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Abstract 
We currently live in the data age. It’s not easy to  measure the  

total  volume  of  structured  and  unstructured  data  that  require 

machine-based  systems  and  technologies  in  order  to  be  fully 

analyzed.  Efficient implementation techniques are the key to 

meeting the scalability and performance requirements entailed in 

such scientific data analysis. So for the same in this paper the 

Sequential Support Vector Machine in WEKA and various 

MapReduce   Programs    including    Parallel   Support   Vector 

Machine on Hadoop cluster is analyzed and thus, in this way 

Algorithms are Verified and Validated on Hadoop Cluster using 

the Concept of MapReduce. In this paper, the performance of 

above applications has been shown with respect to execution 

time/training time and number of nodes. Experimental Results 

shows that as the number of nodes increases the execution time 

decreases.  This paper is basically a research study of above 

MapReduce applications. 

Keywords:  Machine Learning, SVM, LIBSVM, WEKA Tool, 

MultiFileWordCount, PiEstimator, Parallel SVM, Hadoop, 

MapReduce. 

 
 

1. Introduction 
 

The Machine Learning [1] field evolved from the broad 

field of Artificial Intelligence, which aims to mimic 

intelligent abilities of humans by machines. It is a scientific 

discipline concerned with the design and development of 

algorithms that take as input empirical data, such as that 

from sensors or databases, and yield patterns or predictions 

thought to be features of the underlying mechanism that 

generated the data. Machine learning is the body of 

research related to automated large-scale data analysis. 

Broadly speaking the main two subfields of machine 

learning are supervised learning and unsupervised learning.  

 

 

In supervised learning the focus is on accurate prediction 

(support vector machines, kernels, neural networks), 

whereas in unsupervised learning the aim is to find 

compact descriptions of the data (clustering, 

dimensionality reduction, deep learning). 

Apache Hadoop [12] is a software framework that 

supports data-intensive distributed applications. It enables 

applications to work with thousands of computational 

independent computers and petabytes of data. 

The Hadoop Distributed File System (HDFS) [8] is 

designed to store very large data sets reliably, and to 

stream those data sets at high bandwidth to user 

applications. HDFS is the file system component of 

Hadoop. 

MapReduce [6] is a distributed data processing or 

programming model designed for processing large volumes 

of data in parallel by dividing the work into a set of 

independent tasks. MapReduce programs are written in a 

particular style influenced by functional programming 

constructs, specifically idioms for processing lists of data. 

This module explains the nature of this programming 

model and how it can be used to write programs which run 

in the Hadoop environment. 

Data Classification, also referred to as pattern 

recognition,   where   one   attempts   to   build   algorithms 

capable of automatically constructing methods for 

distinguishing between different examples, based on their 

differentiating patterns. A Support Vector Machine (SVM) 

performs classification by constructing an N-dimensional 

hyperplane   that   optimally  separates   the  data  into  two 

categories. This paper covers about Research Clarification: 

This   includes   Machine   Learning,  Supervised  Learning          
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Classification, SVM, LIBSVM, Weka Tool, Hadoop, 

HDFS, MapReduce and Cloudera - Cloudera’s Distribution 

Including Apache Hadoop version 4 (CDH4). Descriptive 

Study I: This includes List of Problems. Prescriptive 

Study: This includes Hadoop Architecture, MapReduce 

Programming Model and PSVM-MapReduce Algorithm. 

Descriptive Study II: Experimental Setup and 

Experimental Result & its Analysis. 

 

 
 

Fig. 1 Research Plan: Basic means, Stages and Main Outcomes. 

 
2. Research Clarification 

 
This section describes about   Machine Learning, 

Types  of Machine Learning, Supervised  Learning 

Classification in detail, SVM, LIBSVM, Weka Tool, 

Hadoop, HDFS, MapReduce and Cloudera – CDH4. 
 

2.1 Machine Learning 
 

A major focus of machine learning research is the design 

of algorithms that recognize complex patterns and make 

predictions/intelligent   decisions   based   on   input   data. 

