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Abstract 

Neural networks ensemble or committee of neural networks is a 
learning approach where many neural networks are combined to 
solve a given problem. This approach has been proved to improve 
the generalization performance of individual networks (base 
networks), provided these networks are accurate enough while 
being error-independent (diverse). In this paper, variance inflation 
factor (VIF) is defined as diversity measure. A multi-objective 
genetic algorithm (MOGA) with two objectives (ensemble error 
and the new diversity metric) is used to select appropriate 
members of the ensemble from a pool of trained neural networks. 
The proposed method herein called MOGASEN(Multi Objective 
Genetic Algorithm based Selective ensemble) and other popular 
ensemble approaches were evaluated on data from an electronic 
nose (E-Nose) for concentration estimation of four indoor air 
pollutants (formaldehyde, benzene, toluene, and carbon 
monoxide). Empirical results show that the proposed method, 
while having higher capability in reducing the size of the 
ensemble, was, in most cases, able to outperform other methods.  
 
Keywords: Neural network ensemble, Electronic nose, 
variance inflation factor, Multi-objective genetic algorithm, 
air quality monitoring 
 
 
1. Introduction 
 

     Neural network ensemble (NNE) is a learning method 
where multiple neural networks are trained to fulfill a given 
task, and their predictions are combined to form the 
ensemble’s output [1]. Since its inception, this approach to 
learning has been successfully applied in many domains, 
including medical diagnosis [2], electronic nose systems [3, 
4], optical character recognition [5], and so forth. 
There are generally two steps in the course of construction 
of neural network ensemble: training of the base networks, 
and combination of the trained networks. During the 
training phase, the main goal is to obtain networks with 
acceptable accuracy while committing their errors 
differently. The last criterion is commonly known as 
diversity (either implicit or explicit diversity).  
 

Bagging and boosting, which operate by changing the 
training data, are the most widely used methods to generate 
diverse base networks. Bagging is a name derived from 
bootstrap aggregation; it is an effective method of ensemble 
learning introduced by Breiman [6]. The method uses 
bootstrap sampling to generate multiple data sets from the 
original training data, and then each of these data sets is 
used to train a specific model. The output of the ensemble 
is obtained by averaging the outputs of all the models (for 
regression) or through voting (for classification). It is worth 
noting that bagging is more effective on unstable (i.e. a 
small change in the training set can cause a significant 
change in the model) models [6] such as neural networks, 
regression trees, etc... Moreover, Opitz and Maclin [7] 
compared bagging and two boosting methods: they 
concluded that, as a general method, bagging is the most 
appropriate. As a result of that, bagging is considered in 
this paper. It is worth mentioning that in the literature, other 
methods which operate differently from bagging and 
boosting are also reported, with some as follows. Krogh 
and Vedelsby [8] use cross-validation technique to generate 
several base networks. Opitz and Shavlik [9] use genetic 
algorithm with accuracy and ambiguity as search criterion 
(fitness) to generate diverse and accurate base networks for 
classification. In [10], Yao and Liu evolve a population of 
neural networks and consider the individuals in the last 
generation as base networks. In [11], Zhi-Hua Zhou et al. 
employ an approach named GASEN which first trains the 
base networks using bootstrap replicates of the original 
training data, after that it assigns random weights to those 
base networks and uses GA to evolve the weights. At the 
end, base networks with weights above a designed 
threshold are selected to form the ensemble. Empirical 
results show that this method compares favorably with 
other popular ensemble methods. 
Having a given number of base networks at hand, the next 
step is to combine them. The most widely used methods for 
this task are simple averaging or weighted sum [12, 13] for 
regression problems, and voting for classification problems 
[1]. Other methods for combining base networks are also 
reported in the literature [14, 15, 16]. In this paper, as the 
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problem at hand is a regression task and the focus is not on 
combination method, the output of the ensemble is obtained 
by averaging (simple) the predictions of the selected base 
networks. 
It is worth mentioning that, although the general practice in 
most ensemble methods is to consider all base networks as 
component networks of the ensemble, Zhi-Hua Zhou et al. 
[11] have demonstrated the benefit of considering several 
base networks instead of all. In this paper, a similar 
approach is adopted. However, to select the most effective 
base networks, a new method is proposed. The method uses 
a multi-objective genetic algorithm (GA) with two 
objectives: ensemble error and the diversity metric (VIF), to 
select appropriate members of the ensemble from a pool of 
trained neural networks. Classical method of combining 
multiple objectives generally requires normalization of the 
individual objectives to get the final objective [9].This 
encourages us to use MOGA, although, at the last 
generation, it requires selecting one solution from the 
Pareto-optimal front. Indeed all the solutions are optimal. 
The proposed method and some other approaches were 
evaluated on data from an electronic nose (E-Nose) for 
concentration estimation of four indoor air pollutants 
(formaldehyde, benzene, toluene, and carbon monoxide). 
An electronic nose is an artificial olfaction system which 
uses a finite number of partially selective sensors along 
with associated circuitry and a suitable signal processing 
system. Electronic nose systems find application in many 
fields which include industrial hazards monitoring, 
homeland security, food quality, public health, and 
environmental pollution. Owing to their versatility and ease 
of use, these systems can be a better alternative to 
conventional methods (gas chromatography, mass 
spectrometry) for continuous real-time monitoring and 
control of indoor air quality. However, their performance 
depends on the calibration model generally built using 
some prior measurements. This is the rationale behind using 
data from such an important instrument to evaluate the 
methods considered in this paper.  
 
