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Abstract 
Edges of an image are considered a type of crucial information 

that can be extracted by applying detectors with different 

methodology. It is a main tool in pattern recognition, image 

segmentation, edge detection and scene analysis. In this paper, 

we present a new technique of edge detection based on two-

dimensional Tsallis entropy. The two-dimensional Tsallis 

entropy was obtained from the two-dimensional histogram which 

was determined by using the gray value of the pixels and the 

local average gray value of the pixels, the work it was applied a 

generalized entropy formalism that represents a recent 

development in statistical mechanics. The effectiveness of the 

proposed method is demonstrated by using examples from the 

real-world and synthetic images. The performance evaluation of 

the proposed technique in terms of the quality of the  edge 

images are presented. 

Keywords: Tsallis entropy, Edge detection, Image segmentation, 

2D histogram. 

1. Introduction 

Edge detection is an important field in image processing. 

Edges characterize object boundaries and are therefore 

useful for segmentation, registration, feature extraction, 

and identification of objects in a scene[3]. An effective 

edge detector reduces a large amount of data but still keeps 

most of the important feature of the image. Edge detection 

refers to the process of locating sharp discontinuities in an 

image. These discontinuities originate from different scene 

features such as discontinuities in depth, discontinuities in 

surface orientation, and changes in material properties and 

variations in scene illumination [2]. 

The principal assumption of the use of global thresholding 

as a segmentation technique is that "objects" and 

"backgrounds" can be distinguished by inspecting only 

image gray level values. Segmentation consist in 

subdividing an image into its constituent part and 

extracting those of  interest. Many techniques for global 

thresholding  have been developed over the years to 

segment  images and recognize patterns (e.g. [1, 2, 3, 7, 8, 

10, 12, 13, 14, 16]).  

In general, thresholding methods can be classified into 

parametric and nonparametric methods. For parametric 

approaches, the gray-level distribution of each group is 

assumed to obey a Gaussian distribution, and then the 

approaches attempt to find an estimate of the parameters of 

Gaussian distribution that best fits the histogram. Wang et 

al. [18] integrated the histogram with the Parzen window 

technique to estimate the spatial probability distribution. 

Fan et al. [4] approximated the histogram with a mixed 

Gaussian model, and estimated the parameters with an 

hybrid algorithm based on particle swarm optimization and 

expectation maximization. Zahara et al. [21] fitted the 

Gaussian curve by Nelder-Mead simplex search and 

particle swarm optimization. To resolve the histogram 

Gaussian fitting problem, Nakib et al. used an improved 

variant of simulated annealing adapted to continuous 

problems [9]. 

Nonparametric approaches find the thresholds that separate 

the gray-level regions of an image in an optimal manner 

based on some discriminating criteria, such as the entropy 

measures. [6, 19, 5] 

Recent developments in statistical mechanics based on 

Tsallis entropy have intensified the interest of investigating 

it as an extension of Shannon’s entropy [11]. It appears in 

order to generalize the Boltzmann-Gibbs’ traditional 

entropy to non-extensive physical systems.  

Recently M. A. El-Sayed et al  [1] proposed an efficient 

technique based on 2d Tsallis entropy for image 

thresholding. Our algorithm has been inspired by the ideas 

from Refs.[ 1, 15, 20].  

This paper is organized as follows: in Section 2 presents 

some fundamental concepts of the mathematical setting of 

entropy. In Section 3, we describe the relation between the 

threshold  and  2d Tsallis entropy. Section 4, we introduce 

the newly proposed edge detection technique based on 2d 

Tsallis entropy. In Section 5, we report the effectiveness of 

the proposed method when applied to some real-world and 

synthetic images. In Section 6, we present some 

concluding remarks about our method. 

2. Preliminaries 

The entropy of a discrete source is often obtained from the 

probability distribution p={pi}. Therefore, 0≤pi≤1 and 
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entropic index that characterizes the degree of 

nonextensivity. This expression recovers to BGS entropy in 

the limit 1q . Tsallis entropy has a nonextensive property 

for statistical independent systems, defined by the following 

pseudo additivity entropic rule  

).().().1()()()( BSASqBSASBAS qqqqq   

Let f(m, n) be the gray value of the pixel located at the 

point (m, n). In a digital image |),( { nmf  

 NnMm ,...,,,,...,, of size M ×  N, let the 

histogram be h(x) for  .255,...,,,0x  For the sake 

of convenience, we denote the set of all gray levels 

 255,...,,,0 as G. Global threshold selection methods 

usually use the gray level histogram of the image. The 

optimal threshold is determined by optimizing a suitable 

criterion function obtained from the gray level distribution 

of the image and some other features of the image. 

