
A Framework for Mobile Application Design

Abdesselam Redouane

 Department of Computer Science and Engineering, College of Engineering and Computing

Al Ghurair University, Dubai, UAE

Abstract

Selecting the right components to design a mobile application

involve some deep thoughts and difficult decisions to make. In

this paper, we present a framework to ease the decision making

process. The framework is based on Commercial Off-The-Shelf

(COTS) paradigm. COTS techniques aim to reduce

development time and hence decrease cost compared to a

traditional system development. First, an identification of

components from the application requirements is made. Then,

for each component, we specify a formal model, which is called

the ideal-component. A structured first order predicate

calculus is used as a tool to formalize application requirements

and obtain these formal models. The evaluation of a possible–

component, from a vendor, begins with understanding the

features and then an acceptance indicator is calculated. The

acceptance equation combines three key factors: requirements

and features match, vendor-viability and maintainability.

Maintainability is a costly phase in any software system and

this framework caters for this issue during the evaluation

process. The framework is being investigated with successful

results.

Keywords: Mobile Application, COTS, Predicate Calculus.

1. Introduction

The ubiquitous of mobile devices has sparked wide spread

development of mobile applications. Mobile applications

range from game applications, maps, news and social

networking, to sophisticated business transactions. High end

mobile devices sales are expected to reach high volume of

sales all capable of running some applications. New features,

e.g. sensors, present new challenges to developers that are

not found in traditional software development. The need for

a self-adaptive application and hence expressing the

requirements formally is very important in mobile

applications software engineering [1].

According to the survey in [2] on mobile application

development, these applications are not large, only several

thousand of lines code and no rigorous process followed to

develop these mobile applications. It has been found that

many mobile applications exhibit many errors [3], [4], [5].

Designing these applications for an array of devices is not an

easy task and rigorous requirements capture for these

applications is of paramount importance if these applications

are going to be reliable and trustworthy. The same device

may change characteristics within few months. Keeping with

these changes is a tremendous job for applications upgrade

or the application becomes obsolete for future devices.

Recent effort in HTML 5 and PhoneGap allow the

development across multi platforms: iOS, Android, window

7 etc … is an attempt to reduce the development effort. But

with these technologies there is no access to the native API

which hinders the application from accessing the full

capabilities of the device.

The decision to select a component, among many, that fit a

design is very hard to make. To get it right, a profound

thought about the component must be made. The mind of the

designer has to be very clear and correct boundaries should

be drawn for this component. It is not simple to have such

clear and no confusion situation when we have many off the

shelf components which might fit the purpose. In this paper

we provide a framework that helps ease the decision process.

Commercial off-the-shelf (COTS) techniques aim to reduce

development time and hence decrease cost compared to a

traditional system development. COTS paradigm has gained

considerable attention in the last years among researchers

within the software engineering community [6], [7], [8]. It is

seen as an alternative effective solution to the conventional

costly method of software system development. To lessen

the decision making process, we advocate the use of

Commercial Off-The-Shelf (COTS) components during a

mobile application design. It will bring all the advantages of

cost reduction and a minimum time to market a product.

Indeed a mobile application designer can concentrate on the

application architecture, select their required COTS

components from the market, do the integration and perform

testing. The approach is highly feasible given the fact that,

nowadays, we find more and more ready made components.

In this paper, we propose a framework for mobile

application design. The framework is based on COTS

techniques and is formal in the sense that we adopt a

rigorous requirements specification by the use of a

structured first order predicate calculus. We believe that in

order to get correct requirements, a formal technique has to

be in place. The component requirements is formalized in

order to get a deep understanding of what is intended from

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 218

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

the component and be able to make an informed decision

during the evaluation of a vendor component. It is only

through formal techniques that we can achieve such an

insight and understanding.

The remainder of this sequel is structured as follows. In

section 2, we describe the framework in detail while in

section 3 we discuss related work. Section 4 describes a case

study and section 5 concludes the paper.