A learner can take advantage of examples (data) to capture 

characteristics of interest of their unknown underlying 

probability distribution. Data can be seen as instances of 

the possible relations between observed variables. 

 
 

 
Fig. 2 Machine Learning. 

Machine learning focuses on constructing algorithms for 

making predictions from data.  A machine learning task 

aims to identify (to learn) a function f : X -> Y that maps 

input domain X (of data) onto output domain Y (of possible 

predictions). The function f is selected from a certain 

function class, which is different for each family of 

learning algorithms. Elements of X and Y are application- 

specific representations of data objects and predictions 

respectively. 

 
2.2 Supervised Learning - Classification 
 
An important task in Machine Learning is classification, 

also referred to as pattern recognition, where one attempts 

to build algorithms capable of automatically constructing 

methods for distinguishing between different examples, 

based on their differentiating patterns. Supervised learning 

algorithms utilize training data to construct a prediction 

function f, which is subsequently applied to test instances. 

Typically, training data is provided in the form of labeled 

examples (x,y) ɛ X x Y, where x is a data instance and y is 

the corresponding ground truth prediction for x. 
 

2.3 Support Vector Machine 
 
A Support Vector Machine (SVM) performs classification 

by constructing an N-dimensional hyperplane that 

optimally separates the data into two categories. In the 

reference of SVM literature, a predictor variable is called 

an attribute, and a transformed attribute that is used to 

define the hyperplane is called a feature. The task of 

choosing the most suitable representation is known as 

feature selection. A set of features that describes one case 

(i.e., a row of predictor values) is called a vector. 

So the goal of SVM modeling is to find the optimal 

hyperplane that separates clusters of vector in such a way 

that cases with one category of the target variable are on 

one side of the plane and cases with the other category are 

on the other size of the plane. The vectors near the 

hyperplane are the support vectors. 

An SVM analysis finds the line (or, in general, 

hyperplane) that is oriented so that the margin between the 

support vectors is maximized. In the figure above, the line 

in the right panel is superior to the line in the left panel. 
 

 
 

Fig. 3 Margin and Support Vectors. 
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2.4 LIBSVM 
 

LIBSVM [4]  is  a  library for  Support Vector Machines 

(SVMs). The goal is to help users to easily apply SVM to 

their applications. LIBSVM has gained wide popularity in 

machine learning and many other areas. A typical use of 

LIBSVM involves two steps: first, training a data set to 

obtain a model and second, using the model to predict 

information of a testing data set. Many extensions of 

LIBSVM are available at libsvmtools. SVM formulations 

supported in LIBSVM are: C-support vector classification 

(C-SVC), v-support vector classification (v-SVC), 

distribution estimation (one-class SVM), ɛ-support vector 

regression (ɛ-SVR), and v-support vector regression (v- 

SVR). LIBSVM implements "one-against-one" multi-class 

method, because it results in less training time when 

compared to “one-against-all” multi-class method, so there 

are k(k-1)/2 binary models, where k is the number of 

classes. 

 
2.5 WEKA Tool 

 
WEKA (Waikato Environment for Knowledge Analysis) 

[14]:  Open-Source  Software  Tool  is  a  collection  of 

machine learning algorithms implemented in Java 

developed  at  the  University of  Waikato,  New Zealand. 

WEKA consists of a large number of learning schemes for 

classification and regression numeric prediction - like 

decision trees, support vector machines, instance-based 

classifiers, Bayes decision schemes, neural networks etc. 

and clustering. 