Let t be a threshold value and B = {b0, b1} be a pair of  

binary gray levels with  . } ,{ 10 Gbb Typically b0 and b1 

are taken to be 0 and 255, respectively. The result of 

thresholding an image function f(m, n) at gray level t is a 

binary function ft(m, n) such that 0),( bnmf t   if 

tnmf t ),(  otherwise, 
1),( bnmf t  . In general, a 

thresholding method determines the value t
*
 of t based on a 

certain criterion function. If t
* 

is determined solely from 

the gray level of each pixel, the thresholding method is 

point dependent [16].   

In order to compute the two-dimensional histogram of a 

given image we proceed as follow. Calculate the average 

gray value of the neighborhood of each pixel. Let g(x, y) 

be the average of the neighborhood of the pixel located at 

the point (x, y). The average gray value for the 3 × 3 

neighborhood of each pixel is calculated as  
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where  r denotes the integer part of the number r. While  

computing the average gray value, disregard the two rows 

from the top and bottom and two columns from the sides. 

The pixel’s gray value, f(x, y), and the average of its 

neighborhood, g(x, y), are used to construct a two-

dimensional histogram using : h(k,m) = Prob(  f(x, y) = k 

and g(x, y) = m ), where  . } ,{ Gmk  

For a given image, there are several methods to estimate 

this density function. One of the most frequently used 

methods is the method of relative frequency. The 

normalized histogram h
^
(k,m)  is approximated by: number 

of elements in the event (  f(x, y) = k and g(x, y) = m ), 

divided by number of elements in the sample space. 

Hence, h
^
(k,m)  can be calculate as  number of pixels with 

gray value k and average gray value m, divided by number 

of pixels in the image .  

The total number of frequencies (occurrences), ),( jin  of 

the pair (i, j), divided by the total number of pixels, N × 

M, defines a joint probability mass function, p(i, j). Thus 

NM

n
jip
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3. The Threshold  And  2D Entropy  

The threshold is obtained through a vector (t, s) where t,  

for f(x, y), represents the threshold of the gray level of the  

pixel and s, for g(x, y), represents the threshold of the 

average gray level of the pixel’ s neighborhood. The 

frequency  of occurrence of each pair of gray values is 

calculated. From  this a surface can be drawn that will have 

two peaks and one valley. The object and background 

correspond to the peaks and can be separated by selecting 

the vector (t, s) that maximizes the sum of two class 

entropies. Using this vector (t, s), the histogram is divided 

into four quadrants (see Fig. 1). We denote the first 

quadrant by [t + 1, 255] × [0, s], the second quadrant by 

[0, t] × [0, s], the third quadrant by [0, t]×[s+1, 255], and 

the fourth quadrant by [t+1, 255]× [s + 1, 255]. 

Since two of the quadrants, first and third, contain 

information about edges and noise alone, they are ignored 

in the calculation. Because the quadrants which contain the 

object and the background, second and fourth, are 

considered to be independent distributions, the probability 

values in each case must be normalized in order for each of 

the quadrants to have a total probability equal to 1.  
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Fig. 1 Quadrants in the 2D histogram due to thresholding at (t, s). 

 

Our normalization is accomplished by using a posteriori 

class probabilities, P2(t, s) and P4(t, s). We assume that the 

contribution of the quadrants which contains the edges and 

noise is negligible, hence we further approximate P4(t, s) 

as  P4(t, s) ≈ 1 - P2(t, s). The Tsallis entropy of order q of 

an image is defined as: 
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Here we have assumed that the off-diagonal probabilities 

are negligible and ),( stS B

q
 is computed by using 1-P2(t, s) 

instead of P4(t, s). We try to maximize the information 

measure between the two classes (object and background). 

When ),( stSq
 is maximized, the luminance pair (t,s)  that 

maximizes the function is considered to be the optimum 

threshold pair (t
*
, s

*
)  [7] 
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For a priori chosen q, we will use only the optimal 

threshold t
*
(q) to threshold an image.  

 

Theorem 1: The threshold value equals to the same value 

found by Shannon’s method when q→1.  

Proof: The limiting case of the proposed extension is 

Shannon’s method. To see this, compute the limiting 
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Therefore, when q → 1, the threshold value equals to the 

same value found by Shannon’s method. Thus this 

proposed method includes Shannon’s method as a 

special case. The following expression can be used as a 

criterion function to obtain the optimal threshold at q→1. 
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In order to reduce the execution time, we take t=s, i.e. the 

value of t is lies on the diagonal of  quadrants in the 2D 

histogram and the calculation on only two square 
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matrices,  P2  with tt and  P4 with (255-t)  (255-t). See 

Fig. 2. 

 

 

Fig. 2 Quadrants in the 2D histogram due to thresholding at (t, t). 

 

The complete Tsallis2DThr algorithm can now be 

described as follows: 

Algorithm Tsallis2DThr; 

Input: A  digital grayscale image A of size M × N. 

