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Abstract 
The diagnosis and prognosis of breast cancer is an important, real-
world medical  problem. As an intrusion detection problem is one of 
the applications of artificial immune system, in this paper proposes a 
novel scheme that uses a robust immune system formed from clonal 
selection theory and principal component analysis for breast cancer 
diagnosis and Prognosis. Like the job done by Antigen Presenting 
Cells APCs in natural immune system, this work use PCA as an aided 
tool for immune cells in the selection for the most important features 
that can detect the cancer and forward them for the immune system in 
training phase which generates an artificial lymphocytes ALCs and 
save them as immune memory. It is important to note that the training 
phase was done on 20% of the dataset, whereas the testing phase was 
done on the remaining 80% of the data set which are considered as 
unknown cases for the ALCs. The study proved that the best results 
obtained when the PCA select minimum reasonable number of 
features, while in the training phase the diagnostic accuracy is 0.99 
and the prognostic accuracy is 0.9, and the memories ALCs achieved 
in the testing phase a diagnostic accuracy 0.97 and prognostic 
accuracy 0.88. 
Keywords: Artificial Immune System  (AIS); Clonal Selection 
Algorithm (CLONALG); Principal Component Analysis (PCA); 
Wisconsin Diagnosis Breast Cancer (WDBC); Wisconsin Prognosis 
Breast Cancer (WPBC). 
 
1. Introduction 

The second leading cause of death among women is breast 
cancer, as it comes directly after lung cancer. Most clinicians 
are prone to misjudge patients’ survival furthermore 
heightening the need for accurate prognostication tools.  In 
addition to that, the planning of public health and cancer 
treatment can be vastly improved by learning the pattern of 
survival and the related prognostic factors. According to the 
American Cancer Society, breast cancer is the second leading 
cause of cancer deaths among women today. In developing 
countries where prognosis is much poorer, many die from this 
disease although breast cancer could be treated with early 
diagnosis and treatment [1][13]. 
Although there was a great deal of public education and  
scientific  research,  Breast  cancer  considered the  most 
common  invasive  cancer  in  women,  with  more  than  one 
million cases and nearly 600,000 deaths occurring worldwide 
annually [13]. Early diagnosis helps to save thousands of 
disease victims. This shows that a good prognostication tool 
could significantly influence survival prediction and death 
count. 

Data mining approaches in medical domains is increasing 
rapidly due to the improvement  effectiveness  of  these  
approaches  to classification  and  prediction  systems,  
especially  in  helping medical practitioners in their decision 
making. In addition to its importance in finding ways to 
improve patient outcomes, reduce  the  cost  of  medicine,  and  
help  in  enhancing  clinical studies [13].  
The   natural   immune   system NIS  constitutes   a weapon  
against   intruders   in   a   given   body,   for   this  goal  several  
cells contribute to eliminate this intruder named  antigen,  
these  cells  participate  for  a  'biologic immune response'. 
Artificial Immune System AIS  simulate  the  most  important  
functions of the natural immune system for pattern 
recognition. The  main  factors  entering  in  the  artificial  
immune system  are  antigens,  antibodies,  B and T  memory  
cells. 
The term peptide in the NIS refers to a short chain of amino 
acids, usually obtained by the fragmentation of an antigen, and 
presented to other cells of the immune system by antigen 
presenting cells (APC). Antigen presentation refers to 
processing a suspicious foreign particle. Such a particle is 
broken up into peptides, and then such peptides are held on the 
surface of APC, where T cells can recognize them. Several 
types  of  cells  may  serve  as  APC,  including  macrophages,  
dendritic cells, and B cells [5]. 
From APC behavior the inspiration come to use PCA to 
extract the most significant features and introduce them to 
Artificial LymphoCytes ALCs. Where PCA is a useful 
statistical technique that has found application in elds such as 
face recognition and image compression, and is a common 
technique for nding patterns in data of high dimension. PCA 
is used for dimensionality reduction. The goal of PCA is to 
reduce the dimensionality of the data while retaining as much 
as possible of the variation present in the original dataset.  
 