2. Framework Description

The aim of the framework is to help the designer makes the

right decision when choosing among many similar

components. The framework is based on the following steps:

• Mobile application requirements collection

• Component requirements formalisation

• Acceptance indicator calculation

• Component selection

In the following sub sections these steps are discussed.

2.1 Mobile application requirements collection

The first phase in this framework is a traditional collection

of the application requirements. The source of the

requirements can be a customer or a manager. A

requirements document is written using an informal

language where both parties’ designers and

customers/managers could agree. This informal

requirements document should contain sufficient

requirements in the sense that a designer can move to the

next phase of the system development. The requirements

are, then, divided into components and a list of the system

components is made.

At this early stage, it is possible that there are some

requirements, which are incomplete. The designer, however,

has some ideas about these incomplete requirements. In

these cases, one should continue with the collected complete

requirements and move on to the next phase. The incomplete

requirements should be recorded and their places in the

system must be clear.

2.2 Component requirements formalization

For each component identified, a formalization of its

requirements has to be developed. We use a structured first

order predicate calculus to capture the component

requirements. It is a very expressive formalism and simple to

use. Another advantage is its wide familiarity among

designers and it will not be a major obstacle to companies

adopting this approach. The specification should state what

are the functionalities and properties intended. This

requirements specification forms an ideal model and we call

it the ideal-component. An ideal-component captures exactly

what is required. One can validate this by passing the

specification between developers to verify that the

specification is neither missing requirements nor including

extra requirements. This specification is the target, which a

designer strives to get a component from the market that fits

it. In fact, an ideal-component is the set of formal

requirements for a given system component.

First order predicate calculus is the vehicle being used to

formalise the requirements.. A light structuring for this

calculus will make the end specification more amenable to

analysis. The form which is followed to structure the

specification of a requirement, called a definition, is as

follows:

 definiendum ∆ | context |

 refinement

where:

• definiendum is the name of the requirement being

specified.

• context is a name of a defined requirement.

• Refinement is where the specification of the

 requirement takes place.

A definition is a logical rule in which a definition is true if

and only if the context and the refinement are true:

 definiendum � context ^ refinement

Through chaining via context we can have what is called

strong relationship between requirements. This allows easy

tracing of requirements. Analysis of specification can be

made through the use of the following domain theorem:

 definiendum <> context <> mot definiendum

<> is an exclusive-or operator, in that, this expression states

that only one term can be true. The mot definiendum is true

when the context is true and the refinement is false. This

allows the specifier to negate a logical complex expression

without a cumbersome manipulation of variables. This can

be summarised in the following rule:

mot definiendum ↔ defineniddum ^ ~ refinement

Once the specification has been developed for a particular

component, a search in the market for vendors has to be

carried out. The following diagram illustrates this phase:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 219

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 Fig.1. Initial phase

Where: VC11, VC12 are vendor components for Component

1. VCN1, VCN2 are vendor components for Component N.

Each component is a possible candidate for the system and

we call it a possible-component. A possible-component is a

component that, initially, from the vendor description, we

believe that it may fulfil some of the required features of the

ideal–component. At this stage, we rely on the description

given by the vendor for a possible-component. Of course,

later on we perform the testing of this component to see if it

really meets the description given by the vendor.

However, if there are no vendors available a contractor has

to be found or an in-house development of the component

has to be carried out. This development by a contractor or

in-house must comply with the developed specification for

this component.

2.3 Acceptance indicator calculation

It is in this sub-section that the framework offer guidance to

make the right decision when we have multi components to

choose from. In order to rank the possible-component

candidates, an acceptance indicator needs to be calculated.

This indicator is evaluated by the following equation:

Acceptance Indicator % =

(α.match + β.vendor-viability + δ.maintainability) x 5 / (α + β + δ)

The above equation combines three important factors:

requirements and features match, vendor-viability and

component maintainability. They range from 0 to 20. In the

following sub-sections we describe these factors in details.