 
2.6 Hadoop 

 
Apache   Hadoop   [12]   is   an   open-source   software 

framework that supports data intensive distributed 

applications, licensed under the Apache v2 license. It 

enables applications to   work  with thousands of 

computational independent computers and petabytes of 

data. Hadoop was derived from Google's MapReduce and 

Google File System (GFS) papers. Hadoop was created by 

Doug Cutting, the creator of Apache Lucene, the widely 

used text search library. Hadoop has its origins in Apache 

Nutch, an open source web search engine, itself a part of 

the Lucene project. An important characteristic of Hadoop 

is the partitioning of data and computation across many 

(thousands) of hosts, and executing application 

computations in parallel close to their data. A Hadoop 

cluster scales computation capacity, storage capacity and 

IO bandwidth by simply adding commodity servers. 

Hadoop is a top-level Apache project being built and used 

by a global community of contributors, written in the Java 

programming language. The Apache Hadoop project and 

its related sub-projects (Core, Avro, MapReduce, HDFS, 

Pig, HBase, Zookeeper, Hive and Chukwa) have many 

contributors from across the ecosystem. 

 
2.7 The Hadoop Distributed File System (HDFS) 

 
HDFS [8] is a distributed, scalable, and portable file 

system written in Java for the Hadoop framework. It is the 

file system component of Hadoop. It stores file system 

metadata and application data separately. As in other 

distributed file systems, like PVFS, Lustre and GFS, HDFS 

stores metadata on a dedicated server, called the 

NameNode. Application data are stored on other servers 

called DataNodes. All servers are fully connected and 

communicate with each other using TCP-based protocols. 

By default, HDFS stores three separate copies of each 

data block to ensure reliability, availability, and 

performance. In large clusters, the three replicas are spread 

across different physical racks, so HDFS is resilient 

towards two  common   failure   scenarios:   individual 

datanode crashes and failures in networking equipment that 

bring an entire rack offline. Replicating blocks across 

physical machines also increases opportunities to co-locate 

data and processing in the scheduling of MapReduce jobs, 

since multiple copies yield more opportunities to exploit 

locality. 

 
2.8 MapReduce 

 
In MapReduce, records are processed in isolation by tasks 

called Mappers. The output from the Mappers is then 

brought together into a second set of tasks called Reducers, 

where results from different mappers can be merged 

together. 

Problems suitable for processing with MapReduce must 

usually be easily split into independent subtasks that can be 

processed in parallel. The map and reduce functions are 

both specified in terms of data is structured in key-value 

pairs. The power of MapReduce is from the execution of 

many map tasks which run in parallel on a data set and 

these output the processed data in intermediate key-value 

pairs. Each reduce task only receives and processes data 

for one particular key at a time and outputs the data it 

processes as key-value pairs. 

The Hadoop MapReduce engine consists of   a 

JobTracker and one or many TaskTrackers. A MapReduce 

job must be submitted to a job tracker which then splits the 

job into tasks handled by the task trackers. JobTracker 

dispatches jobs and assigns splits (splits) to mappers or 

reducers as each stage completes. TaskTracker executes 

tasks sent by the JobTracker and reports status to 

JobTracker. 

"Map" step: The master node takes the input, divides it 

into smaller sub-problems, and distributes them to worker 

nodes. A worker node may do this again in turn, leading to 
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a multi-level tree structure. The worker node processes the 

smaller problem, and passes the answer back to its master 

node. "Reduce" step: The master node then collects the 

answers to all the sub-problems and combines them in 

some way to form the output – the answer to the problem it 

was originally trying to solve. 
 

 
 

Fig. 4 MapReduce Design Illustration. 

 
2.9 Cloudera – CDH4 

 

Cloudera Inc. [18] is a software company that provides 

Apache Hadoop-based software, support and services 

called CDH. CDH has version of Apache Hadoop patches 

and updates. It provides how to install and configure 

version 4 of Cloudera's Distribution Including Apache 

Hadoop (CDH4) as a Yum, Apt, or zypper/YaST 

repository. It also describes how to deploy in standalone 

mode, pseudo-distributed mode, and on a cluster. 

CDH4 introduces a new version of MapReduce: 

MapReduce 2.0 (MRv2) built on the YARN framework. 

Here, refer to this new version as YARN. CDH4 also 

provides an implementation of the previous version of 

MapReduce, now referred to as MRv1. 
 