2. Problem Background and Previous Works 
Presently many studies have been done by researchers in 
predicting survival among cancer patients particularly from 
the statistical field. Nevertheless the statistical approaches face 
many challenges in handling the nature of the survival analysis 
datasets which often are censored data, and the difficulties in 
managing the complex, non-linear relationships between the 
prognostic factors and the patient’s tumor progression. Also, 
many have argued that the statistical approach omits the need 
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in  prediction  of  the patients prognosis since it does not take 
into account that all patients are individual and unique cases.  
This leads to the alternative technique that is the artificial 
intelligence method which is still largely uninvestigated. 
Although several reported works come from the application of 
ANN,  genetic algorithm, decision trees, and Fuzzy classifier 
[1]. 
Anagnostopoulos,  et  al. [2]  presented two neural network 
architectures are proposed for the breast cancer 
detection/prognosis problems.  The  first  is  a  probabilistic  
classifier,  which  can  detect  malignancy  while  the  second 
architecture consist of a probabilistic neural network that 
employs a generalised regression algorithm [2]. 
Balakrishnan,  et  al. [3]   propose  a  feature  selection 
embedded Hybrid Prediction model that combines two 
different functionalities    of    data    mining;    the    clustering    
and    the classification. The F-score feature selection method 
and k-means clustering  selects  the  optimal  feature  subsets  
of  the  medical datasets  that  enhances  the  performance  of  
the  Support  Vector Machine  classifier.    
Gupta,   et   al.  [6]     presented   an   overview  of   the  current  
research being carried out using the data mining techniques to 
enhance the breast cancer diagnosis and prognosis. 
Karabatak and Ince [7] presented an automatic diagnosis 
system for detecting breast cancer based on association rules 
(AR) used for reducing the dimension of breast cancer 
database and neural network (NN) is used for intelligent 
classi cation. 
Khelil and Benyettou [8] developed  four  versions  of  
Artificial  Immune  Recognition System  (AIRS)  and 
presented results for Cancer diagnostic with some critics and 
remarks of these methods. 
Ludwig and Roos [10] investigated the prognosis of breast 
cancer using a machine learning approach, in particular 
genetic programming, where it is a method takes a digitized  
image  of  a  patient  and  automatically  generates  the  
prediction  of  the time  to  recur  as  well  as  the  disease-free  
survival  time. 

 
3. Wisconsin Breast Cancer Dataset 
The   Wisconsin   Breast   Cancer   datasets   from   the   UCI  
Machine  Learning  Repository  is  used,  to  distinguish 
malignant  (cancerous)  from  benign  (non-cancerous)  
samples. They have been collected by Dr. William H. Wolberg 
(1989–1991) at the University of Wisconsin–Madison 
Hospitals.  A   brief   description   of   these   datasets   is   
presented   in   table   1.  Each    dataset    consists    of    some   
classification    patterns    or  instances  with  a  set  of  
numerical features or attributes. 
  
 
3.1 Wisconsin Diagnosis Breast Cancer (WDBC)  

The  details  of  the  attributes  found  in  WDBC  dataset:  
ID number, Diagnosis (M = malignant, B = benign) and ten 
real-valued  features  are  computed  for  each  cell  nucleus:  

Radius,  Texture,      Perimeter,      Area,      Smoothness,      
Compactness, Concavity, Concave points, Symmetry and 
Fractal dimension. These features are computed from a 
digitized image of a fine  needle  aspirate  (FNA)  of  a  
breast  mass.  They  describe characteristics  of  the  cell  
nuclei  present  in  the  image [13]. The mean, standard error, 
and "worst" or largest (mean of the three largest values) of 
these features were computed for each image, resulting in 30 
features.   For  instance,  field  3  is  Mean  Radius,  field  13  is  
Radius SE, field 23 is Worst Radius. 

