

 Design and Realization of the Xml Parser based on Parsing

Approach of Delaying Extension and Reducing Redundancy

Xiaoxia Sun
1
, Hui Zhao

2
 and Wenjun Meng

3

1
 School of Mechanical Engineering, Taiyuan University of Science and Technology

Taiyuan Shanxi, 030024, China

2
 China Mobile Communications Corporation

Taiyuan Shanxi, 030024, China

3
 School of Mechanical Engineering, Taiyuan University of Science and Technology

Taiyuan Shanxi, 030024, China

Abstract

DOM parsing approach will consume a lot of memory size

when it parse large XML document. This paper proposes an

improved method of DOM parsing approach--- parsing

approach of delaying extension and reducing redundancy.

This method reduces the size of the object created by

delaying expanded document, whose purpose is to reduce

the memory size used. At the same time it improves the

performance of the system by reducing the redundancy of

the string stored. After analysing the new algorithm,

improvement on it by Hash table is used. It reduces process

time and increases parsing efficiency of system further. This

paper describes the new algorithm based on this method

above and programs it using Delphi6.0. Seven different

sizes of XML document were tested based on the new

algrithom and DOM parsing approach. The test results

demonstrate this algorithm is feasible and effective.

Keywords: XML Parser, DOM, delaying extension, reducing

redundancy，Hash table

1. Introduction

DOM is a standard API developed by W3C for browsing

the XML document. It not only provides a complete

representation for XML document stored in the memory,

but also provides the method to access to the entire

document randomly. The user can regard document as a

structural information tree by DOM. The parser of the XML

document designed by DOM approach enable developers to

use the document Information repeatedly. However, the

consumption of memory size is very impressive when the

document is very large. In order to reduce the memory size,

we must improve existing DOM parsing approach.

When parse an XML document using DOM parsing

approach, all documents node are regarded as an expanded

tree structure in memory. And usually the TEXT part of the

node accounted for a lot of memory size in the XML

document. Therefore we should study the TEXT part of the

node in order to reduce the memory size. The approach

taken in this paper is the TEXT part of the node is not

expanded in the tree structure in memory, instead some

index. These indexes are the index number of the TEXT

part of the node in an array. At the same time we use the

method of reducing data redundancy, which use the same

index when the contents of the node are the same.

2. Design Idea and Realization of Algrithm

2.1 Design Idea

During the scanning process, each part of the document is

expanded into a document tree in memory (except for the

TEXT part of the document), which is similar to the DOM

parsing approach. The TEXT part of the document is saved

in an dynamic array, and the index number of the TEXT

part in dynamic array is recorded in the document tree. In

the dynamic array the same TEXT value only occupies one

memory space. The same TEXT value only use an index

number in the document tree expanded, which reduce the

data redundancy and the memory size.

Example 1: An XML document

<?xml version=”1.0”?>

<a>

 China

 <c>America</c>

 <d>Britain</d>

 <e>

 <f>China</f>

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 31

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 <g>America</g>

 <h>France</h>

 <i>America</i>

 </e>

</xml>

The result of parsing the document above using new

algorithm is as follows:

Fig.1 Expanded tree and dynamic array for document 1 in memory

2.2 Implementation of Algorithm

(1)Parsing algorithm of the XML document

①Create a dynamic array, and parse on the basis of DOM

parsing methods.

②When the parsing program scans TEXT part, allocating a

space for dynamic array to storage TEXT value. Then index

number of array obtained is added to the DOM tree.

③When it scans the next TEXT part, firstly in dynamic

array the parsing program queries whether the TEXT value

has the same value as one of array. If so, the index number

of array obtained is added to the DOM tree. If not, go to step

2.

LEX and YACC are design tools for the compiler and

interpreter. They are used in this paper in order to it easier

for realization of parsing algorithm.