Output: The optimal threshold  t
*
(q) of A. 

Begin 

1. Let f(x, y) be the original gray value of the pixel at 

the point (x, y), x=1..M,  y=1..N . 

2. Calculate the average gray level value g(x, y) in a 

3×3 neighborhood around the pixel (x, y),  

according to   

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    EndIf.  

5. For  x=1..M, y=1..N: 

     If *),( tyxf t   then 0),( yxf t
 Else 255),( yxf t

    

EndIf. 

End. 

4. Edge Detection Technique  And  2D Tsallis 

Entropy  

We will use the usual masks for detecting the edges. A 

spatial filter mask may be defined as a matrix w of size m×n.  

Assume that m=2μ+1 and n=2ρ+1, where μ, ρ are nonzero 

positive integers. For this purpose, smallest meaningful size 

of the mask is 3×3. Such mask coefficients, showing 

coordinate arrangement as Fig. 3.a .  Image region under the 

above mask is shown as Fig. 3.b . 

 

 

w(-1,-1) w(-1,0) w(-1,1) 

w(0,-1) w(0,0) w(0,1) 

w(1,-1) w(1,0) w(1,1) 

(a) 

 

f(x-1, y-1) f(x-1,y) f(x-1, y+1) 

f(x, y-1) f(x, y) f(x, y+1) 

f(x+1, y-1) f(x+1,y) f(x+1, y+1) 

(b) 
Fig. 3 Coordinate arrangement and image region 

under  3×3 mask.  

 
In order to edge detection, firstly classification of all pixels 

that satisfy the criterion of homogeneousness, and  detection 

of all pixels on the borders between different homogeneous 

areas. In the proposed scheme, first create a binary image by 

choosing a suitable threshold value using Tsallis entropy. 

Window is applied on the binary image. Set all window 

coefficients equal to 1 except centre, centre equal to × as 

shown in Fig. 4. 

 

1 1 1 

1 × 1 

1 1 1 

 

Fig. 4 Window coefficients of 3×3 mask. 

 

Move the window on the whole binary image and find the 

probability of each central pixel of image under the window. 

Then, the entropy of each central pixel of  image under the 

window is calculated as S(CPix) = - pc  ln ( pc). 

Where, pc is the probability of central pixel CPix of binary 

image under the window. When the probability of central 

pixel, pc =1, then the entropy of this pixel is zero. Thus, if 

the gray level of all pixels under the window homogeneous, 
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pc= 1 and S =0. In this case, the central pixel is not an edge 

pixel. Other possibilities of entropy of central pixel under 

window are shown in Table 1. 

 

Table 1  p and S of central under window 

p 1/9 2/9 3/9 4/9 

S 0.2441 0.3342 0.3662 0.3604 

p 5/9 6/9 7/9 8/9 

S 0.3265 0.2703 0.1955 0.1047 

 

In cases pc= 8/9, and pc=7/9 , the diversity for gray level of 

pixels under the window is low. So, in these cases, central 

pixel is not an edge pixel. In remaining cases, pc≤6/9 , the 

diversity for gray level of pixels under the window is high.  

The complete 2DTsallisEdgeDetection algorithm can now 

be described as follows: 

 

Algorithm 2DTsallisEdgeDetection; 

Input: A grayscale image A (M × N). 

Output: The edge detection image g . 

Begin 

1. Select suitable 
*t , q, using 2DTsallisThr. 

2. Create a binary image:     

      If f(x, y) ≤ t
*
( q)  then f (x,y) =0 Else  f(x, y) =1. 

3. Create a mask w, with dimensions m×n:  

      Normally,  

      m=n=3.  μ =(m-1)/2 and ρ=(n-1)/2. 

4. For all 1≤ x≤ M and 1≤ y ≤ N:     

     Find g an output image by set g = f. 

5. For all ρ+1≤ y ≤ N-ρ and μ+1≤ x≤ M-μ,  

    checking for edge pixels: 

i. sum = 0; 

ii. For all -ρ ≤ k ≤ ρ  and  - μ ≤  j ≤ μ  :   

           If ( f(x, y) = f (x+j,  y+k) ) Then 

            sum= sum+1. 

iii. If ( sum >6 ) Then g(x,y)=0  Else g(x,y)=1 . 

End algorithm. 

5. Experimental Results: 

In this section, we discuss the experimental results 

obtained  using the proposed method. This discussion 

includes  the choice of the optimal threshold and the 

presentation of  the optimal threshold values of some real-

world and synthetic  images. These images are shown in 

Figs. 5–18. Our analysis is based on how much 

information is lost due to thresholding. In this analysis, 

given edge images of a same original image, we prefer the 

one which lost the least amount of information. The 

optimal threshold value was computed by the proposed 

method for these images. Table 1 lists the optimal 

threshold values that are found for these images for q 

values equal to 1.0, 0.3, 0.5, 0.7, 0.9, 1.0 and 2.0, 

respectively. 