 
3.2 Wisconsin Prognosis Breast Cancer (WPBC) 

The  details  of  the  attributes  found  in  WPBC  dataset:  ID 
number,     Outcome     (R     =     recur,     N     =     non-
recur), Time (R => recurrence time, N => disease-free time), 
from 3 to  33  ten  real-valued  features  are  computed  for  
each  cell nucleus:   Radius,   Texture,   Perimeter,   Area,   
Smoothness, Compactness,   Concavity,   Concave   points,   
Symmetry   and Fractal dimension. The thirty four is Tumor 
size and the thirty five is the Lymph node status. It’s  known  
from  the previous lines that  the  diagnosis and prognosis  
has   the   same   features   yet   the   prognosis   has   two  
additional features [13]. The mean, standard error, and 
"worst" or largest (mean of the three largest values) of these 
features were computed for each image, resulting in 30 
features.   For  instance,  field  4  is  Mean  Radius,  field  14  is  
Radius SE, field 24 is Worst Radius. Feature 34 Tumor size - 
diameter of the excised tumor in centimeters, and feature 35 
Lymph node status - number of positive axillary lymph 
nodes observed at time of surgery. 

 
Table 1: Description Of The Breast Cancer Datasets. 

 
Dataset 

No. of 
Attributes 

No. of 
Instances 

 
Class1 

 
Class2 

Wisconsin 
Diagnosis 

Breast 
Cancer(WDBC) 

 
 

32 

 
 

569 

 
357  

Benign 

 
212 

Malignant 

Wisconsin 
Prognosis 

Breast 
Cancer(WPBC) 

 
 

34 

 
 

198 

 
151 

NonRecur 

 
47 

 Recur 

 
4. Breast Cancer Diagnosis Model  
Feature reduction process can be viewed as a preprocessing 
step which removes distracting variance from a dataset, so that 
classifiers can perform better. In our proposed algorithm PCA 
transform used for dimensionality reduction which is 
commonly used step, especially when dealing with high 
dimensional space of features. PCA-based approaches 
improve system performances and a trained artificial immune 
system to diagnosis or prognosis the cancer. Following are the 
steps used in our algorithm: 

 
4.1 Data Preprocessing   
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Normalization is used for data preprocessing, where the 
attribute data are scaled so as to fall within a small specified 
range such as -1.0 to 1.0 or 0.0 to 1.0. Normalizing the input 
values for each attribute measured in the training samples will 
help speed up the learning phase.  

 
4.2 Feature Reduction by PCA 
Feature reduction applies a mapping of the multidimensional 
space into a space of lower dimensions. Feature extraction 
includes features construction, space dimensionality reduction, 
sparse representations, and feature selection all these 
techniques are commonly used as preprocessing to machine 
learning and statistics tasks of prediction, including pattern 
recognition. Although such problems have been tackled by 
researchers for many years, there has been recently a renewed 
interest in feature extraction. The feature space having reduced 
features truly Contributes to classification that cuts 
preprocessing costs and minimizes the effects of the ‘peaking 
phenomenon’ in classification. Thereby improving the overall 
performance of classifier based intrusion detection systems. 
The commonly used dimensionality reduction methods include 
supervised approaches such as linear discriminant analysis 
(LDA), unsupervised ones such as principal component 
analysis (PCA), and additional spectral and manifold learning 
methods [9]. 
PCA is a linear transformation with linear orthonormal basis 
vectors, it can be expressed by a translation and rotation. It 
convert a set of observations of possibly correlated variables 
into a set of  values  of  linearly  uncorrelated  variables  called  
principal components. The number of principal components is 
less than or equal to the number of original variables [12][13]. 
If we consider the two dimensional case then Figure 1 
illustrates the basic principle of this transformation [12]. 
Figure  (a)  presents  each  Xith sample, denoted the initial data 
set which is transformed into another representation (Figure 
(b)), denoted Yith. The main portion of the variance is stored in 
the first variable Y1 . This means that if we ignore the second 
variable Y2,  as  in  figure  (c),  the  main  variance  of  the  data  is  
kept. Therefore, representing an initial data set with a new 
more compact space keeping much of the variance of the data 
in the new compact representation offers many facilities to 
interpret the data in a new reduced space.  This example 
illustrates a reduction from two dimensions into one 
dimension. However, in reality the reduction might be 
performed over hundreds or thousands of variables into only 2 
or 3 variables. 
Principal components are particular linear combinations of the 
p random variables X1, X2, …, Xp, with three important 
properties: (1) the principal components are uncorrelated, (2) 
the first principal component has the highest variance, the 
second principal component has the second highest variance, 
and so on, and (3) the total variation in all the principal 
components combined equal to the total variation in the 
original  variables  X1,  X2,  …,  Xp.   The  new  variables  with  
such properties are easily obtained from eigenanalysis of the 
covariance matrix or the correlation matrix of X1, X2, …, Xp 
[14]. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.3 Classification Using Clonal Selection Algorithm  

