t

L t
v c t c t c t c t

λ

λ λ λ

= − − − +⎧
≤ <⎨

= − + − − −⎩
(12) 

It can be easily checked that (5) and (6) follow from (11) 
and (12), respectively. 

Thus, the following lemma holds: 
Lemma 3.3 The T-Bézier curve ( )tr  has a loop if and 
only if ( , )u v L∈ . 

Both the curves 1L  and 2L  are monotonically 
decreasing and strictly convex continuous curves. the 
curve 1L  intersects the curve 2L  at the point ( 1, 1)− − . The 
asymptotic line of the curve 1L  is u -axis, and that of the 
curve 2L  is v -axis. The two asymptotic lines of the curve 
C  are u -axis and v -axis respectively. And the curve C  
does not intersect 1L  and 2L . 

3.4 The case of convexity 

Lemmas 3.1-3.3 imply that the T-Bézier curve ( )tr  has 
none of inflection points and singular points if the point 
( , )u v  lies in complementary region 2 \N C S D L=\ ∪ ∪ ∪ . 
As is shown in Fig. 1, the region N  can be divided into 

0N , 1N , 2N , where the region 1N  is bounded by the 
curve 1L  and the ray 2 : 1, 1l v u= − < − , the region 2N  is 
bounded by the curve 2L  and the ray 1 : 1, 1l u v= − < − . 
The ray ( 1, 2)il i =  is the tangent line of the curve 

( 1,2)iL i =  at the point ( 1, 1)− − . 
To distinguish a local convex curve from a global one, 

as mentioned in Definition 3.5, we need to consider ( )tγ , 
( )m t  and ( )n t . By a straightforward computation from (7), 

we have 
1 3( ) (1 / 2) ( ; , )m t t u vπ λ ϕ= + ×a a  

and  
1 3( ) ( ; , )n t t u vψ= ×a a , 

where 
3 2 3( ; , ) ( ) [ ( ) ( )]t u v b t v b t b tϕ = + + ,                  (13) 

0 3 0 3 2 3 2 3

0 2 3 0 2 3

( ; , ) [1 ( )] ( ) ( ) ( ) [ ( ) ( ) ( ) ( )]
{[1 ( )][ ( ) ( )] ( )[ ( ) ( )]}.

t u v b t b t b t b t u b t b t b t b t
v b t b t b t b t b t b t

ψ ′ ′ ′ ′= − + + −
′ ′ ′+ − + + +

 

According to (13), if 0 3 0 2 0 3 0( )/[ ( ) ( )],v b t b t b t=− +  then 

0( ; , )t u vϕ  changes sign at 0t . It can be easily checked that 
the range of 0v  is 01 0v− < < . Therefore ( )m t  changes 
sign at 0t , if 0 0 1( , )u v N∈ . In fact, the region 1N  is just the 
part of the region N , which is covered by the tangent 
lines of the curve 2L  (see Fig. 1). 

Parametric Equations (11) can be obtained by solving 
the simultaneous equations ( ; , ) 0t u vψ =  and ( ; , ) 0t t u vψ ′ =  
for the unknown parameters u  and v . This implies that 
the region 2N  is covered by the tangent lines of the curve 

1L . If the point 0 0( , )u v  lies in the region 2N , then the 
curve 1L  has a tangent line 0( ; , ) 0t u vψ =  passing through it 
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with 0 0 0( ; , ) 0t t u vψ ′ ≠ . Thus, according to the Taylor 
expansion 0 0 0 0 0 0 0( ; , ) ( ; , )( ) ( )tt u v t u v t t o t tψ ψ ′= − + − , we 
know that 0 0( ; , )t u vψ  changes sign at 0t . 

In summary, ( )tγ , ( )m t  and ( )n t  do not change sign 
for all (0,1)t∈  when 0 0 0 1 2( , )u v N N N∈ ∪ ∪ , while there 
exits 0 (0,1)t ∈  such that ( )m t  (or ( )n t ) changes sign at 

0t  when 0 0 1( , )u v N∈  (or 2N ). This establishes the 
following lemma. 
Lemma 3.4 The T-Bézier curve ( )tr  is globally (or 
locally) convex if and only if 0( , )u v N∈  (or 1 2N N∪ ). 