 
3. Descriptive Study – I 

 
SVMs suffer from a widely recognized scalability problem 

in both memory use and computational time. 

To  improve  scalability,  a  parallel SVM Algorithm is 

developed, which reduces memory use through parallel 

computation. 

PSVM cannot achieve linear speedup when the number 

of machines continues to increase beyond a data-size- 

dependent threshold. This is expected because of 

Communication & Synchronization Overheads. 

Communication Time is incurred when message passing 

takes place between machines. Synchronization Overhead 

is incurred when the Master node waits for the task 

completion on the slowest machine. 

By  using  Hadoop  Cluster  with  the  same  versions  of   

Software (CentOS 6.2) and same hardware configurations, 

linear speedup can be achieved. 
 

4. Prescriptive Study 
 
This section  includes  Hadoop Architecture, MapReduce 

Programming Model & Structure and flow of PSVM 

algorithm using MapReduce. 

 
4.1 Hadoop Architecture 
 

Hadoop [16] consists of the Hadoop Common which 

provides access to the file systems supported by Hadoop. 

The Hadoop Common package contains the necessary JAR 

files and scripts needed to start Hadoop. The package also 

provides source code, documentation, and a contribution 

section which includes projects from the Hadoop 

Community. Putting everything together, the Architecture 

of a complete Hadoop cluster is shown in Figure below: 
 

 
 

Fig. 5 Hadoop Cluster Architecture. 

 
The HDFS namenode runs the NameNode daemon. The 

job submission node runs the JobTracker, which is the 

single point of contact for a client wishing to execute a 

MapReduce job. The JobTracker monitors the progress of 

running MapReduce jobs and is responsible for 

coordinating the execution of the mappers and reducers. 

Typically, these services run on two separate machines, 

although in smaller clusters they are often co-located. The 

bulk of a Hadoop cluster consists of slave nodes (only 

three of which are shown in the figure) that run both a 

TaskTracker, which  is  responsible  for  actually  running 

user code, and a DataNode daemon, for serving HDFS 

data. 
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Hadoop MapReduce jobs are divided up into a number of 

map tasks and reduce tasks. TaskTrackers periodically   

send heartbeat messages to the JobTracker that also 

doubles as a vehicle for task allocation. If a tasktracker is 

available to run tasks (in Hadoop parlance, has empty task 

slots), the return acknowledgment of the tasktracker 

heartbeat contains task allocation information. The number 

of reduce tasks is equal to the number of reducers specified 

by the programmer. The number of map tasks, on the other 

hand, depends on many factors: the number of mappers 

specified by the programmer serves as a hint to the 

execution framework, but the actual number of tasks 

depends on both the number of input files and the number 

of HDFS data blocks occupied by those files. Hadoop 

requires JRE 1.6 or higher. The standard start-up and 

shutdown scripts require ssh to be set up between nodes in 

the cluster. In a larger cluster, the HDFS is managed 

through a dedicated NameNode server to host the file 

system index,  and  a  secondary  NameNode  that  can 

generate snapshots of the namenode's memory structures, 

thus preventing filesystem corruption and reducing loss of 

data.   Similarly,   a   standalone   JobTracker   server   can 

manage job scheduling. In clusters where the Hadoop 

MapReduce engine is deployed against an alternate 

filesystem, the NameNode, secondary NameNode and 

DataNode architecture of HDFS is replaced by the file 

system-specific equivalent. 
 

4.2 MapReduce Programming Model 

 
MapReduce computing model consists of two functions, 

Map and Reduce. The Map and Reduce functions are both 

defined with data structure of (key1; value1) pairs. Map 

function is applied to each item in the input dataset 

according to the format of the (key1; value1) pairs; each 

call produces a list (key2; value2). All the pairs which have 

the same key in the output lists are put to reduce function 

which generates one (value3) or an empty return. The 

results of all calls from a list, list (value3). 