The clonal selection principle, or theory of 
(CLONA), is the algorithm used by the immune system to 
describe the basic features of  an  immune  response  to  an  
antigenic  stimulus. Clonal  selection  establishes  the  idea  
that  only  cells  that recognize the antigens will proliferate 
where the rest will not. The most triggered cells selected as 
memory cells for future pathogens attacks and the rest mature 
into antibody secreting cells called plasma cells [11]. 

Clonal  selection  in  AIS  is  the  selection  of  a  set  of  
artificial lymphocytes ALCs with the highest calculated 
a nity with a non-self pattern.  The selected ALCs are then 
cloned andmutated in an attempt to have a higher binding 
a nity with the presented nonself pattern.  The mutated 
clones  compete  with  the  existing  set  of  ALCs,  based  on  the  
calculated a nity between the mutated clones and the non-self 
pattern, for survival to be exposed to the next non-self pattern.   

The selection of a lymphocyte by a detected antigen 
for clonal proliferation, inspired the modeling of CLONALG. 
De Castro and Von Zuben presented CLONALG as an 
algorithm that performs machine-learning and pattern 
recognition tasks [4]. The affinity between an ALC and a non-
self pattern is measured as the Hamming distance between the 
ALC and the non-self pattern.  The Hamming distance gives 
an indication of the similarity between two patterns, i.e. a 
lower Hamming distance between an ALC and a non-self 
pattern implies a stronger affinity [4]. 

All patterns in the training set are seen as non-self 
patterns. The algorithm  below summarizes the general 
CLONALG for pattern recognition tasks.  When applied to 
pattern matching, a set of antigens, G, to be matched. The task 
of  CLONALG  is  to  then  produce  a  set  of  memory  ALC  M  ,  
that match the members in G. 
 
input:   G = set of antigens to be recognized, n the number of 
worst elements to select for removal 
output:  M = set of memory ALCs capable of classifying 
unseen patterns 
begin 

 

Figure 1: PCA basic principle transformation [12] 
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   Create an initial random set of ALCs, A  
   forall  antigens in G   do          
        Determine the affinity with each ALC in A.  
        Generate clones of a subset of the ALC in A   
              with the highest affinity.  
        The number of clones for an ALC is  
             proportional to its affinity.              
        Mutate attributes of these clones to the set A,  
            and place a copy of the highest affinity                                       
            ALC in A  into the memory set, M. 
       Replace the n lowest affinity ALCs in A with  
            new randomly generated ALCs. 
   end  
end 
 
Figure 2 depicts the functional block diagram of the Breast 
Cancer Diagnosis and Prognosis Model.  It  consists  of  two  
phases namely:  training  and  testing  phases.  The  training  
phase includes four steps: acquisition, preprocess, feature 
selection, Abs generating by CLONALG, and store the best 
Abs in the immune memory, whereas the testing phase 
includes the same first three  steps  in  the  training  phase  in  
addition  to  the classification  step. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5. Experimental setup and Results 
We used C# programming for implementation. To evaluate  
the  proposed  model several measurements were used like 
(Detection Rate D.R., False Alarm Rate F.A.R., Accuracy) all 
of them depend on the calculation of confusion matrix (TP, 
TN,FP,FN). The first two features in the dataset WDBC are 
the ID number and Diagnosis ( M or B), and for WPBC are the 

ID number and Outcome (R , N), so these two features not 
encounter in the experiments. These  experiments  were 
performed as follow: 
A. Experiments on Diagnosis Training data which is 20% 

from WDBC (89 Benign, 53 Malignant), show figure 3. 
These Experiments depend on the number of features 
selected by PCA, as follow: 
A.1. Table 2, show that PCA select 10 from 30 features, 

the average of D.R. and F.A.R. for five training are 
0.99 and 0.1 continuity. 