 

2. Experimental Details 
 
2.1. Data sets generation 
 
Our E-nose consists of eight sensors: two auxiliary sensors 
(temperature and humidity module), and six gas sensors 
(GSBT11, TGS2620, TGS2602, dual sensor TGS2201 with 
two outputs named TGS2201A and TGS2201B, and one 
O2 sensor). These sensors are mounted on a self-made 
printed circuit board (PCB), along with associated circuitry. 
An analog-digital converter (AD) is used as interface 
between the FPGA processor and the sensors. Also, an 
additional flash memory is used for real-time data storage. 

The sampling rate during data acquisition was one point 
every three seconds. For further processing, the saved data 
can be transferred to a personal computer (PC) using Nios 
II IDE and the Joint Test Action Group (JTAG) cable. 
Figure 1 shows our electronic nose system.  
 

     

Fig. 1. Photography of the implemented E-nose (left), and inside 
components (right), 

 
All experiments were carried out in an atmosphere-
controlled chamber by exposing our E-nose to four gas 
analytes each at different concentrations. Detailed 
description of the experimental setup and procedure can be 
found in our previous publications [17,18]. However, to 
make the paper self-contained, we reproduce the 
experimental setup (see Figure 2). As for the experimental 
procedure it is worth noting that during all the experiments, 
the respective ranges of the temperature and humidity were 
15-45℃ and 25-80%. Also, a single experiment consists of 
three phases: exposure to clean air for 120s to stabilize the 
sensors, exposure to gas analyte for 480s, and another 
exposure to clean air for 120s to allow the sensors recover. 
Between any two consecutive experiments, the chamber is 
cleaned for about 10mins to avoid (minimize) interference 
from any chemical remnant. It is worth mentioning that the 
real concentration of benzene was determined by gas 
chromatography method; while that of formaldehyde was 
determined using two different methods: acetylacetone 
spectrophotometric method for concentrations greater than 
0.5ppm, and the 3-methyl-2-benzothiazolinone 
hydrochloride (MBTH) method for concentrations less than 
0.5ppm. This is the aim of using organic gas sampler. For 
the other gases, standard measurement equipments were 
placed inside the chamber and displayed concentrations 
were recorded. The number of measurements for 
formaldehyde, benzene, toluene, and carbon monoxide is 
126, 72, 66, and 58, at concentration ranges of 0.04-6ppm, 
0.17-1ppm, 0.04-0.15ppm, and 4-55ppm, respectively. 
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Thus, for each gas analyte, an original data set is obtained, 
which contains raw measurements from the sensor array.  
 