The corresponding procedure is as follows:

Procedure 1: LEX program (Lexical analysis):

%%

[\t]+ ;

\n lineno:=lineno+1;

\< return(ZKH);

[a-zA-Z]+ begin

 s:=yytext;

 return(ZF);

 end;

\> return(YKH);

\/ return(XG);

%%

Procedure 2: YACC program (Grammatical analysis):

%token ZKH ZF YKH XG

%%

 arule: rule1 arule rule3

 |arule rule1 arule rule3

 |arule rule1 rule2 rule3

|rule1 rule2 rule3

 ;

 rule1: ZKH ZF YKH

{new(w);

 w^:=Txml.create;

 w^.name:=s;

 w^.left:=NIL;

 w^.right:=NIL;

 w^.parent:=NIL;

 if s='xml' then p:=w

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 32

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

 else if p^.left=NIL then

 begin

 p^.left:=w;

w^.parent:=p;

 p:=p^.left;

 end

 else begin

 h:=p^.left;

 while(h^.right<>NIL) do

 h:=h^.right;

 h^.right:=w;

 w.parent:=p;

 p:=w;

 end;

 };

rule2: ZF

{if length(arry)>0 then

 begin

 for i:=0 to high(arry) do

 if arry[i]=s then

 begin

flag:=1;

 p^.data:=inttostr(i);

 break;

 end;

 if flag=0 then

 begin

 count:=count+1;

 SetLength(arry,count);

 arry[count-1]:=s;

 p^.data:=inttostr(i);

 end;

 end;

 else begin

 count:=count+1;

 SetLength(arry,count);

 arry[count-1]:=s;

 p^.data:=inttostr(i);

 end;

 };

rule3: ZKH XG ZF YKH

{if p^.parent<>NIL then p:=p^.parent;}

%%

(2) Query algorithm of XML document

Procedure 3: query algorithm

Input (a, s): “a” is pointer of pointing at root node of

document tree generated after parse. “s” is the name of the

document element to query.

Output: Display the element name and the element content

in the ListBox of the window.

procedure find(a:point; s:string);

begin

 if a<>NIL then

{if a^.name=s then

// If the name of the node which the pointer pointed to

is the same as the string to query

{if a^.data<>' ' then

{ form1.ListBox1.Items.Add('<'+s+'>')；

form1.ListBox1.Items.Add(arry[strtoint(trim(a.da

ta))]);

form1.ListBox1.Items.Add('</'+s+'>');}

if a^.data=' ' then

{ pp:=a; def(a);};

 }

find(a^.left,s); // Recursion to search the children node

that pointer pointed to;

find(a^.right,s); // Recursion to search the brother

node that pointer pointed to;

 }

end;

（3）Increase algorithm of XML document

Procedure 4: increase algorithm

Input(a,s,s1,s2): “a” is pointer of pointing at root node of

document tree generated after parse. “s” is the name of

document element. “s1” is the element name to be added.

“s2” is element value to be added.

Output: Add a brother node to element node of document

tree specified in memory.

Procedure add (a:point;s:string;s1:string;s2:string);

var i: integer;

begin

 if a<>NIL then

{ if a^.name=s then

// If the node name which the pointer pointed to is the

same as the node name to be added after it.

{new(xin); xin^:=Txml.create;

xin^.name:=s1; flag:=0;

 if length(arry)>0 then

 { for i:=0 to high(arry) do

 If arry[i]=s2 then {flag:=1;xin^.data:=inttostr(i);

break;}

 }

 if flag=0 then

 {count:=count+1; SetLength(arry,count); arry[count-

1]:=s2;

in^.data:=inttostr(count-1);

 }

 }

xin^.left:=NIL; xin^.parent:=a^.parent;

xin^.right:=a^.right; a^.right:=xin;ww:=1;

 }

 if ww=0 then

 //Ensure that document only add a node Everytime.

{ add(a^.left,s,s1,s2); // Recursion to add a children node

that pointer pointed to;

add(a^.right,s,s1,s2);

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 33

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

}

 }

end;

（4）Modification algorithm of XML document

Procedure 5: modification algorithm

Input(a,s,s1): “a” is pointer of pointing at root node of

document tree generated after parse. “s” is the element name

to be deleted. “s1” is altered contents.

Output: Alter element contents to element node of document

tree specified in memory.

procedure modi(a:point;s:string);

begin

 if a<>NIL then

 {if a^.name=s then

 {if a^.data<>'' then

{arry[strtoint(trim(a^.data))]:=trim(

form1.Edit2.Text); ww:=1;

 }

}

 if ww=0 then

 {modi(a^.left,s); // Recursion to alter the

children node that pointer pointed to;

 modi(a^.right,s); }

 }

 end；

(5) Serializable output algorithm of XML document

Procedure 6: Serializable output

Input (a): “a” is pointer of pointing at root node of document

tree generated after parse.