A.2. Table 3, show that PCA select 15 from 30 features, 
the average of D.R. and F.A.R. for five training are 
0.96 and 0.6 continuity. 

A.3. Table 4, show that PCA select 21 from 30 features, 
the average of D.R. and F.A.R. for five training are 
0.94 and 0.55 continuity. 

A.4. Table 5, show that all 30 features were used, the 
average of D.R. and F.A.R. for five training are 
0.78 and 0.44 continuity. 

B. Experiments on Diagnosis Testing data which is 80% 
from WDBC (268 Benign, 159 Malignant), show figure 
4. These Experiments depend on the number of features 
selected by PCA and the number of generated Benign 
ALCs  and  Malignant  ALCs  from  experiments  A,  as  
follow: 
B.1. Table 6, show depend on the number of BenALCs 

and  MalALCs  from  exp.  A.1.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.96 and 0.08 
continuity. 

B.2. Table 7, show depend on the number of BenALCs 
and  MalALCs  from  exp.  A.2.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.93 and 0.08 
continuity. 

B.3. Table 8, show depend on the number of BenALCs 
and  MalALCs  from  exp.  A.3.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.93 and 0.11 
continuity. 

B.4. Table 9, show depend on the number of BenALCs 
and  MalALCs  from  exp.  A.4.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.68 and 0.56 
continuity. 

C. Experiments on Prognosis Training data which is 20% 
from WPBC (45 NonRecur, 14 Recur), show figure 5. 
These Experiments depend on the number of features 
selected by PCA, as follow: 
C.1. Table 10, show that PCA select 10 from 32 features, 

the average of D.R. and F.A.R. for five training are 
0.93 and 0.2 continuity. 

C.2. Table 11, show that PCA select 15 from 32 features, 
the average of D.R. and F.A.R. for five training are 
0.87 and 0.33 continuity. 

C.3. Table 12, show that PCA select 21 from 32 features, 
the average of D.R. and F.A.R. for five training are 
0.83 and 0.57 continuity. 

C.4. Table 13, show that all 32 features were used, the 
average of D.R. and F.A.R. for five training are 
0.52 and 0.94 continuity. 

Input data  
20% of the dataset 

Preprocessing 

Immune 
Memory 

Features selection by PCA 

Abs generating by CLONA 

Input data  
80% of the dataset 

Preprocessing 

Features selection by PCA 

 
Diagnosis  
Prognosis 

Training Phase Testing Phase 

Figure 2.  Immune Breast Cancer Diagnosis and Prognosis Model. 

Benign/Malignant  
Recur/NonRecur 
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D. Experiments on Prognosis Testing data which is 80% 
from WPBC (106 NonRecur, 33 Recur), show figure 6. 
These Experiments depend on the number of features 
selected by PCA and the number of generated Benign 
ALCs and Malignant ALCs from experiments C, as 
follow: 
D.1. Table 14, show depend on the number of BenALCs 

and  MalALCs  from  exp.  C.1.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.94 and 0.26 
continuity. 

D.2. Table 15, show depend on the number of BenALCs 
and  MalALCs  from  exp.  C.2.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.83 and 0.55 
continuity. 

D.3. Table 16, show depend on the number of BenALCs 
and  MalALCs  from  exp.  C.3.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.59 and 0.81 
continuity. 

D.4. Table 17, show depend on the number of BenALCs 
and  MalALCs  from  exp.  C.4.,  the  average  of  D.R.  
and F.A.R. for five testing are 0.16 and 0.99 
continuity. 