 
 

Fig. 6 Process of MAP and REDUCE is illustrated. 

4.3 Structure and Flow of PSVM Algorithm using 

MapReduce 
 

 
 

Fig. 7 Flow Diagram of PSVM Algorithm using MapReduce. 

 
Algorithm: 

 
1.  Training  Dataset:  Having  Instances,   Attributes  and 

Class-Labels are provided by user. 
 

2. Map: In map step, map tasks processes an associated 

data chunk in its space. The output of each map process 

is the localized SVM weight vector (wj) 
 

3. Reduce: To compute the global weight vector (Wglobal) 

by summing the individual maps’ weight vectors. 
 

4. Output: Results with a Model having Global W and SV 

(support vectors). 

 
Description of PSVM Algorithm using MapReduce: 
 

In general, A Map-Reduce job usually splits the input data- 

set into independent chunks which are processed by the 

map tasks in a completely parallel manner. The framework 

sorts the outputs of the maps, which are then input to the 

reduce tasks. 
 

Mapper: Each MapReduce map processes an associated 

data chunk in its space. The output of each map process is 

the localized (per data chunk) SVM weight vector (wj). 
 

Reducer: Again, the primary role of the associated reduce 

phase is to compute the global weight vector (wglobal) by 

summing the individual maps’ weight vectors. 
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No. of Instances 

 
Training Time (in sec) 

 

150 
 

57 
 

846 
 

265.75 
 

2310 
 

3024.35 
 

4601 
 

5256.29 
 

10992 
 

12556.35 
 

20000 
 

22846.34 

 

5. Descriptive Study – II 
 

This section includes Experimental Setup and 

Experimental Result & its Analysis. 

 
5.1 Experimental Setup 

 
The experiments were carried out in WEKA and on the 

Hadoop   cluster.   The   WEKA   version   used   is   v3.6, 

Operating System: 64-bit Windows 7 Ultimate with Intel 

Core i3-2310M CPU @ 2.10 GHz and 4GB of RAM. The 

Hadoop infrastructure consists of one cluster having four 

nodes distributed in one single lab. For the series of 

experiments, the nodes in the Hadoop cluster, with Intel 

Core 2 Duo CPU@ 2.53 GHz, 2 CPUs and 2GB of RAM 

for each node has been used. With a measured bandwidth 

for end-to-end TCP sockets of 100 MB/s, Operating 

System: CentOS 6.2 (Final) and SUN JAVA jdk 1.6.0_33. 

 
5.2 Experimental Result and its Analysis 

 
Experiment   01:   Sequential   SVM   using   LIBSVM   in 

WEKA 

 
Table 1: Sequential SVM using LIBSVM in WEKA 

Experiment 02: MultiFileWordCount 
 

Table 2: MultiFileWordCount – No. of Files Increasing & Nodes Constant 
 

No. of 

Files 
Execution Time 

(in min) 

 

No. of Nodes 

2 3.13 2 

3 4.45 2 

4 6.9 2 

 

 
 
Fig. 9 Results of MultiFileWordCount - No. of Files Increasing & Nodes 

Constant. 

 

In this experiment, size  of  2   Files  is 512MB 

(256MB+256MB), size of  3  Files is 768MB 

(256MB+256MB+256MB) and size of 4 Files is 1GB 

(256MB+256MB+256MB+256MB). 

 
Table 3: MultiFileWordCount – No. of Files Constant & Nodes Increasing 

 

 

No. of Files 
Execution Time 

(in min) 

 

No. of Nodes 

4 6.09 2 

4 5.18 3 

4 4.14 4 
 

 

 
 

Fig. 8 Results of Sequential SVM using LIBSVM in WEKA. 