Output: Export document tree in memory as XML document.

procedure abc(a:point);

begin

assignfile(text1,'a.txt'); append(text1);

writeln(text1,'<'+a^.name+'>');

 closefile(text1);

 if a^.left<>NIL then abc(a^.left);

 if a^.left=NIL then

{assignfile(text1,'a.txt'); append(text1);

writeln(text1,arry[strtoint(trim(a.data))]);

writeln(text1,'</'+a^.name+'>');closefile(text1);

 }

 if a^.right<>NIL then abc(a^.right);

 if (a^.right=NIL) then

{assignfile(text1,'a.txt'); append(text1);

 if a^.parent<>NIL then

writeln(text1,'</'+a^.parent^.name+'>');

 closefile(text1);

 }

end;

2.3 Analysis of Algorithm

Although the new algorithm has advantage in memory

consumption, but there will be additional costs in parsing

process. In parsing process, when we read an element value,

first in dynamic array to find out whether them have the

same value. If so, we only add index value found in the

document tree. If not, we assign a space for dynamic array,

and add element value in it. Then the corresponding index

number is added in the document tree. When the XML

document is very large, dynamic array will be numerous. At

this time we need to compare with all dynamic array value

to find out whether one of them has the same value as the

element value being read. This will be more time

consumption.

3.Optimization OF Algorithm

3.1 Optimization Idea

The ideal situation is that we get the record queried only one

access without comparison. We should build a certain

corresponding relationship f between store location of

record and its key words. We can find MAP f (K) to given

value K according to the corresponding relationship when

we search. If the key word of record is the same as K in

structure, the store location must be location of f (K).

Consequently, we can get the record queried directly

without comparison.

We call the corresponding relationship f for Hash function,

and the table created according to the idea for Hash table.

3.2 Construction of Hash Function

For XML document, the element value of document may be

long or short. It also may be digit, letter, Chinese characters

or combination of them. In this optimization we use

resulting “middle square method”. For XML document, the

key word we take is divided into three parts: primacy of

string, neutral position of string, end position of string. Take

out the value of the three parts, and the average value got is

regard as the key word. The algorithm of square to the key

word is as follows:

Input(SJ , M): “ SJ ” is the element value of document,

that is string; “ M ” is node counts of leaves that Documents

prior to traverse.

Output(AJ): address AJ of string SJ in Hash table.

(1) Take out the internal code of initiatory 5 bytes of

string to 1SJ , take out the internal code of

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 34

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

intermediate 5 bytes of string to 2SJ , take out the

internal code of final 5 bytes of string to 3SJ ;

(2) 



3

13

1

i

iSJSJ ;

(3) Take out Intermediate
2 M from

2SJ to AJ .

3.3 Approach of Processing Conflict

We may get the same Hash address for different key words.

In general, the conflict only reduces as much as possible.

But it cannot avoid completely. So how to deal with conflict

is essential to structure hash table.

We use the "linear detection to hash method” in “open

address method” in order to resolve conflict. The reference

formula is as follows:

H =(H(key)+ id)MOD m, i=1,2,…,k(k≤m-1)

Among them, “H(key)” is Hash function. “m” is length of

Hash table. “ id ” is Incremental sequence.

3.4 Algorithm Analysis with Hash Table in Parsing

The search by Hash table in parsing document may have

comparison because of production of conflict. But the

comparison of the average search length can be limited

within limits. And direct map have been build between most

of key words and store location of record. They don’t need

compare. So Hash table can reduce comparand of search in

parsing XML document and reduce the cost of time. We

only need to structure function in search by Hash table

approach, which have nothing to do with the length of Hash

table. It’s time complexity is O(1), which is far less than

parsing approach of delaying extension and reducing

redundancy by dynamic array , whose time complexity is

O(n).

4. THE RESULT OF THE EXPERIMENT

In this paper, we design a XML parser based on parsing

approach of delaying extension and reducing redundancy. In

order to test the merit of new approach, we program DOM

parsing approach and improved parsing approach

respectively using Delphi6.0, and seven sets of data are

contrasted. The results are as follows:

Table1: Parsed numerical results for seven document

Size of the XML document 32.9kb 230kb 1147kb 2304kb 4608kb 9226kb 18432kb

Memory size occupied based

on DOM approach
3160kb 3460kb 4912kb 6712kb 10316kb 17520kb 31952kb

Memory size occupied based

on new approach
3148kb 3284kb 3968kb 4800kb 6524kb 9944kb 16732kb

Fig.2 Contrast diagram of two kinds of parsing approach

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 35

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

It can be seen from table 1 and fig.2 that new approach has

obvious advantage over DOM approach, especially in the

use of memory resources. As is shown in fig. 2, Memory

size occupied based on new approach is smaller than

Memory size occupied based on DOM approach. When

parsing document increases, grow rate of memory size based

on new approach is significantly lower than ordinary DOM

parsing approach.