 
Table 5: Results of Experiments on Diagnosis Training data (89 Benign, 53 

Malignant), No of selected features 30. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 20 10 60 36 29 17 0.78 0.45 0.68 
2. 20 10 65 34 24 19 0.77 0.41 0.7 
3. 41 10 57 34 32 19 0.75 0.48 0.64 
4. 40 10 60 38 29 15 0.8 0.43 0.69 
5. 26 10 63 35 26 18 0.78 0.43 0.69 

 
 

Table 6: Results of Experiments on Diagnosis Testing data (268 Benign, 159 
Malignant), No of selected features 10. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 5597 80 267 147 1 12 0.96 0.01 0.97 
2. 11013 159 266 133 2 26 0.91 0.01 0.93 
3. 6253 114 266 152 2 7 0.97 0.01 0.98 
4. 8821 353 267 153 1 6 0.98 0.01 0.98 
5. 11269 304 268 151 0 8 0.97 0 0.98 

 
Table 7: Results of Experiments on Diagnosis Testing data ( 268 Benign, 159 

Malignant), No of selected features 15. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 4950 26 261 123 7 36 0.88 0.05 0.9 
2. 4828 25 256 137 12 22 0.92 0.08 0.92 
3. 5340 12 245 151 23 8 0.97 0.13 0.93 
4. 4943 13 255 145 13 14 0.94 0.08 0.94 
5. 5692 15 262 137 6 22 0.92 0.04 0.93 

 
Table 8: Results of Experiments on Diagnosis Testing data (268 Benign, 159 

Malignant), No of selected features 21. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 107 10 254 135 14 24 0.91 0.09 0.91 
2. 128 11 243 124 25 35 0.87 0.17 0.86 
3. 57 10 252 148 16 11 0.96 0.1 0.94 
4. 534 10 254 148 14 11 0.96 0.09 0.94 
5. 241 11 249 140 19 19 0.93 0.12 0.91 

 
Table 9: Results of Experiments on Diagnosis Testing data ( 268 Benign, 159 

Malignant), No of selected features 30. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 20 10 161 88 107 71 0.69 0.55 0.58 
2. 20 10 184 50 84 109 0.63 0.63 0.55 
3. 41 10 167 87 101 72 0.7 0.54 0.59 
4. 40 10 174 88 94 71 0.71 0.52 0.61 
5. 26 10 184 71 84 88 0.68 0.54 0.6 

 
Table 10: Results of Experiments on Prognosis Training data (45 NonRecur, 

14 Recur), No of selected features 10. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 51 3 44 10 1 4 0.92 0.09 0.92 
2. 80 3 42 11 3 3 0.93 0.21 0.9 
3. 200 4 41 9 4 5 0.89 0.31 0.85 
4. 85 6 42 12 3 2 0.95 0.2 0.92 
5. 348 3 42 12 3 2 0.95 0.2 0.92 

 
Table 11: Results of Experiments on Prognosis Training data (45 NonRecur, 

14 Recur), No of selected features 15. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 9 2 41 9 4 5 0.89 0.31 0.85 
2. 9 2 40 8 5 6 0.87 0.38 0.81 
3. 9 2 41 10 4 4 0.91 0.29 0.86 
4. 9 2 43 9 2 5 0.9 0.18 0.88 
5. 10 2 41 4 4 10 0.8 0.5 0.76 

 
 
 
 
 

Table 2: Results of Experiments on Diagnosis Training data (89 Benign, 53 
Malignant), No of selected features 10. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1 5597 80 88 50 1 3 0.97 0.02 0.97 
2 11013 159 88 52 1 1 0.99 0.02 0.99 
3 6253 114 88 51 1 2 0.98 0.02 0.98 
4 8821 353 89 53 0 0 1 0 1 
5 11269 304 89 52 0 1 0.99 0 0.99 

 
Table 3: Results of Experiments on Diagnosis Training data (89 Benign, 53 

Malignant), No of selected features 15. 
 Ben 

ALCs 
Mal 

ALCs 
 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1 4950 26 86 48 3 5 0.95 0.06 0.94 
2 4828 25 87 49 2 4 0.96 0.04 0.96 
3 5340 12 81 51 8 2 0.98 0.14 0.93 
4 4943 13 85 49 04 4 0.96 0.08 0.94 
5 5692 15 88 49 1 4 0.96 0.02 0.96 