 

Fig. 10 Results of MultiFileWordCount - No. of Files Constant & Nodes 

Increasing. 
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No. of Maps 
 

Execution Time (in sec) 
 

No. of Nodes 

15 31.271 4 
20 37.977 4 
25 37.142 4 

 

 

Table 4: MultiFileWordCount – No. of Files Increasing & Nodes 

Increasing 
 

 

No. of Files 
Execution Time 

(in min) 

 

No. of Nodes 

2 3.13 2 

3 4.05 3 

4 4.14 4 

 

 
Fig. 11 Results of MultiFileWordCount - No. of Files Increasing & 

Nodes Increasing. 

 
Experiment 03: PiEstimator 

 
Table 5: PiEstimator – No. of Maps Constant & Nodes Increasing 

 

No. of Maps 
Execution Time 

(in sec) 

 

No. of Nodes 

10 36.179 2 

10 24.839 3 

10 20.827 4 
 
 

 
Fig. 12 Results of PiEstimator - No. of Maps Constant & Nodes 

Increasing. 

Table 6: PiEstimator – No. of Maps Increasing & Nodes Constant 

 
Fig. 13 Results of PiEstimator - No. of Maps Increasing & Nodes 

Constant. 

 
Table 7: PiEstimator – No. of Maps Increasing & Nodes Increasing 

 

 

No. of Maps 
Execution Time 

(in sec) 

 

No. of Nodes 

15 36.179 2 
20 24.839 3 
25 20.827 4 

 

 
Fig. 14 Results of PiEstimator - No. of Maps Increasing & 

Nodes Increasing. 

 
Experiment 04: Parallel SVM 

 
Table 8: Parallel SVM – Data Size Constant & Nodes Increasing 

 

Data Size 

(in MB) 

 

Training Time (in sec) 
 

No. of Nodes 

1 50.621 2 
1 42.025 3 
1 40.345 4 

 

 
Fig. 15 Results of Parallel SVM – Data Size Constant & Nodes Increasing. 

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 1, May 2013 
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784 
www.IJCSI.org 323

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.



Table 9: Parallel SVM – Data Size Increasing & Nodes Constant 
 

Data Size 

(in MB) 
Training Time 

(in sec) 

 

No. of Nodes 

1 50.621 2 
 

2 
 

52.127 
 

2 
 

4 
 

52.528 
 

2 
 

8 
 

53.065 
 

2 
 

16 
 

53.342 
 

2 

 

 
Fig. 16 Results of Parallel SVM – Data Size Increasing & 

Nodes Constant. 
 

 
Table 10: Parallel SVM – Data Size Increasing & Nodes Increasing 

 

Data Size 

(in MB) 
Training Time 

(in sec) 

 

No. of Nodes 

4 52.528 2 

8 50.916 3 

16 44.022 4 

 

 
Fig. 17 Results of Parallel SVM – Data Size Increasing & 

Nodes Increasing. 

6. Conclusions 
 
SVM classifier depends on the number of support vectors 

required. In SVM classification, the required memory to 

store  the  support vectors is directly proportional to the 

number of support vectors. Observations and Result 

analysis show that in Sequential SVM - as the number of 

instances increases, training time also increases. Also, in 

the Hadoop Cluster – it has been verified and validated 

that as the number of nodes increases, with respect to large 

size of Input Data, execution time decreases. From this, it 

is shown that Parallel SVM using MapReduce Model 

performs efficiently. An advantage of using HDFS & 

MapReduce is the data awareness between the NameNode 

& DataNode and also between JobTracker & TaskTracker. 

Till  now,  in  this  paper, Hadoop MapReduce  has being 

observed  in  all  i.e.  Standalone,  Pseudo-distributed  and 

Fully Pseudo-distributed mode. This Hadoop cluster 

contains four nodes i.e. one Master (NameNode) and three 

Slaves (DataNode). 

In the future work, Scaling up the Hadoop Cluster- 

having Client and Secondary NameNode [8]. Further study 

and  research  of  various  concepts  related  with  hadoop. 

Ex: - hadoop – streaming [12]. Performance Evaluation of 

Parallel SVM Algorithm by introducing different Kernel 

Methods. Ex: - vector space kernel [21]. 
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