2.3.1 Match Criteria

A comparison has to be made between the ideal-component

and a possible-component. That is, between the requirements

specification and the features of the vendor component. This

comparison has to be made as follows: for each requirement

specification from the ideal-component, a feature(s) from the

possible-component has to be found. It is understood that the

evaluator must be competent with the requirements

specification and able to dig deep into the vendor features to

see if they match. The match factor will be ranked high if all

the requirements are found within the features. It will

receive a low score if there are only a few requirements

which match. In fact, three scenarios are possible. The first

is when a complete match has been found between the ideal-

component requirements and vendor features. The second

scenario is when the vendor features are less than the ideal-

component requirements. In this case, the vendor component

is rejected. It is kept, if and only if, there are no other

components to choose from. In this case, a trade off has to

be made between accepting this component and adding the

missing requirements if the source code is available, or

developing an in-house component. The final scenario is

when the vendor features exceed the ideal-component

requirements. In this case, further investigation is required

and should answer the following questions:

• Will the extra features add further enhancement to

the system?

• Will it harm or degrade the system performance?

• Is it possible to disable these extra features and

enable them when they are needed?

2.3.2 Vendor-viability

This factor deals with the vendor viability. Is the vendor

reputable and well known in the field? There are two main

issues to be concerned with: product quality and customer

service. The more qualities we have about a vendor, the

greater the mark is for this factor (vendor-viability).

- Product quality: In general, the question made: are the

products from this vendor reputably known for their

qualities? If so, it may be the case that the component at

hand will, also, exhibit high qualities. This will give an early

impression about the component. However, quality check is

an ongoing process and it is only time that can confirm this

impression towards the component.

- Customer service: It is from the customer service that we

get missing information and detailed explanation of the

component at hand. If this service is not excellent, then, it

will hamper our component understanding and, therefore,

may be a cause of cost increase. Again, this service can be,

initially, judged on the vendor reputation or through early

contacts to see if they react promptly to a request made. One

should also seek how reliable all the contact channels are:

phone, fax and email.

2.3.3 Maintainability

One of the difficult and delicate issues facing designers is

maintainability of vendor components [9]. It is a challenge

to the system designer. The main concern is: is the

component maintainable? That is, is it possible to add new

features by the system developers? Or is it

VCN1 VCN2 … VC11 VC12 …

 Application informal

 requirements

Component 1 Component n

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 220

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

difficult/impossible to do so? One has to weight the vendor

service and in-house maintainability. Other related questions

are: will you add the fixes or new enhancements the vendor

has made? Will you update to new releases from the vendor?

What effects of integrating the new release into the already

functioning system? What would be an ideal situation is the

possibility of maintaining the component in-house. If this is

not possible because of lack of resources or the source code

is not available the vendor will do the enhancement to the

component according to the system designer wishes and not

to the vendor wishes. From the answers to these queries and

the needs from the system, a mark has to be given to the

maintainability factor.

2.3.4 Acceptance indicator coefficients

The match, vendor-viability and maintainability criteria

range from 0 to 20. Coefficient values depend on the project

and which factor may be carrying more weight than the

others. The values should reflect the steady degree of

importance between the criteria affecting the evaluation

process. Usually, the match criteria are very important and it

should carry a high weight. Vendor-viability is neither as

important as the match criteria nor as the maintainability

criteria and hence it should carry a lesser weight than the

match and maintainability. Of course, these weights are

adjustable to the designer view of the project.

2.4 Component selection

A possible-component from the list with the highest

acceptance indicator is picked as the new component for the

application.

3. Related Work

In the literature, there are a number of evaluation and

selection methods, and in this section we discuss the most

related to the presented framework.