Lemmas 3.1-3.4 give the desired Theorem 3.1 on the 
shape features of the planar T-Bézier curve ( )tr . 

The proof is finished.                                                   □ 
Finally, if the side vectors 1a  and 3a  are parallel 

(excluding the four control points are collinear), after 
discussion analogous to the proof of Theorem 3.1, we can 
deduce that the T-Bézier curve is globally convex and has 
no inflection points and singularities if the direction of 1a  
is opposite to that of 3a , the T-Bézier curve has one and 
only one infection points if and only if the direction of 1a  
is same as that of 3a . 

 

 

 

Fig. 2 The influences on shape diagram of T-Bézier curve by the  two shape parameters. 
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4. Effects of the Shape Parameters on the 
Shape Features 

Theorem 3.1 shows that the regions S  and 0N  are 
independent of the shape parameters λ  and μ , and the 
equations of the curves C , 1L  and 2L  only depend on the 
values of the two shape parameters. To know the changes 
of the regions D  and L , we let ( )Area X  denotes the 
area of region X  in uv -plane. From the equations (9), 
and (11-12), we have 

( ) 1 (2 3 )( ) (4 21 /16)Area D π λ μ π λμ= + − + + − ,          (14)
( ) 4/3 (4 5 / 4)( ) (20/3 35 /16)Area L π λ μ π λμ= + − + + − .(15) 

According to the equations of the curves C , 1L  and 2L , 
and the areas (14-15), we know the following changes of 
the above-mentioned curves and regions in terms of the 
shape parameters λ  and μ : 
Remark 4.1 Assume that λ  is fixed. The curve 1L  and the 
left part of the curve C  gradually approach u -axis as the 
increment of μ ; but the curve 2L  and the right part of the 
curve C  gradually approach v -axis as the decrement of 
μ . 
 
Remark 4.2 Assume that μ  is fixed. The curve 1L  and the 
left part of the curve C  gradually approach u -axis as the 
decrement of λ . The curve 2L  and the right part of the 
curve C  gradually approach v -axis as the increment of 
λ . 
Remark 4.3 Assume that λ  is fixed. As the increment of 
μ  the region 1N  expands, but the regions 2N  and D  
reduce. 
 
Remark 4.4 Assume that μ  is fixed. As the increment of 
λ  the region 2N  expands, but the regions 1N  and D  
reduce. 
 
Remark 4.5 Assume that λ  is fixed. The region L  
expands as the increment of μ , if *λ λ< . The region L  
reduces as the increment of μ , if *λ λ> . 
 
Remark 4.6 Assume that μ is fixed. The region L  
expands as the increment of λ , if *μ μ< . The region L  
reduces as the increment of λ , if *μ μ> .  
Note that * * (192 / 5 12 ) /(21 64) 0.3552λ μ π π= = − − ≈  
can be derived form (15). 
These changes are shown in Fig. 2. 

 
Corollary 4.1 When there is only a single inflection point 
on the T-Bézier curve ( )tr , we cannot remove it by 
altering the shape parameters. And if ( )tr  is globally 
convex, it remains global convexity regardless of the 
changes of shape parameters λ  and μ . 
 
Corollary 4.2 If 1 , 0u v− < < , then the T-Bézier curve 

( )tr  has either a singularity or two inflection points 
regardless of the changes of shape parameters λ  and μ  
(see Fig. 3). 

 

Fig. 3 The T-Bézier curve has either a singularity or two inflection points. 

Corollary 4.3 Assume that 1( , )u v N∈  with 2λ = −  and 
1μ = ; or 2( , )u v N∈  with 1λ =  and 2μ = − . Then we 

can remove the unwanted singularity or inflection points 
of the T-Bézier curve ( )tr  by modifying shape parameters 
λ  and μ  (see Fig. 4). 

 

Fig. 4 The T-Bézier curve can be adjusted as local convex curve. 

5. Conclusions 

We investigated the convexity and existence of 
singularities and inflection points of planar trigonometric 
Bézier curves with two shape parameters. The obtained 
conditions enables us to manipulate the control points and 
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the shape parameters such that the resulting curves will 
not have the unwanted inflection points and singularities. 
The effects of the shape parameter on the shape diagram 
of planar T-Bézier curves were made clear. The results are 
useful for characterizing and adjusting the shapes of 
planar trigonometric curves. 
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