5. Conclusion

(1)This paper proposes an improved method of DOM

parsing approach--- parsing approach of delaying extension

and reducing redundancy. It can resolve the question of

consumption of a lot of memory size and reduce redundancy

of system, which increase parsing efficiency of system.

(2)After analysing the new algorithm, improvement on it by

Hash table is used. It reduces process time and increases

parsing efficiency of system further.

(3)We program DOM parsing approach and improved

parsing approach respectively using Delphi6.0, and seven

sets of data are contrasted. The test results demonstrate this

algorithm is feasible and effective.

6. Acknowledgment

This research was supported by the Shanxi Provincial

Natural Science Fund under Grant No. 2011011019-3 and

Foundation of School Younger Teachers in Taiyuan

University of Science and Technology under Grant No.

20123001.

REFRENCES:

[1] ZhangWei, Van Engelen, Robert A, “High-performance XML

parsing and validation with permutation phrase grammar

parsers”，Proceedings of the IEEE International Conference

on Web Services, ICWS 2008, pp. 286-294.

[2] Stanislav STANKOVIC, Jaakko ASTOLA, “XML Framework

for various Types of Decision Diagrams for Discrete

Functions”, IECE TRANS. INF. &SYST, Vol. e90-D, No. 11,

2007, pp. 1731-1741.

[3] Xubing, Liqiyan, Zhuqia, “Application analysis of XML

parser”, Computer Systems & Applications, No. 1, 2002, pp.

30-32.

[4] Sunyizhong, “Basic theory and application of XML”, Press of

Beijing University of Posts and Telecommunications, 2000.

[5] POleg Kiselyov, “A Better XML Parser through Functional

Programming”, Proceedings of the 4th International

Symposium on Practical Aspects of Declarative Languages,

2008, pp. 294-308.

[6] W. Zhang and R. van Engelen, “A Table-Driven Streaming

XML Parsing Methodology for High-Performance Web

Services”, Proceedings of the IEEE International Conference

on Web Services, pp.197—204.

[7] Aswatha Kumar M., Selvarani R., T V Suresh Kumar, “An

XML Parser of Efficient Updates for a Binary String: A Case,

Study Proceedings of International Conference on Advances in

Computing, Vol. 174, 2012.

[8] Haihui Zhang, Xingshe Zhou, Yang Gang, Xiaojun Wu, “An

Index-Based XML Parser Model”, Network and Parallel

Computing, Vol. 3779, No. 11, 2007, pp. 65-71.

[9] Caofenghua, “Study and Realization of an XML parser

technology”, Microcomputer & Its Applications, Vol. 30, No.

11, 2011, pp. 6-10.

[10] Liuying, Wangsiliang, Xieyuemei, “Realization and study of

XML parser C++ oriented”, Computer Application and Rearch,

Vol. 24, No. 12, 2007, pp. 268-271.

Xiaoxia Sun born in 1979. She received her M.S. degree from North
University of China in 2005, she is working towards a Ph.D. degree
in Taiyuan University of Science and Technology. She is a lecturer
at Taiyuan University of Science and Technology. Her main research

interests include computer algorithm and conveying machinery.

Hui Zhao born in 1978. He received his M.S. degree from Shanxi
University in 2005. He is working for China Mobile Communications
Corporation.

Wenjun Meng born in 1963. He received his M.S. degree from
Taiyuan University of Science and Technology, and his Ph.D.
degree from Beijing Institute of Technology in 1990 and 2005
respectively. Currently, he is a professor at Taiyuan University of
Science and Technology. His main research interests include

Electromechanical integration and Continuous conveying machinery.

IJCSI International Journal of Computer Science Issues, Vol. 10, Issue 3, No 2, May 2013
ISSN (Print): 1694-0814 | ISSN (Online): 1694-0784
www.IJCSI.org 36

Copyright (c) 2013 International Journal of Computer Science Issues. All Rights Reserved.