COTS-based Integrated System Development (CISD) [10]

consists of three phases: identification, evaluation and

integration. Identification includes collecting and

understanding system requirements and identifying and

classifying COTS software products. This stage is similar to

our first phase of system requirements collection and

division of these requirements into components. In CISD,

these components are called service domains. Evaluation

consists of the development of prototypes to support further

investigation of the candidates of COTS products. Our

framewrok does not rely on extensive prototyping. We

believe that testing should be a confirmation to a

specification and not an exhaustive procedure to component

comprehension. In CISD, adapters are developed during the

integration phase to interconnect the selected COTS

components.

Off-The-Shelf-Option (OTSO) [11] is a method where there

exist three phases: search phase, screening and evaluation

phase and an analysis phase. COTS candidates are identified

in the search phase similar to our method first phase.

Evaluation is performed against a set of criteria which are

taken from requirements specification, high level design

specification, etc…The requirements specification carried

out in this method is similar to our framework system

component requirements specification. The final selection,

in this method, is made in the analysis phase of the

evaluation results. The PORE method [12], [13], [14], [15],

is a method for selecting software packages. Requirements

are considered very important as in the presented

framework. For that, PORE uses requirement engineering

techniques. Unlike PORE, our framework does not rely on

the vendor response to a questionnaire on compliance with

system component requirements. In our framework, it is the

designer who determines this compliance once a

specification, of the system component requirements, has

been made. In addition, other techniques are also used such

as knowledge engineering, multi-criteria decision-making as

in [16], and features analysis to guide the selection of COTS

packages.

A related method to PORE is the proactive evaluation

method (PE) [17], which allows requirements refinement

and redefinition. It uses PORE evaluation templates and

context evaluation through prototyping.

The Base Application Software Integration System (BASIS)

method [18] is based on synthesizing product evaluation,

emerging practices in integration technologies and business

priorities. BASIS includes three steps. A component

evaluation process, a vendor viability process and a

difficulty of integration index calculation. Our framework,

also, caters for vendor-viability in the acceptance equation.

However, we add another important factor to the equation,

that is, maintainability of the evaluated component. The final

decision, in BASIS, is based on a single prioritised index of

suitability and is called the BASIS indicator.

4. Case Study

In this section, we report on an application where the

framework has been applied. The application is wireless and

it involves a handheld device that is a Palm OS equipped

with a WML browser to extract information via a WAP

gateway from some web servers. The application

architecture is depicted in Figure 2:

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 221

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 WML

 WML

 HTML

 HTML HTML

 Fig. 2. Wireless application architecture

The requirement is that we would like to add a security layer

to the application in order for the user to send and receive

data securely. At this early stage, we have identified the

following requirements for the new component:

• Data should be correct and has not been corrupted

during the transfer in either direction.

• User identity is not revealed to the servers.

• Authentication – the client can authenticate the

server where the required data reside, and the server

should, also, be able to authenticate the client.

4.1 Specifying the requirements

The ideal-component requirements can be specified, in a

structured first order predicate calculus, as follows:

Transmit data from a to b requirement specification:

transmit(d, a, b) ∆ | application |

 know(a, d) � know(b, d)

Requesting data requirement specification:

want(a, d, b) ∆ | application |

 ~ know(a, d) ^ know(b, d)

Data correctness requirement specification:

data_correctness ∆ | application |

 ∀ s, cl, d ((server(s) ^ client(cl) ^ data(d) ^

 tramsmit(d,cl,s)) � correct(d))

User identity requirement specification:

userID ∆ | application |

∀ s, cl, d (server(s) ^ client(cl) ^ data(d) ^

 tramsmit(d,cl,s) � ~ (know(s,client-id)))

Authentication requirement specification:

authentication ∆ | application |

∀ s, cl, d ((server(s) ^ client(cl) ^ data(d) ^ want(cl,d,s))

 � (authenticate(s,cl) ^ authenticate(cl,s))

In the above specifications, we have stated formally what the

ideal-component must satisfy. The predicates server(s),

client(cl) and correct(d) are self explanatory. The definition

transmit(d,a,b) has the meaning of the data can be sent in

both directions from a to b and vice versa that is client and

server. The definition want(a,d,b) has the meaning of a

wants the data (d) from b. The prdicate know(s,client-id) has

the meaning of the server knowing the client id.. Finally, the

definition authenticate(a,b) has the meaning of (a)

performing an authentication on (b). Note that in these

definitions the context in which these definition have

meaning is the application environment.