 
 

Fig. 2.  Experimental setup 

 
Prior to feature extraction, raw measurements are filtered to 
remove measurement noise. For gas concentration 
estimation, Szczurek et al. [19] demonstrated that features 
from the steady-state portion of a gas sensor response are 
more informative. Taking this into account, we selected one 
feature from that portion (see Figure 3). For the auxiliary 
sensors (temperature, humidity) we selected features at the 
same time positions with other sensors. The extracted 
features are normalized to have values in the interval [0, 1]. 
Having an array of eight sensors, an 8 m×  (m is the number 
of measurements or samples) feature data matrix is formed 
for each data set. Then we used Kennard and Stone (K-S) 
algorithm [20] to divide each data set into three sub data 
sets: 50% for training, 25% for validation, and 25% for test. 
 
 

0 50 100 150 200 250 300 350
1000

1500

2000

2500

3000

3500

Sample Index
Se

ns
or

 R
es

po
ns

e

TGS2201B

Humidity Sensor

TGS2620

Feature

Temperature Sensor

 

Fig. 3. Responses of two gas sensors when exposed to 5.30ppm of 
formaldehyde, at 45 , 50% RH (humidity and temperature sensors’ 

responses are shown for interpretation) 

 
2.2 Multi-objective genetic algorithm based selective 
ensemble 
 
Evolutionary techniques can be set to optimize single 
objectives or multiple objectives. The goal of multi-
objective optimization (MOO) is to find solutions that are 
optimal, or at least acceptable, according to all criteria 
simultaneously. The most primitive form of MOO is to 
combine multiple objectives into a scalar fitness function. 
And the simplest form of this combination is a (scaled) 
linear combination of the different objectives. 
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Another sound alternative to the approach mentioned above 
is to keep the objectives apart. In fact, the main motivation 
for keeping the objectives apart is to encourage diversity 
among solutions, which encourages us to adopt the 
alternative. It is worth mentioning that a key idea in MOO 
is the notion of Pareto dominance. For instance, given a set 
of solutions S, a solution ia  is non-dominated if and only if 

there is no other alternative ja S∈ , j i≠  so that ja  is 

better than ia  on all criteria. Or, expressing the opposite 
relation less formally, a solution is said to Pareto dominate 
another solution if it is as good as that solution on all 
objectives and better on at least one objective. This results 
in a partial ordering, where several solutions can be non-
dominated, and thus constitute the set of best solutions for 
the particular set of objectives. The set of all non-
dominated solutions in the search space are called the 
Pareto front, or the Pareto optimal set. 
In [6], it has been pointed out that implicit diversity can be 
achieved through bagging. However, in practical 
applications where limited number of samples is available, 
this diversity is not guaranteed. We therefore used multi-
objective genetic algorithm (MOGA) to further optimize 
the derived ensemble. More specifically, the main idea 
behind our approach is to consider many networks trained 
using bagging algorithm and keep a subset of the networks 
that are both accurate and diverse. Genetic algorithms are 
effective in their use of global information [21]; they allow 
us to consider a wide variety of networks during our search, 
so they are suitable for our search method. The Multi-
Objective Genetic Algorithm function ‘gamultiobj’ in 
MATLAB was used. Each gene in the GA is a bit string of 
length L (the number of ANN generated using bagging), 
where a ‘1’ in any location indicates that the ANN with 
corresponding index should be included in the ensemble.  

 
2.2.1 Variance inflation factor as diversity metric 
 
In the course of ensemble construction diversity is one of 
the most important criteria.  However, most of the diversity 
metrics are directly applicable to classification ensembles 
rather than regression ensembles. In this paper, we explore 
the possibility of using variance inflation factor (VIF) as 
diversity metric in selecting appropriate members of neural 
network ensembles. For comparison purpose, we also 
evaluate an existing method named GASEN. 
In regression analysis, multicollinearity between 
independent variables can affect the variance of the 
estimated regression coefficients severely. Pair-wise 
correlations between predictors, t-tests and F-test, are some 
of the common methods used for detecting 
multicollinearity. Another method which is favored by 

many regression analysts is the use of variance inflation 
factors (VIF).  