 
Table 4: Results of Experiments on Diagnosis Training data (89 Benign, 53 

malignant), No of selected features 21. 
 Ben 

ALCs 
Mal 

ALCs 
 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1 107 10 86 49 3 4 0.96 0.06 0.95 
2 128 11 77 44 12 9 0.9 0.21 0.85 
3 57 10 86 50 3 3 0.97 0.06 0.96 
4 534 10 84 48 5 5 0.94 0.09 0.93 
5 241 11 82 48 7 5 0.94 0.13 0.92 
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Table 12: Results of Experiments on Prognosis Training data (45 NonRecur, 

14 Recur), No of selected features 21. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 12 2 36 7 9 7 0.84 0.56 0.73 
2. 9 2 36 6 9 8 0.82 0.6 0.71 
3. 9 2 37 4 8 10 0.79 0.67 0.69 
4. 10 2 37 8 8 6 0.86 0.5 0.76 
5. 9 2 36 8 9 6 0.86 0.53 0.75 

 
Table 13: Results of Experiments on Prognosis Training data (45 NonRecur, 

14 Recur), No of selected features 32. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 9 2 13 2 32 12 0.52 0.94 0.25 
2. 9 2 12 2 33 12 0.5 0.94 0.24 
3. 9 2 12 2 33 12 0.5 0.94 0.24 
4. 9 2 14 2 31 12 0.54 0.94 0.27 
5. 9 2 15 2 30 12 0.56 0.94 0.29 

 
Table 14: Results of Experiments on Prognosis Testing data (106 NonRecur, 

33 Recur), No of selected features 10. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 51 3 100 24 6 9 0.92 0.2 0.89 
2. 80 3 93 28 13 5 0.95 0.32 0.87 
3. 200 4 97 28 9 5 0.95 0.24 0.9 
4. 85 6 90 28 16 5 0.95 0.36 0.85 
5. 348 3 100 26 6 7 0.93 0.19 0.91 

 
Table 15: Results of Experiments on Prognosis Testing data (106 NonRecur, 

33 Recur), No of selected features 15. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 9 2 88 19 18 14 0.86 0.49 0.77 
2. 9 2 84 11 22 22 0.79 0.67 0.68 
3. 9 2 81 19 25 14 0.85 0.57 0.72 
4. 9 2 88 18 18 15 0.85 0.5 0.76 
5. 10 2 92 11 14 22 0.81 0.56 0.74 

 
Table 16: Results of Experiments on Prognosis Testing data (106 NonRecur, 

33 Recur), No of selected features 21. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 12 2 64 13 42 20 0.49 0.76 0.55 
2. 9 2 56 14 50 19 0.67 0.78 0.5 
3. 9 2 79 9 27 24 0.57 0.75 0.63 
4. 10 2 76 5 30 28 0.5 0.86 0.58 
5. 9 2 68 5 38 28 0.56 0.88 0.53 

 
Table 17: Results of Experiments on Prognosis Testing data (106 NonRecur, 

33 Recur), No of selected features 32. 

 Ben 
ALCs 

Mal 
ALCs 

 

TP 
 

TN 
 

FP 
 

FN 
 

D.R. 
 

F.A.R. 
 

ACY 
1. 9 2 8 1 98 32 0.2 0.99 0.06 
2. 9 2 8 0 98 33 0.2 1 0.06 
3. 9 2 5 0 101 33 0.13 1 0.04 
4. 9 2 4 0 102 33 0.11 1 0.03 
5. 9 2 7 0 99 33 0.18 1 0.05 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
  
 
 
 

 
Figure 3: Experiments A. 

 
Figure 4: Experiments B. 

 
Figure 5: Experiments C. 
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6. Conclusions 
This paper presented Breast Cancer diagnostic and prognostic 
results for an immerge between immuno-computing and 
features reduction. Where an  immuno-computing is one of the 
newest directions in bio-inspired machine learning and has a 
very fruitful successes in different area. The clonal selection 
theory  is  one  of  the  first  applied  theories  in  AIS,  and  in  this  
paper supported with features reduction technique PCA as a 
first step before the start of immune defense. 
The presented results are very good but the false alarm it must 
be improved using optimization algorithms. As future work it 
must be make more importance to  the parameters values and 
propose a new method to search the best values of these ones 
in order to across the performance of these hybrid collection of 
AIS and features reduction techniques. 
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Figure 6: Experiments D. 
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