4.2 Evaluation of components

In this project the match criteria is very important and we

require that the selected component should match the ideal-

component perfectly. Maintainability is of high importance,

as we would like to tailor the component to our needs.

Hence, the following values for the coefficients of the

acceptance indicator equation have been taken:

α = 7 for the match coefficient

β = 3 for the vendor-viability coefficient

δ = 5 for the maintainability coefficient

After substituting α, β and δ by these values the acceptance

indicator equation becomes:

Acceptance Indicator % =

 (7x match + 3 x vendor-viability +

 5 x maintainability) x 5 / 15

A market search for the components that may fulfil the

ideal-component specification came up with two

components: one from RSA [19] and the other from

Certicom [20]. These modules, if they are going to be

accepted, their features must satisfy the ideal-component

requirements specification.

From the RSA module description, features identification

and understanding have been carried out. Then, the

following marks for match, vendor-viability and

maintainability factors, 14, 17, 11, have been made,

respectively. Note that these marks are over 20. The

acceptance indicator can now be calculated:

Acceptance Indicator % =

 (7x14 + 3x17 + 5x11) x 5) / 15 = 68.00

Handheld device equipped

 with a WML browser

WAP gateway

Web server 1

 Internet

Wireless network

Web server 2 Web server n

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 222

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

The second component candidate in the list is the Security

Builder SSL [15] from Certicom. The component allows

mutual authentication between sever and client. It has the

added advantage that it is a tool kit where we can choose the

options, which we like to put in the security layer. Hence, its

flexibility and therefore maintainability is highly feasible.

For this reason, this component is impressive to our project.

High ranking have been given to this product. These values

are: 17, 17 and 18 for the match, vendor-viability and

maintainability factors, respectively. The acceptance

indicator for this component can now be calculated:

Acceptance Indicator % =

 (7x17 + 3x17 + 5x18) x 5) / 15 = 84.66

The result of the evaluation process is that the Security

Builder SSL from Certicom has been selected for this

project. The development of the application has indeed

confirmed this choice in terms of flexibility of this module.

5. Conclusion

We have presented a framework for mobile application

design. The framework is based on COTS paradigm. It uses

a structured first order predicate calculus as the main vehicle

to specify application component requirements. To help the

designer in the evaluation process an acceptance indicator is

developed. The acceptance indicator equation is based on

three main factors: matching between system component

requirements specification and vendor component features,

vendor-viability and maintainability.

Structured first order predicate calculus has been adopted to

write requirements specification. This will lead to

modularisation of the specification. Chaining of

requirements specification via context can make the analysis

and tracing of the specification at reach. Ambiguities of

specifications can be resolved in conjunction with the use of

the domain theorem concept.

Component maintainability is very important and the

introduction of maintainability in the early stages of the

evaluation process is one of the main contributions of the

framework. A component could be rejected for lack of

flexibilities in enhancing existing features, adding new ones

or removing existing features. We believe that the presented

framework will be of assistance to software designers in

making an informed decision when a choice between similar

components has to be made.

REFERENCES

[1] Dehlinger, J., & Dixon, J., “Mobile Application Software

 Engineering: Challenges and Research Directions”, Proc. of the

 Workshop on Mobile Software Engineering.Springer, 2011,

 pp. 29– 32

[2] Wasserman, A, “Software Engineering Issues for

 Mobile Application Developmen”, FoSER’10, 397 – 400, 2010.

[3] Muccini, H., Francesco, A., & Esposito, P., “Software

 Testing of Mobile Applications: Challenges and Future

 Research Directions”. 7th IEEE/ACM International Workshop

 on Automation of Software Test, 2012, 29 – 35.