Variance inflation factor is a statistical measure that 
quantifies the severity of multicollinearity of the ith 

independent variable with the other independent variables, 
in regression analysis. More specifically, it quantifies how 
much the variances of the estimated regression coefficients 
are inflated. In [22], Greene derived the variance-
covariance matrix of the regression coefficients as: 

2 1( ) ( )T
i jbb εσ σ −= X X

                                                 
(1)                    

where X is an n by k +1 matrix with the first column 
consisting of ones and the next k columns consisting of the 
σε2 values of k independent variables, TX is the transpose 
of X, and 2

εσ  is the population variance of the residuals. 
Based on Eq. (1), Robert [23] derived an equation that 
provides the unbiased estimate of the variance of the ith 
regression coefficient as: 
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where n is the sample size, k the number of independent 
variables in the regression analysis, ix  are the independent 

variables (the last k-1 columns of X in Eq. (1)), 
iY is the 

dependent variable (generally one dependent variable is 
used), 2

iR  is the proportion of the variance in the ith 
independent variable that is associated with the other 
independent variables in the analysis. 2

yR  is the squared 
multiple correlation of the dependent variable regressed on 
all other independent variables in the analysis. 
Rearranging Eq. (2), we get, 
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The second term on the right hand side of Eq. (3) represents 
the VIF of the ith independent variable, and it indicates the 
multiplicative increase in the variance of the regression 
coefficient of this variable [23]. It is worth mentioning that 
the variance inflation factor VIFi of the ith independent 
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variable can be found by regressing it on the other 
independent variables.  
In our case, the independent variables are the validation 
errors of the ensemble members (i.e. the base networks). 
Thus, for the nth base network VIFn is defined as follows.  
 

2
1

(1 )VIF n
nR

=
−                                                   

(4) 

 
Where VIFn is the variance inflation factor for the nth 

network, and 2
nR  is the 2R value obtained by regressing the 

nth independent variable(the validation errors of the nth 
network) on the remaining independent variables (i.e. the 
validation errors of the others networks). 
 
There are many rules of thumb associated with VIF that are 
regarded as a sign of severe multicollinearity. The most 
commonly used is the rule of 10, that is if VIFn >10, the nth 
network has serious multicollinearity with the other 
ensemble members, otherwise there is less or even no 
multicollinearity [23]. In this paper, instead of considering 
any threshold value, we try to minimize the sum of all VIFn. 
The value of this sum is considered as our second objective 
in section 2.3. For detailed discussion on VIF we refer 
interested readers to [23, 24].   
 
2.2.2 Training Component Networks 
 
For each data set, bootstrap sampling was used on the 
original training data to generate 50 new training data. Each 
of these new training data is then used to train a component 
network (or base network), using back-propagation 
algorithm with different initial weights and with early-
stopping option (on the validation data). Early stopping is a 
method to improve the generalization capability of ANN in 
case of small size training data; the training is stopped 
when the error on the validation set has reached a certain 
threshold. Fifty single-hidden-layered base networks with 
similar structure (8:5:1, that is 8 input neurons, 5 hidden 
neurons, and one output neuron) were trained. These 
networks constitute the pool of base networks on which we 
applied two selection based methods: GASEN, and 
MOGASEN. For the standard bagging method, all the base 
networks are considered as component networks of the 
ensemble, and the output of the ensemble is obtained by 
averaging the outputs from these base networks; whereas 
only outputs from the selected networks are considered in 
other methods.  

 

 

 

 

2.2.3 Best Ensemble Selection 
 
Two selection-based methods are used to select the best 
ensemble: GASEN, and MOGASEN. For GASEN method, 
default settings specified by the authors [25] were used, 
except for the number of generations and the population 
size. For MOGASEN method, MATLAB implementation 
of MOGA was used. Table 1 shows settings of some 
important parameters in MOGA; default settings were used 
for other parameters.  