The original images together with their histograms and  the 

edge images obtained by using the optimal threshold  of 

some values t
*
 are displayed side by side in Figs. 5–18. 

Using the above twenty images and also some other 

images, we conclude that when q value lies between 0 and 

1, our proposed method produced good optimal threshold 

values. Moreover, the optimal threshold value does not 

change very much when the fractional q value changes a 

little. However, when q was greater than 1, this proposed 

method did not produce good threshold values. In fact the 

threshold values produced were unacceptable (see the last 

column of Table 2).  

When the value of q was one, the threshold value produced 

was not always a good threshold value (see Figs. 5–18). 

This new method performs better with fractional values of 

q. In this method of edge detection, we have used in 

addition to the original gray level function f(x, y), a 

function g(x, y) that is the average gray level value in a 

3×3 neighborhood around the pixel (x, y).  

Table 2  
*t values for various values of q  

Image 
t
*
(…) 

0.1 0.3 0.5 0.7 0.9 1 2 

bacteria 102 102 102 102 102 154 6 

blood1 141 141 141 141 141 160 141 

bonemarr 134 149 149 149 157 216 157 

cameraman 102 84 84 84 84 119 84 

eight 154 154 154 154 154 228 154 

flowers 120 120 120 120 120 70 86 

ic 132 150 150 150 150 23 252 

moon 132 132 85 85 55 197 55 

mri 131 107 96 77 77 101 55 

retina 123 119 119 219 219 113 219 

rice 131 115 115 115 115 96 115 

Saturn 123 119 119 96 45 165 41 

shot1 121 165 165 165 165 161 165 

Tire 123 116 114 114 114 162 190 

 

This approach can be extended to an image pyramid, 

where an image on the next higher level is composed of 

average gray level values computed for disjoint 3×3 

squares. From the point of view of computational time and 

image quality, a neighborhood size of 3×3  with q value 

around 0.1 would be ideal for thresholding with this 

proposed method. 
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Fig. 5. eight  image, and its the edge images with proposed method 

t*(0.1)= 154. 

 

  

Fig. 6. Saturn image, and its the edge images with proposed method 

t*(0.1)= 45. 

 

  

Fig. 7. blood1 image, and its the edge images with proposed method 

t*(0.1)= 141. 

 

  

Fig. 8. retina image, and its the edge images with proposed method 

t*(0.1)= 123. 

 

  
Fig. 9. ic image, and its the edge images with proposed method t*(0.1)= 

132. 

  

Fig. 10. bacteria image, and its the edge images with proposed method 

t*(0.1)=102. 

 

  

Fig. 11. cameraman image, and its the edge images with proposed 

method t*(0.1)= 113. 

 

  

Fig. 12. rice image, and its the edge images with proposed method 

t*(0.1)= 115. 

 

  

Fig. 13. shot1 image, and its the edge images with proposed method 

t*(0.1)= 121. 

 

  

Fig. 14. mri image, and its the edge images with proposed method 

t*(0.1)= 131. 
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Fig. 15. bonemarr image, and its the edge images with proposed 

method t*(0.1)= 134. 

 

 

  

Fig. 16. flowers image, and its the edge images with proposed 

method t*(0.1)= 120. 

 

 

  

Fig. 17. moon image, and its the edge images with proposed 

method t*(0.1)= 132. 

 

  

Fig. 18. tire image, and its the edge images with proposed 

method t*(0.1)= 114. 

 

5. Conclusion  

In this paper, we introduced the newly proposed technique 

based on 2D Tsallis entropy of order q, It is a powerful 

technique for image edge detection. In almost every image 

used, the proposed method yielded a good threshold value 

for fractional q coefficient, that is, when 0<q<1. For q>1, 

the proposed method did not yield a good threshold value. 

When q = 1, the method yielded, in some cases, good 

optimal threshold values and, in some other cases, 

unacceptable threshold values. The Tsallis q coefficient 

can be used as an adjustable value and can play an 

important role as a tuning  parameter in the image 

processing chain for the same class of  images. This can be 

an advantage when the image processing tasks depend on 

an automatic thresholding. It is already pointed out in the 

introduction that the two-dimensional extension gives rise 

to the exponential increment of computational time. 

However,  the proposed method is decrease the 

computation time and this method is easily implemented. 

The software used to generate the results in this paper was 

written in the commercial software MATLAB 8 on a 

computer with 2.1GHz Intel Core 2 Duo CPU laptop with 

2 GB of RAM, and thus we have taken the advantage of 

the vector computation that MATLAB offers. Because of 

this our method takes few seconds.   
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