[4] Amalfitano, D., Fasolino A., & P. Tramontana, “A GUI

 Crawling-Based Technique for Android Mobile Application

 Testing”. Third International Workshop on TESTing

 Techniques & Experimentation Benchmarks for Event- Driven

 Software, 2011, IEEE CS Press, pp. 252- 261.

[5] Amalfitano, D., Fasolino, A., Carmine, S., Tramontana, P., &

 Memon, A, “Using GUI Ripping for Automated Testing

 of Android Applications”, Proc. 27th IEEE international

 conference on Automated software engineering, 2012,

 258 – 261.

[6] Software Engineering Institute, Carnegie Mellon University:

 Annotated Bibliography of COTS Software Evaluation.

Available at:

 http://www.sei.cmu.edu/cbs/papers/eval_bib.html (1998, 1999).

[7] J. Dean, P. Oberndorf, M. Vigder (Eds): Proceedings of the 2nd

Workshop on COTS Software. Limerick (Ireland), June 2000.

[8] S. Sedigh-Ali, A. Ghafoor, R. Paul: Software Engineering

Metrics for COTS-Based Systems. Computer, Vol. 34(5), May

(2001) 44 – 50.

[9] V. Tran and D. Liu: A Risk-Mitigating Model for the

Development of Reliable and Maintainable Large-Scale

Commercial-Off-The-Shelf Integrated Software Systems. In

Proceedings of the 1997 Annual Reliability and Maintainability

Symposium, Jan (1997) 361 – 367.

[10] C. Abts: COTS-Based Systems (CBS) Functional Density – A

Heuristic for Better Design. Lecture Notes in Computer Science,

Vol. 2255, Springer-Verlag, (2002) 1 - 9.

[11] J. Kontio: A Case Study in Applying a Systematic Method for

COTS Selection. In the 18th International Conference on

Software Engineering, (1996) 201 – 209.

[12] N. Maiden, C. Ncube, A. Moore: Lessons Learned During the

Requirements Acquisition for COTS Systems. Communications

of the ACM, Vol. 40(12), December (1997) 21-25.

[13] N. Maiden, C. Ncube: Acquiring COTS Software Selection

Requirements. IEEE Software, Vol. 15(2), March (1998) 46-56.

[14] C. Ncube: A Requirements Engineering Method for COTS-

Based System Development. PhD Thesis, Center for Human-

Computer Interaction Design, School of Informatics, City

University, London, (2000).

[15] N. Maiden, H. Kim, and C. Ncube: Rethinking Process

Guidance for Selecting Software Components. Lecture Notes in

Computer Science, Vol. 2255, 151 –164.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 223

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

[16] P.K.Lawlis, K. Mark, D. Thomas, T. Courtheyn: A Formal

Process for Evaluating COTS Software Products, Computer,

Vol. 34(5), May (2001) 58 – 63.

[17] J. Dean: An Evaluation Method for COTS Software Products.

In Proceedings of the Twelfth Annual Software Technology

Conference, Salt Lake City, Utah, April 30 - May 5, 2000.

[18] K. Ballunio, B. Scalzo, L. Rose: Risk Reduction in COTS

Software Selection with BASIS. Lecture Notes in Computer

Science, Vol. 2255, Springer-Verlag, (2002) 31 - 43.

[19] RSA WTLS-C Module:

 http://www.rsasecurity.com/products/bsafe/wtlsc.html

[20] Security Builder SSL Certicom:

 http://www.certicom.com

Dr. Abdesselam Redouane is currently with the college of

engineering and computing, Al Ghurair University, Dubai. He

received his PhD in Computer Science from Manchester

University, UK. His research interest lies in the area of the

application of software engineering techniques to new emerging

technologies like web and mobile applications. He is also interested

in computer security and especially in access control. He is an

associate editor of the International Engineering Letter.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 224

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