Table 1: MOGA parameters setting 
Parameter Value/Scheme 
Population Size 50 
Population type Bit String 
Number of variables 50 
Generations 50 
Mutation probability 0.2 
Crossover probability 0.8 
Selection Tournament 

 

 
MOGASEN based selection process is performed through 
four steps as described below.  
Individual encoding: To solve our optimization problem, a 
solution is first encoded to chromosome form, the size of 
the search space is the same as the number of primary base 
networks, K. Binary encoding scheme is used, wherein 0 
means the base network is excluded and 1 means the base 
network is selected. For instance, if chromosome C = 
10101011 (when K = 8) means that the base learners #1, #3, 
#5, #7, and #8 are selected as members of the ensemble (h 
= 5). 
Initial population: The initial population is randomly 
generated. 
Objective functions: Two objective functions were used, 
the ensemble error and the diversity metric (VIF). More 
specifically, let’s call these objective functions f1, and f2, 
respectively. Then we can define them as follows. 
 

1
1

( )1100
ensN

i i

i i

y y
f

N y=

−
= × ∑

                                     
(5) 

 
where N is the number of validation samples, iy  is the 

actual value of the ith sample and ens
iy is its predicted value 

by the ensemble. It is worth mentioning that ens
iy is the 

average value of the outputs from all the selected base 
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networks. For instance, if we have K base networks ens
iy is 

obtained using Eq. (6). 
 

1

1 K
ens k
i i

k
y y

K =

= ∑
                                                       

(6) 

where k
iy is the output from the kth network for the ith 

sample. 
 

2
1

VIF
K

n
n

f
=

= ∑
                                                                 

(7) 

 
where K is the number of base networks in a potential 
solution, and VIFn is the VIF of the nth base network, as 
defined in Eq. (4). 
Genetic operations: In standard GA, three operations are 
generally involved: selection, crossover, and mutation. 
During the selection step, chromosomes with highest 
fitness values are chosen as parents. From these parents, 
candidates (children, offspring) are generated using cross-
over and mutation operations. The algorithm calculates a 
fitness score for each candidate and replaces chromosomes 
with low scores by new candidates with high scores. This 
process is repeated until stopping conditions (maximum 
number of generations, a certain value of the fitness 
function, etc…) are satisfied. 
The proposed approach is summarized in Table 2, where 
DTr is the original training data; DV is the validation data 
used during MOGA based base networks selection, DTe is 
the test data which is only used after ensemble construction, 
and B is the number of bootstrap replicates which is also 
equal to the number of initial base networks (in our case 50 
base networks). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 Table 2: MOGASEN  method 

Base networks generation: 

1) Use bootstrap sampling on DTr to generate B new 
training sets 

2) Use each of the new training sets obtained in 1) to 
train a base network using BP with early-stopping 
(against the validation data)  

Best ensemble selection: 

3) Randomly generate an initial population 

4) Use MOGA with two objective functions as defined in 
Eqs. (5) & (7) to evolve the initial population. At 
termination, trace out the solution with the smallest f2 
on DV and report it as the selected ensemble. 

5) Evaluate the ensemble selected in 4) on DTe, 
compute the test error using Eq. (5) with N as the 
number of test samples instead. 

 

3.  Results and Discussion 
 

All computations were carried out using MATLAB R2010a 
(MathWorks Inc.) software on a desktop computer with 
Intel(R) Core(TM) i3 T2450 2.93 GHz CPU, 2 GB RAM 
and Windows XP professional operating system. It is worth 
mentioning the following notations: BNN for the best base 
network, Bagging for the standard bagging method, 
GASEN for GASEN method, and MOGASEN for our 
method. 

To avoid biased comparison, for each method and each data 
set we perform ten runs and recorded the averages of mean 
absolute percentage errors(MAPE) for the selected 
ensembles as well as for the best base networks. 
Experimental results are reported in Tables 3 and 4. Also, 
for comparison purpose, results of standard bagging are 
shown. 

When constructing ensemble of predictors, the capability of 
a method in reducing the size of an ensemble while 
maintaining or even improving its performance is also of 
great importance. Having this in mind, we computed the 
average number of selected base networks over ten runs, for 
GASEN and MOGASEN. Results are reported in Table 5. 
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          Table 3: Averaged validation errors over ten runs  
Data sets Methods 

BNN Bagging GASEN MOGASEN 
Formaldehyde (31.2425)(40.0723)(35.9525)a 41.3719 40.9267 34.1758 
Benzene (8.3587)(8.4771)(8.5293) 9.1427 7.0157 7.6037 
Toluene (12.2525)(12.2525)(12.96045) 19.5845 11.6776    13.74269 
Carbon monoxide (15.3124)(16.5098)(17.67203) 42.8593 18.0637 16.52416 
aNumbers in parentheses are errors of best component networks for bagging, GASEN, MOGASEN, in order 

 

Table 4: Averaged test errors over ten runs  
Data sets Methods 

BNN Bagging   GASEN MOGASEN 
Formaldehyde (36.5643)(74.9503)(54.7101)a 63.5795 57.5075 40.1511 
Benzene (7.9458)(14.0323)(13.6309) 9.0549 11.7958 10.48934 

Toluene (13.542)(16.5326)(16.26096) 17.9958 11.9847 14.09098 
Carbon monoxide   (14.8845)(18.1362)(19.0778) 36.5611 23.0379 18.60605 

aNumbers in parentheses are errors of best component networks for bagging, GASEN, MOGASEN, in order 
 

 

Table 5: Average number of selected nets over ten runs 
Data sets Methods 

GASEN MOGASEN 
Formaldehyde 5 5 
Benzene 7 5 
Toluene 5 5 
Carbon monoxide 5 5 

 
 
From Tables 3 and 4 one can notice that the theory of 
“many could be better than all” was verified. In most cases, 
GASEN and MOGASEN outperformed the standard 
bagging and their corresponding best base networks, with 
unique exception on benzene. The only case where GASEN 
performs better than MOGASEN on both validation and 
test data sets is with toluene. An intuitive remark from these 
results is that an ensemble less effective than the best 
component network on a given data set (here, validation 
data set) may perform well on a novel data set (e.g. GASEN 
on formaldehyde data set). Also, results from carbon 
monoxide data set infer that there were too many redundant 
networks in the initially generated pool of base networks. 
This resulted in poor performance of standard bagging 
method which is normally known to be effective on 
component networks that are sufficiently accurate and 
diverse.  Indeed, being the smallest data set with almost 60 
samples, using simple bootstrapping and different initial 
weights on such small data set to train base networks was 
insignificant for generating diverse networks. This is in 

perfect agreement with results obtained in our recent work 
[26], where base networks with different topologies were 
even used. GASEN tends more to selecting best networks 
than diverse ones. This can be seen with benzene and 
toluene data sets. A possible reason for this is the value of 
the thresholdλ . Setting the threshold to high values will 
cause the algorithm to only emphasize on accurate base 
networks, while setting it to small values will result in 
selection of inaccurate networks. 
Results from Table 5 show that GASEN and MOGASEN 
selected almost the same number of component networks 
over ten runs, except with benzene data set where the 
average number of selected networks by GASEN is 
superior to that selected by MOGASEN. By selecting more 
component networks in the case of benzene, GASEN might 
have overfitted the validation data, thereby resulting in 
lower performance on test data compared to MOGASEN. 
Another important remark is that, as both GASEN and 
MOGASEN are off-line selection methods, one may 
suspect that component networks selected by these methods 
are in fact similar. However, results from Tables 3 and 4 
evidenced that this rarely happened in practice.  
 

4. Conclusion  

Diversity metrics (pair-wise as well as non-pairwise) play 
an important role in ensemble learning. In this paper, a new 
non-pairwise diversity metric based on variance inflation 
factor is proposed. A multi-objective GA with two 
objectives (ensemble error and the new diversity metric) is 
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used to select best neural network ensembles for 
concentration estimation of some indoor air pollutants. 
Empirical results show that variance inflation factor can 
effectively be used as diversity metric. Although the 
proposed method can outperform GASEN (another 
selection based method), standard bagging, and the best 
component network; more study on VIF for 
multicollinearity measurement is required to further 
improve the method.           
This method is not restricted to electronic nose data; it can 
be applied in other fields. Also, it can be extended to 
classification problem. In this paper small size data sets 
were used, we therefore need to evaluate this method on 
large-scale data sets (for both classification and regression); 
this will be considered in our future work. 
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